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Summary Statement 22 

We address the role of the Frank-Starling mechanism and show that it has no 23 

role in the stability of the circulatory system. Rather, it accounts for decreasing 24 

the controlling effort and speeding up changes in cardiac output. 25 

26 
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Abstract 27 

The Frank-Starling Law of the heart is a filling-force mechanism, a positive 28 

relationship between the distension of a ventricular chamber and its force of 29 

ejection. The functioning of the cardiovascular system is usually described by 30 

means of two intersecting curves: the cardiac and vascular functions, the former 31 

related to the contractility of the heart and the latter related to the after-load 32 

imposed to the ventricle. The crossing of these functions is the so-called 33 

operation point, and the filling-force mechanism is supposed to play a stabilizing 34 

role for the short-term variations in the working of the system. In the present 35 

study, we analyze whether the filling-force mechanism is responsible for such a 36 

stability within two different settings: one-ventricle, as in fishes, and two-ventricle 37 

hearts, as in birds and mammals. Each setting was analyzed under two 38 

scenarios: presence of the filling-force mechanism and its absence. To approach 39 

the query, we linearized the region around an arbitrary operation point and put 40 

forward a dynamical system of differential equations to describe the relationship 41 

among volumes of ventricular chambers and volumes of vascular beds in face of 42 

blood flows governed by pressure differences between adjacent compartments. 43 

Our results show that the filling-force mechanism is not necessary to give stability 44 

to an operation point. The results indicate that the role of the filling-force 45 

mechanism is related to decrease the controlling effort over the circulatory 46 

system, to smooth out perturbations and to guarantee faster transitions among 47 

operation points. 48 

 49 

  50 
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List of Symbols and Abbreviations 51 

Symbol or Abbreviation  

FFm filling-force mechanism 

OP operation point 

V blood volume 

P pressure 

R resistance 

 capacitance 

q  flow 

F coefficient of force 

  

subscripts  

T total 

j a general compartment 

k fixed-force scenario 

H one-ventricle chamber 

S systemic vascular bed 

G pulmonary vascular bed 

L left ventricle 

R right ventricle 

 52 

53 
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Introduction 54 

The nowadays-called Frank-Starling Law, or Heart Law, has a long history, being 55 

known since the beginning of 1830 (Katz, 2002). Such a “law” is a relationship 56 

between the filling of a ventricle and the force of contraction it develops (e.g., 57 

(Holubarsch et al., 1996)). In this way, it is also known as the heart filling-force 58 

relationship (Katz, 2002; Saks et al., 2006), the length-dependent activation 59 

(Solaro, 2007), or, even, the stretch-activation/calcium-activation (Campbell and 60 

Chandra, 2006). And despite the fact that fishes regulate cardiac output mainly 61 

by changes in stroke volume while mammals and birds control mainly heart rate, 62 

the filling-force mechanism (FFm) is found across all vertebrate classes (Shiels 63 

and White, 2008). 64 

The relationship between length and force in the heart resembles the same 65 

relationship occurring in skeletal muscles. However, the steepness of the curve 66 

obtained for the heart suggested that beyond myofilament overlapping, there 67 

should be other, or others, mechanism involved in the phenomenon. Indeed, a 68 

calcium-activation process is fundamental for the increase in force due to an 69 

increase in length (e.g., (Moss and Fitzsimons, 2002; Niederer and Smith, 2009; 70 

Saks et al., 2004)). Be that as it may, it is important to note that the FFm is 71 

inherent to the heart cells themselves, without the participation of extrinsic 72 

controls as neural or hormonal ones. As stated in the opening of the review by 73 

Shiels and White (Shiels and White, 2008), “The Frank-Starling mechanism is an 74 

intrinsic property of all vertebrate cardiac tissue”. 75 

Guyton and co-workers conceived an invaluable static approach to address the 76 

functioning of the cardiovascular system. We qualitatively illustrate this approach 77 

in Fig. 1A, where the abscises axis is the central venous pressure and the 78 

ordinate axis is the cardiac output. There, it can be seen two curves: the cardiac 79 

function (the ascending one) and the vascular function (the descending one). 80 

The cardiac function ultimately represents the filling-force mechanism discussed 81 

above, since an increase in central venous pressure would elicit an increase in 82 

ventricular volume during the diastolic phase of cardiac cycle – which, in turn, 83 

would increase the contraction force resulting in an increase in cardiac output. 84 
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The vascular curve is, in fact, plotted the other way around as it is truly obtained 85 

(the experimental procedure is to cause changes in flow and measure the 86 

resulting pressure), and represents the dependence of central venous pressure 87 

in relation to blood flow (for details and insightful discussions of this subject, see 88 

(Brengelmann, 2003; Levy and Pappano, 2007)). The crossing of the two curves 89 

is the so-called operation point (OP) of the cardiovascular system. 90 

 91 

Figure 1. Cardiovascular operation point. (A) Usual representation of the cardiac and vascular 92 

functions resulting in an operation point of the heart. (B) Pictorial representation of a non-stable 93 

equilibrium (operation) point (an unstable focus in this case). The solid arrow represents an 94 

arbitrary perturbation from the operation point; the dashed lines represent a possible evolution 95 

path. This path is only for illustrative purposes and based on a cobwebbing approach of discrete 96 

dynamical systems.  97 

 98 

Now, many textbooks and papers consider, implicit or explicitly, the OP as a 99 

stable equilibrium point, and that the FFm is responsible for such a stability. Let 100 

us give some examples.  101 

 “… [OP] represent the stable values of cardiac output and central venous 102 

pressure at which the system tends to operate. Any perturbation … 103 

institutes a sequence of changes in cardiac output and venous pressure 104 

that restore these variables to their equilibrium values” ((Levy and 105 

Pappano, 2007), pg. 187). 106 

 “[Frank-Starling mechanism] … applies in particular to the coordination of 107 

the output of the two ventricles. Because the ventricles beat at the same 108 

rate, the output of the two can be matched only by adjustments of the 109 

stroke volume.” ((Antoni, 1996), pg. 1814). 110 
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 “The heart maintains normal blood circulation under a wide range of 111 

workloads, a function governed by the Frank-Starling law”  (Saks et al., 112 

2006). 113 

 “This important functional property of the heart supplies an essential 114 

regulatory mechanism by which cardiac output is intrinsically optimized 115 

relative to demand.”(Asnes et al., 2006). 116 

Besides these citations, we can easily lengthen the list of those that, one way or 117 

another, consider the OP as an stable equilibrium point due to the FFm (e.g., 118 

(Fuchs and Smith, 2001; Moss and Fitzsimons, 2002; Niederer et al., 2011)). 119 

As we see from the above-mentioned literature, students and physicians are lead 120 

to consider the filling-force mechanism as giving stability to the system.  121 

However, if we take the (apparent) stability of the cardiovascular system as a 122 

prima facie evidence of the (supposed) stability generated by the FFm, we risk 123 

ourselves to fall in a circular reasoning. Actually, the OP could well be a neutral 124 

equilibrium point or, even worst, an unstable node or focus, all compatible with 125 

the curves that describe the OP (see Fig. 1B as an example). In effect, during 126 

undergraduate and graduate disciplines, one of us (JGCB) has trouble in 127 

explaining the stability of the OP from the vascular and cardiac curves. If one 128 

examines with care the diagram, a perturbation in the OP would not be dampened 129 

in the following cycle(s) but instead, it would be amplified.  130 

Why does this occur? Because the OP-diagram is not a diagram concerning the 131 

dynamical phase-space of the variables. It shows a static 2D relationship 132 

between a pair of variables that belong to a higher dimensional space: the curves 133 

are somehow projections of the null-clines of the whole system (note: in the case 134 

of one-ventricle hearts, as it will be also modelled, the OP-diagram is a construct 135 

from a lower dimensional space, but this is not really important here).  136 

In plain English, the OP-diagram does not, and cannot, reveal how changes in 137 

one variable (say left cardiac output) alters the other (say central pulmonary 138 

venous pressure) because there are missing variables. If the vascular curve 139 

refers to the vena cava, then the cardiac curve should be for the right ventricle. If 140 

the vascular curve refers to the pulmonary veins, then the cardiac curve should 141 

be for the left ventricle. However, as usually presented, the OP diagram mixes up 142 
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the two sides of the heart. Once we recognize this, we understand that, for two-143 

ventricle hearts, one needs four state variables to compose the whole picture 144 

(despite this obviously prevents a 2D representation): the systemic pressure, the 145 

right ventricle output, the pulmonary pressure and the left ventricle output. 146 

Therefore, there are two operation points: one for the left side and one for the 147 

right side of the heart. 148 

In a more formal language, the diagram of the vascular and of the cardiac curves 149 

(Fig. 1) as obtained does not have an associated vector field in the phase-space 150 

that represents the possible trajectories of the system given a perturbation from 151 

the OP. Thus, the conundrum is whether the OP is a stable equilibrium point due 152 

to the filling-force mechanism, which, in the end, guaranties that both beat-to-153 

beat variation and the matching between the ventricles can be sustained without 154 

any regulatory loop extrinsic to the heart.  155 

The filling-force mechanism is found among all vertebrate classes, as stated in 156 

before. However, many vertebrates have single-ventricle hearts, and so, there is 157 

no match necessities between the outputs of two ventricles beating 158 

simultaneously. Moreover, exactly these vertebrates belong to the predecessor 159 

lines of the two-ventricle hearts of mammals, birds and some reptiles. Thus, in 160 

evolutive terms, the FFm precedes output-matching necessities.  161 

Fishes regulate cardiac output mainly by systolic volume and it is considered that 162 

the FFm is responsible for the adjustment of ejection in face of large changes in 163 

ventricle volume (Shiels and White, 2008). The ascending limb of the relationship 164 

between developed tension and sarcomere length is much broader in these 165 

animals than in mammals and birds, indicating a wider range of adequate 166 

ventricular pressure responses in face of increases in chamber volume (Shiels 167 

and White, 2008). Despite the fact that these considerations seem to address the 168 

question of the stability of a given equilibrium point in fishes, in fact they are 169 

related to the transitions among operating points governed by a series of systemic 170 

changes (e.g., changes in metabolic demand, muscle contraction, autonomic 171 

tonus, etc.). Counterintuitively as it may sound, the latter, transitions, does not 172 

imply the former, stability, indeed. 173 

The present study aims to answer the questions of the role of the filling-force 174 

mechanism in the stability of an operation point and of the role of the FFm in 175 
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output-matching. These questions are approached by the analysis of a dynamical 176 

system representing the acute and intrinsic coupling between cardiac output and 177 

central venous pressure. We analyze two settings of this coupling, one 178 

concerning the single ventricle system of fishes and the other concerning the two-179 

ventricle system of mammals, birds and some reptiles. The settings are analyzed 180 

in two different scenarios: (A) the filling-force mechanism actuating in the 181 

ventricular chamber; and (B) a fixed force is exerted by a ventricular chamber. 182 

These two scenarios are intended to allow for a comparison of what would 183 

happen if the FFm were absent and so, to answer the proposed questions.   184 

 185 

Preliminary considerations 186 

Mechanistic description and cardiac dynamics 187 

The functioning of the cardiovascular system is governed by a set of variables. 188 

This set includes vascular capacitances, vascular impedances, blood rheology, 189 

total blood volume, autonomic nervous system tonus (e.g., (Holubarsch et al., 190 

1996; Hoppensteadt and Peskin, 2002)). For the purposes of the present 191 

analysis, these variables would be considered as constants during the timeframe 192 

of interest. This defines what is meant by “acute” and by “intrinsic” that we put 193 

above. In other words, we are saying that there is more than one time scale to 194 

describe the system, and we shall investigate one that operates at a rate 195 

compatible of a heartbeat interval. In doing so, we are lead to consider that in the 196 

vicinities of an OP the system behaves linearly. 197 

In this instance, the total volume of fluid (explicitly, blood), VT, is constant and 198 

equals the sum of the volumes in each compartment j of the system: 199 

 T jV V           (1) 200 

We use the Hagen-Poiseuille model to describe flow between two points i and j 201 

of the circulatory system: 202 



i j

i, j
i, j

P P
q

R
          (2) 203 
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In which q  is the flow between compartments i and j, P is the pressure in a 204 

given compartment and R is the resistance imposed to the flow between the 205 

compartments. Notice that the resistance term encloses physical constants of 206 

the system, such as mean radius and length of the vessels, viscosity of the 207 

fluid, etc.  208 

The pressure in a given compartment j is the volume V of blood present in the 209 

compartment divided by the capacitance  of the compartment (here we 210 

consider the capacitance as a constant in the small range of volume variations 211 

we analyze): 212 




j
j

j

V
P           (3) 213 

Eqn 1-3 form the core of the subsequent models in which the time variation in 214 

the volume of a given compartment j is the result of the inflow and outflow of 215 

blood: 216 

 
j

in out

dV
q q

dt
         (4) 217 

Since total volume is constant, then follows that: 218 

jdV
0

dt
           (5) 219 

As stated before, the timeframe of reference is related to a heartbeat, which is 220 

composed by two phases. During systole, the heart ejects but does not receive 221 

blood. During diastole, the reverse is true. Therefore, when we employ Eqn 4 222 

we are referring to mean values during the cardiac cycle. To incorporate such a 223 

cycle in the mean-valued model, we consider that, during diastole, the 224 

capacitance of the ventricle tends to infinity, and, therefore, the circulatory tree 225 

fills the heart against a near-zero pressure. During the systole, the ventricle 226 

develops a certain pressure (force), and this pressure is related to the volume of 227 

the ventricle. This is the filling-force mechanism, indeed.  228 

The model is intended to study the behavior of the system near an operation 229 

point. Therefore, we employ a simple positive linear relationship between 230 

volume and pressure (force). This means that we are neither modeling any 231 
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transition between two distant operation points nor pathological conditions 232 

where the FFm might be inverted (i.e., the greater the ventricular volume the 233 

lower the developed force). 234 

 235 

Modeling and Results 236 

From fish … One-ventricle hearts 237 

Let the indexes H represent the heart chamber and S the vascular tree, 238 

respectively (Fig. 2). 239 

 240 

Figure 2. Schematics of the model of the one-ventricle heart system. The state variables 241 

heart volume (VH) and systemic volume (VS) are in boxes. The arrows indicate blood flows. 242 

 243 

Scenario (A): the filling-force mechanism actuating in the 244 

ventricular chamber  245 

The outflow from the heart (inflow to the vascular tree) and the outflow from the 246 

vascular tree (inflow to the heart) are:  247 

1
H S S

H
S

F V V
q

R

   
          (6) 248 

1
S S

S
H

V
q

R

 
           (7) 249 

In which F is the linear coefficient of the relationship between ventricle volume 250 

and developed pressure (the filling-force mechanism). For the sake of notation, 251 

we define: 252 
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S S

1
a
R




 253 

H S

1
b
R




 254 

S

F
f
R

  255 

Coefficients a, b and f have units of [pressure]  [volume]-1  [resistance]-1. Since 256 

resistance to flow have units of [time]  [pressure]  [volume]-1, the coefficients end 257 

up as [time]-1 (i.e., inverse of time-constants).  258 

Because the time variation in total blood volume is zero (Eqn 5), then, from Eqn 259 

4, the system is described by the following differential equation: 260 

H
T H

dV
(a b) V (a b f) V

dt
              (8) 261 

By equating dVH/dt to zero, we obtain the value of the cardiac volume (and, 262 

consequently, the one of the vascular tree as well) at the equilibrium point of the 263 

system, denoted by an “*”: 264 

*
H T

a b
V V

a b f


 

 
         (9) 265 

In fact, Eqn 8 can be integrated straightway and we have: 266 

 (a b f) t
H T

a b
V (t) V 1

a b f

   
   

 
e       (10) 267 

In which e is the base of the natural logarithm. 268 

 269 

Scenario (B): a fixed-force is exerted by a ventricular chamber 270 

We use the subscript “k” to indicate the parameters and the variables in this fixed-271 

force scenario. The outflow from the heart (inflow to the vascular tree) becomes: 272 

1
k S S

Hk
S

F V
q

R

 
          (11) 273 
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In which Fk is the fixed-force term. The outflow from the vascular tree (inflow to 274 

the heart) remains the same as in Eqn 6. The differential equation describing the 275 

dynamics of the system is now: 276 

Hk
T k Hk

dV
(a b) V f (a b) V

dt
             (12) 277 

Notice that the constant fk has units of [volume]  [time]-1, i.e., flow. By integrating 278 

Eqn 12 results in: 279 

  (a b) tk
Hk T

f
V (t) V 1

a b

   
    

 
e       (13) 280 

And the value of the cardiac volume at the equilibrium point is: 281 

* k
THk

f
V V

a b
 


         (14) 282 

Eqn 14 shows that, if the fixed-force term (represented by fk) is much greater than 283 

the sum of a + b, the heart chamber would become completely empty of blood. 284 

 285 

Stability of the Equilibrium Point 286 

Both Eqn 10 and 13 reveal that their respective equilibrium points are an 287 

asymptotically stable node: both eigenvalues are negative real numbers 288 

(e.g.,(Monteiro, 2011)). Therefore, irrespectively to the presence of the FFm, the 289 

one-ventricle circulatory system has a stable operation point. 290 

 291 

… to philosopher 1 - Two-ventricle hearts 292 

As stated in the Introduction, we need four state-variables to describe the two-293 

ventricle hearts: left ventricle (L), systemic vascular bed (S), right ventricle (R) 294 

and pulmonary vascular bed (G – we use G for “Gas exchanger organ” instead 295 

of “P” that would cause confusion with pressure). See Fig. 3.  296 

 297 

                                            
1 “From Fish to Philosopher” is a classical book by Homer William Smith (1959). 
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 298 

Figure 3. Schematics of the model of the two-ventricles heart system. The state variables 299 

left ventricle volume (VL), systemic circulation volume (VS), right ventricle volume (VR) and gas-300 

exchanger circulation volume (VG) are in boxes. The arrows indicate blood flows.  301 

 302 

Scenario (A): the filling-force mechanism actuating in the 303 

ventricular chamber  304 

Flows are given by the following equations:  305 

1
L L S S

L L L S
S

F V V
q f V a V

R

   
           (15) 306 

1
S S

S S
R

V
q b V

R

 
            (16) 307 

1
R R G G

R R R G
G

F V V
q f V c V

R

   
           (17) 308 

1
G G

G G
L

V
q e V

R

 
           (18) 309 

In which we employ the same short notation as in the preceding section for the 310 

sake of clarity. From the equations of flow and Eqn 5, we have the following set 311 

of coupled differential equations to describe the system: 312 
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 

L
G S L L

S
L L S

G
R T L S G G

dV
e V a V f V

dt

dV
f V (a b) V

dt

dV
f V V V V (c e) V

dt


     




    



       


     (19) 313 

The volumes at the equilibrium point of the system are (we let VS
* and VG

* as 314 

functions of VL
*): 315 

* *L
S L

f
V V

a b
 


 316 

* *L
G L

b f
V V

e (a b)


 

 
 317 

* R
L T

R L R

f e (a b)
V V

f e (a b) f f (b e) b (c e)

  
 

           

    (20) 318 

Just to check the feasibility of Eqn 20, if fR = 0, i.e., the right ventricle has no 319 

ejecting force at all, then the whole volume of blood would be retained in the right 320 

ventricle, while if fL = 0, then the volume is completely retained in the left ventricle. 321 

If both fR and fL go to zero simultaneously, then one has a proportion of blood 322 

retained in the right side and other in the left side, as in stagnation conditions. 323 

These extreme results are in accordance with what one would anticipate within 324 

this simplified framework of the circulatory system. 325 

 326 

Stability of the equilibrium point in the presence of the filling-327 

force mechanism 328 

The stability of the equilibrium point is given by setting the determinant of the 329 

Jacobian of the system to zero: 330 

L

L

R R R

f a e

f (a b) 0 0

f f f c e

  

    

      

      (21) 331 

In which  is an eigenvalue of the system. This determinant corresponds to the 332 

following characteristic equation: 333 
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3 2
1 2 3z z z 0          334 

The coefficients zi are: 335 

1 L Rz a b c e f f       336 

2 R R R L L L L Rz a c a e b c b e f a f b f e f b f c f e f f                       337 

3 R R L L L L R L Rz e f a e f b e f b f c b f e b f f e f f                     338 

For the equilibrium point be asymptotically stable, the following conditions must 339 

be satisfied: 340 

1. zi > 0  i  341 

2. z1  z2 > z3 342 

Since all parameters are positive, condition 1 is satisfied. Plain inspection of the 343 

coefficients shows that condition 2 is also satisfied. Therefore, the equilibrium 344 

point of a two-ventricle system in the presence of the filling-force mechanism is 345 

asymptotically stable. 346 

 347 

Scenario (B): a fixed-force is exerted by a ventricular chamber 348 

The system is described by the following coupled differential equations, where 349 

the subscript k indicates the fixed force: 350 

L
G S kL

S
kL S

G
kR G

dV
e V a V f

dt

dV
f (a b) V

dt

dV
f (c e) V

dt


    




   



   


        (22) 351 

The volumes of the compartments S and G at the equilibrium point of the system 352 

are: 353 

* kL
S

f
V

a b



 354 

* kR
G

f
V

c e



 355 
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From these values in the equation of dVL/dt, we obtain that the following 356 

relationship must hold in order to the system have an equilibrium point: 357 

kL kRf b (c e) f e (a b)              (23) 358 

Therefore, unless condition 23 is fulfilled, the system will not attain an equilibrium 359 

point at all. Also notice that the volumes of two compartments are not obtained 360 

(see below – in this case, these volumes are from the left and the right ventricles, 361 

but this due to the form that we delineate system 22 – the relevant point is that 362 

there are two unknown volumes). 363 

 364 

Stability of the equilibrium point in the presence of a fixed-force 365 

of ejection 366 

We obtain the following determinant of the Jacobian of the system 22: 367 

0

)ec(00

0)ba(0

ea









      (24) 368 

Therefore, the system has an asymptotically stable subspace with two real 369 

eigenvalues (1 = -(a + b) and 2 = -(c + e)) and a central manifold corresponding 370 

to 3 = 0. This central manifold represents the indeterminacy of the two volumes 371 

(VL and VR in this case). Let VH = VL + VR. Since: 372 

S GH L R dV dVdV dV dV

dt dt dt dt dt
      373 

The system becomes simply:  374 

S
kL S

G
kR G

dV
f (a b) V

dt

dV
f (c e) V

dt


   


    


        (25) 375 

In a very similar way of what happens in the case of the one-ventricle hearts, the 376 

system is asymptotically stable even in the absence of the filling-force mechanism 377 

and, considering condition (23), one way to write the heart volume is: 378 
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






 





b

eb

ec

f
VV kR

T

*

H         (26) 379 

 380 

Discussion 381 

The stability of the operation point of the cardiovascular system is usually taken 382 

for granted as a result of the Frank-Starling Law, i.e., the filling-force mechanism 383 

of the heart. However, the OP diagram does not convey sufficient information to 384 

conclude that such an intrinsic mechanism of the myocardium truly would bring 385 

up stability to the system in a beat-to-beat basis. 386 

In the present study, we approach this question by investigating the behavior of 387 

a dynamical system, representing a circulatory system, in the vicinity of an 388 

operation point. In such a vicinity, the temporal variation of a set of relevant 389 

physical variables in the cardiovascular system is taken as null, i.e., we 390 

investigate the behavior of the system within a fast time scale, roughly 391 

corresponding to the heartbeat interval. In this sense, all the sympathovagal 392 

inputs to the heart are considered as constants, as well as changes in blood 393 

volume, rheological factors, etc. 394 

The first important conclusion of the study is that both types of circulatory 395 

systems, i.e., one-ventricle and two-ventricle hearts, are asymptotically stable 396 

even in the absence of the filling-force mechanism. In other words, if a given 397 

operation point exists, it is stable, and the system will return to such an OP after 398 

suffering a perturbation, irrespectively of the presence of the FFm (and without 399 

any extrinsic regulatory loop). 400 

Therefore, the question now becomes more inclusive, since one has to 401 

understand the role of the filling-force mechanism without evoking its alleged and 402 

putative responsibility in stabilizing the operation point.  403 

Due to the similar results between the systems with one and two ventricles, let 404 

us focus in the one-ventricle heart for simplicity. Eqn 9 and 14 describe the 405 

volume in the heart compartment for one system with and for another one without 406 

the filling-force mechanism, respectively. Fig. 4 shows a plot of these functions 407 
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(the 5% volume line is indicated simply as a reference to a usual value of the 408 

volume in the heart in relation to the volume of blood). 409 

 410 

Figure 4. Comparison between the effects of varying the force terms in the two different 411 

scenarios analyzed (Eqn 9 and 14). The y-axis represents the fraction of blood in the cardiac 412 

chamber in relation to total blood volume. The x-axis represents force, i.e., the terms f and fk (it 413 

must be kept in mind that f and fK have different dimensions). Continuous line: volume in the 414 

scenario with the filling-force mechanism. Dashed line: volume in the scenario with a fixed-force 415 

exerted by the ventricular chamber. Dotted line: 5% of total blood volume. The sum of the terms 416 

a and b in both Eqn 9 and 14 is 1 for the simulations shown in the plot. 417 

 418 

Despite the risk of becoming repetitive, let us put it once again: both scenarios 419 

allow for the existence of stable OPs. In addition, as already stated (see Results), 420 

if the force term tends to zero, the total blood volume tends to be retained in the 421 

cardiac chamber (left-hand side in Fig. 4). In the vicinities of the zero-force, the 422 

heart volume of the system with the filling-force mechanism shows a steeper 423 

relationship with force than the fixed-force system. However, from a certain 424 

volume down, the linear relationship of the fixed-force becomes steeper than the 425 

asymptote of the filling-force mechanism system. Thus, close to the range of 426 

reasonable heart volumes, the fixed-force system shows a higher variation in the 427 

volumes of its compartments in face of variations in force, while the filling-force 428 

system has a smooth response.  429 

Controlling effort (e.g. (Kirk, 2012 pg. 259; Todorov and Jordan, 2002)) and 430 

computational complexity (e.g. (Benenti ,G. Casati,G. Strini, 2007 pg. 24; Moller 431 

and Smolka, 1965)) are somehow related to energy waste and resources 432 
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allocation by the controller system or the resolution algorithm in a given task. 433 

Considering that the resistances, capacitances and even the myocardial force 434 

itself (irrespectively to the scenario) are under adjustments regulated by the 435 

autonomous nervous system, the smoothness brought by the filling-force 436 

mechanism ends up as a lower effort on the controller unit (i.e., lower energy 437 

demand and/or use of system resources). 438 

Inspection of Eqn 20 shows that the controller unit can operate a variation in one 439 

given parameter (say, systemic resistance in the coefficient “a”) and the 440 

circulatory system will self-adjust its volumes accordingly. On the other hand, in 441 

the scenario with fixed-force terms, inspection of Eqn 23 shows that the controller 442 

unit must operate simultaneous variations in at least two parameters in order to 443 

guarantee the working of the system.  444 

Thus, the second conclusion we can draw is that the filling-force mechanism has 445 

a role in decreasing the controlling effort external to the circulatory system (note 446 

that this has nothing to do with the stability of an operation point discussed 447 

above). The absence of the FFm does not preclude variations to be operated in 448 

the circulation, but the presence of the FFm smooths out perturbations more 449 

easily.  450 

Then, the next inevitable question is whether the filling-force mechanism plays 451 

some role in heart rate variability. Heart rate suffers variations on a beat-to-beat 452 

basis. The most prominent are changes associate to ventilation (respiratory sinus 453 

arrhythmia), but many other factors are also interconnected to these variations, 454 

resulting in a multifaceted composition of frequencies. The beat-to-beat 455 

modulation of heart rate is due to a number of feedback loops that end up through 456 

a common dual efferent path, the sympathetic and parasympathetic branches of 457 

the autonomic nervous system (e.g., (Aubert et al., 2003; Stauss, 2003)). Also, 458 

there might exist some intrinsic innervation in the heart itself whose role is not 459 

well established (Stauss, 2003). This modulation gives rise to the so-called “heart 460 

rate variability”, and such a variability is an important sign of an adequate 461 

functioning of the cardiovascular system (e.g., (Stauss, 2003; TASK FORCE, 462 

1996)).  463 

In this sense, the third relevant conclusion of the present study comes from the 464 

inspection of the eigenvalues of a system with the filling-force mechanism and of 465 
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a similar system (i.e., a system with the same set of values for the parameters of 466 

the vascular bed) with a fixed ejection force. For the one-ventricle hearts, this can 467 

be directly evaluated in Eqn 10 and 13 for the cases with the FFm and without it, 468 

respectively. Considering that the volume of blood in the heart is approximately 469 

5% of the total blood volume, from Eqn 9 we obtain that the filling-force term 470 

would be roughly 19-fold greater than the sum of the other two terms, a and b. 471 

This results in a returning to the operation point twenty times faster in the 472 

presence of the filling-force mechanism than in its absence. 473 

For the two-ventricle hearts without the FFm, the eigenvalues of the stable sub-474 

space are shown in Eqn 24. Although we did not directly compute the eigenvalues 475 

of two-ventricle hearts when the filling-force mechanism is present, we can have 476 

a glimpse of what occurs in them. Because the sum of the eigenvalues of a 477 

system equals the trace of the Jacobian matrix, then we can observe that both 478 

terms fL and fR, related to the filling-force mechanism, take part in at least one of 479 

the eigenvalues of the system (see Eqn 21). Therefore, similarly to what happens 480 

in the one-ventricle hearts, two-ventricle systems will also return to the operation 481 

point faster in the presence of the filling-force mechanism than in its absence. 482 

Thus, our third conclusion is in regard of the time-constant of a system: the filling-483 

force mechanism allows for a much faster return to an operation point after a 484 

perturbation. In other words, despite the fact that an existing operation point is 485 

stable even in the absence of the FFm, its presence guaranties the operation 486 

point to be regained in a fraction of the time than if there were no such a 487 

mechanism.  488 

Heuristically, we might consider that when the system transits from a previous 489 

operation point to a new one, the former is a perturbation in relation to the latter 490 

(notice that this is not the mathematical definition of “perturbation”). In this sense, 491 

the transition among operation points would be speeded up by the filling-force 492 

mechanism. In a similar line of reasoning, this speeding up potentially contributes 493 

to non-autonomic components of heart rate variability, particularly in the high-494 

frequency range.   495 

In conclusion, differently from what is currently held, the filling-force mechanism 496 

is not necessary in order to give stability to an operation point in a circulatory 497 

system, whether composed by a heart with a single or with two ventricles. Our 498 
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modelling supports that the role of the filling-force mechanism is related to 499 

decrease the controlling effort over the circulatory system, to smooth out 500 

perturbations and to guarantee faster transitions among operation points.  501 
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Figure Legends 581 

Figure 1. Cardiovascular operation point. (A) Usual representation of the 582 

cardiac and vascular functions resulting in an operation point of the heart. (B) 583 

Pictorial representation of a non-stable equilibrium (operation) point (an unstable 584 

focus in this case). The solid arrow represents an arbitrary perturbation from the 585 

operation point; the dashed lines represent a possible evolution path. This path 586 

is only for illustrative purposes and based on a cobwebbing approach of discrete 587 

dynamical systems.  588 

 589 

Figure 2. Schematics of the model of the one-ventricle heart system. The 590 

state variables heart volume (VH) and systemic volume (VS) are in boxes. The 591 

arrows indicate blood flows.  592 

 593 

Figure 3. Schematics of the model of the two-ventricles heart system. The 594 

state variables left ventricle volume (VL), systemic circulation volume (VS), right 595 

ventricle volume (VR) and gas-exchanger circulation volume (VG) are in boxes. 596 

The arrows indicate blood flows.  597 

 598 

Figure 4. Comparison between the effects of varying the force terms in the 599 

two different scenarios analyzed (Eqn 9 and 14). The y-axis represents the 600 

fraction of blood in the cardiac chamber in relation to total blood volume. The x-601 

axis represents force, i.e., the terms f and fk (it must be kept in mind that f and fK 602 

have different dimensions). Continuous line: volume in the scenario with the 603 

filling-force mechanism. Dashed line: volume in the scenario with a fixed-force 604 

exerted by the ventricular chamber. Dotted line: 5% of total blood volume. The 605 

sum of the terms a and b in both Eqn 9 and 14 is 1 for the simulations shown in 606 

the plot. 607 

 608 
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