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Abstract

Although we now routinely sequence human genomes, we can confidently identify only a
fraction of the sequence variants that have a functional impact. Here we developed a deep
mutational scanning framework that produces exhaustive maps for human missense variants
by combining random codon-mutagenesis and multiplexed functional variation assays with
computational  imputation  and  refinement.  We  applied  this  framework  to  four  proteins
corresponding to six human genes: UBE2I (encoding SUMO E2 conjugase), SUMO1 (small
ubiquitin-like  modifier),  TPK1 (thiamin pyrophosphokinase),  and CALM1/2/3 (three genes
encoding the protein calmodulin). The resulting maps recapitulate known protein features,
and  confidently  identify  pathogenic  variation.  Assays  potentially  amenable  to  deep
mutational scanning are already available for 57% of human disease genes, suggesting that
DMS could ultimately map functional variation for all human disease genes.
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Introduction

Millions of people will soon have their genomes sequenced. Unfortunately, we have only a
limited ability to interpret personal genomes, each carrying 100-400 rare missense variants1

of which many must currently be classified as “variants of uncertain significance” (VUS). For
example,  gene  panel  sequencing  aimed  at  identifying  germline  cancer  risk  variants  in
families yielded VUS for  the majority  of  missense variants2.   Functional  variants can be
predicted, but when high precision is required, computational tools3,4 detect only one third as
many pathogenic variants as experimental  assays5.  Unfortunately,  validated experimental
assays enabling rapid clinical interpretation of variants are not available for the vast majority
of human disease genes. 

Deep Mutational Scanning (DMS)6,7, a strategy for large-scale functional testing of variants,
can functionally annotate a large fraction of amino acid substitutions for a substantial subset
of residue positions. Recent DMS studies, for example, covered the critical RING domain of
BRCA18 associated  with  breast  cancer  risk,  and  the  PPA  protein  associated  withR�
Mendelian lipodystrophy and increased risk of type 2 diabetes9. Such maps can accurately
identify functionality of a clinical variant in advance of that variant’s first clinical presentation.
Diverse  assays  can  be  used  for  DMS  (see  Supplementary  Table  S1).  Functional
complementation assays test the variant gene’s ability to rescue the phenotype caused by
reduced  activity  of  the  wild  type  gene  (or  its  ortholog  in  the  case  of  trans-species
complementation)10,11. Cell-based functional complementation assays can accurately identify
disease variants across a diverse set of human disease genes5. 

Challenges to the DMS strategy include the need to establish robust assays measuring each
variant’s impact on the disease-relevant  functions of a gene, and to generate maps that
cover  all  possible  amino  acid  changes.  Also,  published  DMS  maps  have  not  typically
controlled  the  overall  quality  of  measurements  nor  estimated  the  quality  of  individual
measurements. Thus, the use of DMS maps to confidently evaluate specific variants has
been limited.

Here we describe a modular DMS framework to generate complete, high-fidelity maps of
variant function based on functional complementation. This framework combines elements of
previous  DMS  studies,  uses  machine  learning  to  impute  and  improve  the  map  with
surprisingly  high  accuracy,  and  yields  a  confidence  measure  for  each  reported
measurement. In the following sections, we give an overview of the overall framework for
DMS, describe its initial application to the SUMO E2 conjugase UBE2I, present complete
high-fidelity maps for three new disease-associated proteins and explore the potential for
clinical relevance. Finally, we assemble information on functional assays for known human
disease genes and conclude that DMS is already potentially extensible to the majority of
human disease genes, suggesting the possibility of exhaustive maps of functional variation
covering all human genes.

Results

We describe a framework for comprehensively mapping of functional missense variation,
organized into six stages (see Figure 1A): 1) mutagenesis; 2) generation of a variant library;
3)  selection  of  functional  variants;  4)  read-out  of  the  selection  results  and  analysis  to
produce  an  initial  sequence-function  map;  5)  computational  analysis  to  impute  missing
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values; and 6) computational analysis to refine measured values via machine learning. We
describe and contrast two versions of this framework: DMS-BarSeq and DMS-TileSeq.

A barcode-based deep mutational scanning strategy

We first describe DMS-BarSeq and its application to map functional missense variation for
the SUMO E2 conjugase UBE2I. In DMS-BarSeq, a heterogeneous pool of cells bearing a
library of different barcoded expression plasmid is quantified via barcode-sequencing before
and  after  selection.  For  Stage  1  of  the  DMS  framework—mutagenesis—we  sought  a
relatively even representation of all possible single amino acid substitutions. We wished to
allow  multiple  mutations  per  clone,  both  because  this  allowed  for  greater  mutational
coverage  for  any  given  library  size,  and  offered  an  opportunity  to  discover  intragenic
epistatic  relationships.  To  this  end,  we  scaled  up  a  previous  mutagenesis  protocol12 to
develop Precision Oligo-Pool based Code Alteration (POPCode), which yields random codon
replacements (see Online Methods).

For  Stage 2  of  the framework—generation  of  a variant  library—we employed  en masse
recombinational cloning of mutagenized UBE2I amplicons into a pool of randomly-barcoded
plasmids  (see  Online  Methods).  The  full-length  UBE2I  sequence  and  barcode  of  each
plasmid was established using a novel sequencing method called KiloSeq which combines
plate-position-specific  index  sequences  with  Illumina  sequencing  to  carry  out  full-length
sequencing for thousands of samples (see Online Methods). We retained clones that carried
at least one amino acid substitution to generate a final library comprised of 6,553 UBE2I
variants, covering different combinations of 1,848 (61% of all possible) unique amino acid
changes. Variant plasmids were pooled, together with empty vector and wild type control
plasmids (see Online Methods).

For  Stage  3—selection  for  clones  encoding  a  functional  protein—we  employed  a  S.
cerevisiae functional complementation assay5,13, based on human UBE2I’s ability to rescue
growth at an otherwise-lethal temperature in a yeast strain carrying a temperature sensitive
(ts)  allele  of  the  UBE2I  orthologue  UBC9.   Despite  a  billion  years of  divergence,  yeast
functional  complementation  assays  can  accurately  discriminate  pathogenic  from  non-
pathogenic human variants5. The plasmid library from Stage 3 was transformed en masse
into the appropriate ts strain. Pools were grown for 48 hours at the permissive (25°C) and
selective (37°C) temperatures, respectively (see Online Methods).

To assess variant functions (Stage 4), barcodes were sequenced at multiple timepoints of
the selection,  enabling reconstruction of  individual  growth curves and normalized fitness
quantification for each of the 6,553 barcoded strains. Functional complementation scores
were calibrated so that  0 corresponds to the fitness of  the null-allele and 1 to wild type
complementation  (see Online  Methods).  Using replicate agreement  and extent  of  library
representation, we estimated our uncertainty in each fitness value (see Online Methods).

Before  further  refinement  in  Stages  5  and  6,  we  wished  to  assess  the  quality  of
complementation scores. Based on both technical (Figure 1B, top) and biological replicates
(different clones carrying the same mutation; Figure 1B, bottom), we found scores to be
reproducible  (Pearson’s  R of  0.97  and  0.78,  respectively).  Semi-quantitative  manual
complementation assays for a subset of mutants that spanned the range of fitness scores
(see Online Methods) correlated well with DMS scores. Indeed, agreement between large-
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scale and manual  scores was on par with agreement  between internal  replicates of  the
large-scale scores (Figure 1B,C). 

We  also  examined  evolutionary  conservation  and  computational  predictors  of
deleteriousness,  such as PolyPhen-23 and PROVEAN14.   Although each is  an imperfect
measure of the functionality of amino acid changes5,  each should and did correlate with
DMS results (Figure 1D top panel, Supplementary Figure S1). Finally, we confirmed that, as
expected, amino acid residues on the protein surface are more tolerant to mutation than
those in the protein core or within interaction interfaces (Figure 1D, bottom panel).  Taken
together, these observations support the biological relevance of the DMS-BarSeq approach.

A tiled-region strategy for mapping functional variation

While DMS-BarSeq has several advantages (see Discussion), its performance comes at the
cost  of  producing  an  arrayed  library  of  clones,  each  with  known  coding  and  barcode
sequence. We therefore also evaluated an alternative approach, DMS-TileSeq in which each
functional variant is detected via the effect of selection on the abundance of clones carrying
that  variant.   The frequency of  each variant  in  the pool  is  determined,  before and after
selection, by deep sequencing of short amplicons that tile the complete coding region.

In terms of mutagenesis (Stage 1), DMS-TileSeq is identical to DMS-BarSeq.  Given the
mutagenized  amplicon  library,  the  cloning  step  (Stage  2)  was  carried  out  by  en masse
recombinational  subcloning  into  complementation  vectors  (thereby  skipping  the  step  of
arraying and sequencing individual clones).   This plasmid pool was next transformed  en
masse  into the  ubc9-ts strain. As with DMS-BarSeq, DMS-TileSeq employs pooled strains
grown competitively (Stage 3) at the permissive and selective temperatures. In Stage 4, like
some  previous  DMS  efforts15,  we  directly  sequenced  the  coding  region  from  the  clone
population to determine variant frequency before and after selection. Use of tiled amplicons
enables individual template molecules to be sequenced on both strands, allowing elimination
of most base-calling errors6 (see Online Methods for details). 

To assess the reliability of DMS-TileSeq, we compared results with DMS-BarSeq for UBE2I.
DMS-TileSeq and DMS-BarSeq correlation was similar to that observed between biological
DMS-BarSeq replicates (Pearson’s R = 0.75, Supplementary Figure S2). DMS-TileSeq and
DMS-BarSeq  also  behaved  similarly  in  their  agreement  with  manual  complementation
assays  (Supplementary  Figure  S3).  Thus,  DMS-TileSeq  avoids  the  substantial  cost  of
arraying and sequencing thousands of individual clones, while performing on par with DMS-
BarSeq in terms of reliability of functional complementation scores.

After using regression to transform the DMS-TileSeq scores to the more intuitive scale of
DMS-BarSeq (where  0  corresponds  to  the  median  score  of  null  mutant  controls  and  1
corresponds to the median score of wildtype controls), we combined scores from the two
methods, giving greater weight to more confident measurements (see Online Methods).

Machine learning to complete and refine maps

As with most previous DMS maps, our initial UBE2I map missed a number of entries (e.g.
due  to  substitutions  underrepresented in  the  input  clone library).  In  total,  2563 of  3012
possible amino acid changes (85%) were measured. To complete the map (Stage 5 in the
framework), we trained a random forest16 regression model using the existing measurements
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in the map. The model used four types of predictive feature: intrinsic (derived from other
measurements  in  our  map);  conservation-based;  chemicophysical;  and  structural.
Particularly  predictive  features  (Figure  2D)  included  the  average  score  of  observed
substitutions at a given position, as weighted by measurement confidence. Conservation-
based features included BLOSUM6217, SIFT18 and PROVEAN14 scores, and position-specific
AMAS19 conservation. Chemicophysical features included mass and hydrophobicity of the
original  and wildtype amino acids,  and the difference between them.  Structural  features
included solvent accessibility and burial in interaction interfaces. For DMS-BarSeq, which
scored many multi-mutant clones, we also used the confidence-weighted average score of
all  clones  containing  a  particular  substitution,  and  variant  fitness  expected  from  a
multiplicative model20 (see Online Methods). 

We assessed imputation performance using cross-validation. Surprisingly,  the error (root-
mean  squared  deviation  or  RMSD)  of  imputed  values  (0.33)  was  on  par  with  that  of
experimentally measured data (Figure 2A). As an additional validation step, we performed
manual complementation assays for a set of UBE2I variants that were not present in the
machine learning training data set and compared the results against imputed values (Figure
2C), again finding strong agreement. Predictions showed the least error in positions with
high mutation density and the most error for hypercomplementing variants, i.e. those yielding
above-WT fitness levels in yeast (Figure 2B). Although hypercomplementation may indicate
that  a  variant  is  adaptive  in  yeast,  imputation  generally  predicted  these  variants  to  be
deleterious, a hypothesis we explore further below. 

To  refine  less-confident  experimental  measurements  (Stage  6  of  the  framework),  we
combined  experimental  and  imputed  scores,  weighting  by  confidence  level.   Manual
complementation  assays,  applied  to a set  of  variants that  represented the full  range of
fitness scores (Supplementary Figure S3), served to validate the reliability of the complete,
refined functional map of UBE2I after imputation and refinement. The map, as seen in Figure
3A, fulfills biochemical expectations, with the hydrophobic core, the active site and protein
interaction  interfaces  being  most  strongly  impacted  by  mutations  (Figure  3B).  Detailed
observations  with  respect  to  structure,  biochemistry  and  epistatic  behaviour  of  double
mutants can be found in supplementary text. 

Hypercomplementing variants are likely to be deleterious in humans

We  further  investigated  UBE2I  variants  exhibiting  hypercomplementation  (Figure  3A).
Manual assays confirmed that  complementation with these mutants allows greater yeast
growth  than  does  the  wild  type  human  protein  (Supplementary  Figure  S4A).  These
hypercomplementing substitutions did not reliably correspond to ‘reversion’ substitutions that
inserted  the  corresponding  S. cerevisiae  residue  (Supplementary  Figure  4B).  Some
substitutions could be adaptive by improving compatibility with yeast interaction partners.
Indeed,  a  comparison  with  co-crystal  structure  data21 shows  that  many  of  the
hypercomplementing  residues  are  on  the  surface  proximal  to  the  substrate,  with  some
directly contacting the substrate’s sumoylation motif (Figure 2C). In vitro sumoylation assays
performed previously for a small number of UBE2I mutants revealed increased sumoylation
for some substrates22. Comparing our map with these sumoylation assay results, we saw
that  cases  of  hypercomplementation  were  enriched  for  substrate  specificity  shift
(Supplementary  Figure  S4C).  However,  other  cases  of  hypercomplementation  hinted  at
different modes of adaptation (see supplementary text). 
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To explore whether variants exhibiting hypercomplementation are more likely beneficial or
deleterious  in  a  human  context,  we  used  a  quantitative  phylogenetic  approach23,24 to
compare three models relating complementation scores to evolutionary preference for an
amino acid variant: (a) evolutionary preference is directly proportional to complementation
score; (b) preference has a ceiling at the wildtype complementation score (values >1 were
set to 1); or (c) preference is set to the reciprocal of complementation score for mutations
with  greater-than-wildtype  scores,  corresponding  to  a  deleterious  effect  of
hypercomplementing mutations. We used the phydms software24 to test which of these three
approaches best described the evolutionary constraint on a set of naturally occurring UBE2I
homologs,  using fitness  scores that  excluded conservation  features  from the refinement
process, to avoid the circularity of using natural sequence data when deriving the scores.
The best fit is achieved by treating variants with greater-than-wildtype complementation in
yeast  as  deleterious  in  humans  (Supplementary  Table  S2).   We therefore  reinterpreted
cases  of  hyperactive  complementation  in  our  map  as  deleterious  and  repeated  the
imputation and refinement procedure. This also allowed for more reliable imputed values
(reducing cross-validation RMSD from 0.33 to 0.24).

Variant impact maps for five additional disease-implicated genes

Having validated the framework, we sought to map functional variation for disease-relevant
genes.  We  applied  the  higher-throughout  TileSeq  approach,  coupled  with  yeast
complementation, to a diverse set of genes: SUMO1, for which heterozygous null variants
are associated with cleft palate25; Thiamine Pyrophosphokinase 1 (TPK1), associated with
vitamin B1 metabolism dysfunction26;   and CALM1, CALM2 and CALM3, associated with
cardiac  arrhythmias  (long-QT syndrome27 and  catecholaminergic  polymorphic  ventricular
tachycardia28).  Because  the  three  calmodulin  genes  encode  the  same  polypeptide
sequence, performing DMS for CALM1 also provided maps for CALM2 and CALM3. 

Supporting the quality of the resulting four maps, each map showed clear differences in
score between distributions of likely-neutral (synonymous) and likely-deleterious (nonsense)
variants  (Supplementary  Figure  S5).  To  assess  the  impact  of  the  machine  learning
imputation and refinement on the different maps, we measured the completeness of each
map before and after imputation, the cross-validation RMSD of the imputation, as well as the
maximum standard error  value for  each map before  and after  refinement  (Table  1).  On
average, 24.6% of scores were obtained purely by imputation, and 3.96% of scores were
appreciably changed by >5% of the difference between null and wt controls as a result of
refinement.  Proteins  for  which  map  quality  was  initially  lower  were  improved  most  by
refinement,  while  others,  like  SUMO1,  improved  only  modestly.  Inspection  of  the  maps
yielded a number of interesting biochemical and structural  observations (see supplementary
text).

Phylogenetic analysis of SUMO1, as for UBE2I, showed that variants that complement yeast
better  than wild-type are best  modeled as  being deleterious  in  humans (Supplementary
Table S2). We therefore transformed above-wild-type fitness scores to be deleterious (see
Methods).  Because  hypercomplementing  substitutions  provide  interesting  clues  about
differences between yeast and human cellular contexts, we provide both transformed (Figure
4) and untransformed (Supplementary Figure S6) map versions.
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DMS functional maps reflect clinical phenotypes.

To validate the utility of our maps in the context of human disease, we extracted known
disease-associated variants from ClinVar29,  as well  as rare  and common polymorphisms
observed independent of disease from GnomAD30, and somatic variants previously observed
in tumors from COSMIC31. 

While no germline disease-associated missense variants are known for UBE2I and SUMO1
in  ClinVar,  somatic  cancer  variants  have  been  observed  for  both  genes  according  to
COSMIC. Somatic variants in these three genes exhibited higher functional impact in DMS
maps than germline variants (Wilcoxon P=2.6x10-5) (Figure 5A). This does not necessarily
suggest that either of these genes are cancer drivers, as even passenger somatic variants
should subject to less purifying selection than germline variants,  but  it  does lend further
credence to the biological relevance of our maps.

For  TPK1,  many very rare variants (minor  allele  frequency or  MAF < 10-6)  are  seen in
GnomAD. The majority of these variants score as deleterious (Supplementary Figure S7A).
Thiamine Metabolism Dysfunction Syndrome, reported to be caused by variants in TPK1, is
a severe disease to which patients succumb in childhood26. Although GnomAD attempted to
exclude subjects with severe pediatric disease, the abundance of rare predicted-deleterious
variants may be understood by the disease’s recessive inheritance pattern. Using phased
sequence data from the 1000 Genomes Project1 to determine diploid genotypes in TPK1, we
assigned each subject a diploid score corresponding to the maximum score across each pair
of alleles. This improved prediction performance markedly, leading to complete separation
between disease and non-disease genotypes using DMS, PROVEAN or PolyPhen-2 scores
(Supplementary  Figure  S7B).  However,  additional  compound  heterozygotes  with  known
disease status will be required to compare DMS with computational methods in the task of
identifying TPK1 disease variants. 

Because the inheritance pattern of calmodulin disorders is typically dominant27, we did not
consider diploid genotypes but simply evaluated the ability of DMS scores to distinguish
disease from non-disease variants (Figure 5B). DMS scores performed well according to
precision-recall  analysis,  with  an  area  under  the  precision-recall  curve  (AUC)  of  0.72,
exceeding  both  PROVEAN (AUC=0.48)  and PolyPhen-2 (AUC=0.47)  (Figure  5C).   At  a
stringent precision threshold of 90%, DMS exceeded twice the sensitivity of PROVEAN and
PolyPhen-2.  We  further  investigated  variants  seen  by  Invitae,  a  clinical  genetic  testing
company. Ten rare calmodulin variants had been observed, of which half were from tests
ordered due to a cancer indication, the other half from tests ordered for a cardiac disease
indication. Blinded to indication, we ranked the 10 Invitae variants by DMS score (Table 2).
Setting DMS score thresholds based on disease and non-disease variants from ClinVar, we
classified two Invitae variants as damaging, two as VUS, and six as benign. Based on the
patient  test  indications  subsequently  revealed by Invitae,  five out  of  the six  variants we
classified as benign were ordered due to a non-cardiac indication, while both variants with
damaging predictions and both with VUS predictions corresponded to cardiac indications.
Overall,  DMS scores showed a significant  association with cardiac indications (P=0.008;
Mann-Whitney-U test).
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Potential for applying deep mutational scanning more widely

DMS mapping requires an en masse functional assay that can be applied at the scale of 104-
105 variant clones.  Among ~4000 disease genes, examination of four systematic screens
and curated literature suggests that ~5% of human disease genes currently have a yeast
complementation  assay5,32,33.  This  number  could  grow  dramatically  via  systematic
complementation testing under different environments and genetic backgrounds. Moreover,
complementation assays can also be carried out in other model systems including human
cells34,  where current transfection efficiencies permit  en masse  screening at the required
scale.  Based  on only  three  large-scale  CRISPR studies34–36,  cellular  growth  phenotypes
(which might serve as the basis for an en masse selection) have already been observed in at
least one cell line for 29% of human disease genes.  Beyond complementation, assays of
protein interaction can, in addition to identifying variants directly impacting interaction, can
detect variants ablating overall function through effects on protein folding or stability, In a
recent study, approximately two thirds of disease-causing variants were found to impact at
least one protein interaction37. Although only a minority of human protein interactions have
been  mapped38,  already  40%  of  human  genes  have  at  least  one  interaction  partner
detectable by yeast  two-hybrid assay in a recent  screen38.  Taking the union of  available
assays, we estimate that 57% of known disease-associated genes (Supplementary Table
S3) already have an assay that is potentially amenable to DMS .  

Discussion

The framework for systematically mapping functional missense variation we describe here
combines elements of previous DMS studies and introduces a new mutagenesis strategy
and a machine learning-based imputation and refinement strategy.  This framework enables
DMS maps that are ‘complete’ in the sense that high-quality functional impact scores are
provided  for  all  missense  variants  to  full-length  proteins.   Application  to  four  proteins
highlighted complex relationships between the biochemical functions of these proteins with
phenotypes in  the yeast  model  system.   Analysis  of  pathogenic  variation,  especially  for
calmodulin, supported the potential clinical utility of DMS maps from this framework.

The two described versions of DMS, DMS-BarSeq and DMS-TileSeq, each have advantages
and  limitations.  DMS-BarSeq  permits  study  of  the  combined  effects  of  variants  at  any
distance along the clone, and therefore can reveal intramolecular genetic interactions.  For
DMS-BarSeq fully-sequenced variant clones are arrayed, enabling further investigation of
individual variants. DMS-BarSeq can directly compare growth of any clone to null and wild
type controls, resulting in an intuitive scoring scheme. However, despite the efficient KiloSeq
strategy for sequencing arrayed clone sets we report for the first time here, DMS-BarSeq is
more resource-intensive.  Although the regional  sequencing strategy of  DMS-TileSeq can
only analyze fitness of double mutant combinations falling within the same ~150bp tile, it is
far less resource-intensive than DMS-BarSeq.

Given  that  most  missense  variants  in  individual  human  genes  are  single-nucleotide
variants30, and given that only ~30% of all possible amino acid substitutions are accessible
by  single  nucleotide  mutation,  one  might  wonder  why  codon  mutagenesis  should  be
preferred  over  single-nucleotide  mutagenesis.   We see three arguments  for  codon-level
mutagenesis:   1)  knowing  the functional  impact  of  all  19  possible  substitutions  at  each
positions enables clearer understanding of the biochemical properties that are required at
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each residue position; 2) an analysis of >60,000 unphased human exomes30 found that each
individual human harbors ~23 codons containing multiple nucleotide variants that together
could encode an amino acid not encoded by either single variant; 3) it is not straightforward
to generate balanced libraries in which every single-nucleotide variant has roughly equal
representation,  given  that  error-prone  amplification  methods  strongly  favor  transition
mutations over transversion mutations, while still avoiding frequent introduction of new stop
codons; 4) the major cost of DMS will likely continue to be development and validation of the
functional assay, so using codon-level mutagenesis instead of (or in addition to) nucleotide-
level mutagenesis has a relatively small impact on overall cost.

This  study  yielded  four  DMS  maps  measuring  functional  impact  of  ~16,000  missense
variants. The maps generated for sumoylation pathway members UBE2I and SUMO1, and
disease-implicated genes CALM1/2/3 and TPK1 using our framework were consistent with
biochemical expectations while providing new hypotheses. DMS maps based on functional
complementation were highly predictive of disease-causing variants, outperforming popular
computational  prediction  methods  such  as  PolyPhen-2  or  PROVEAN5.   Given  sufficient
experimental data for training, our results show that imputation can ‘fill the gaps’ with scores
that  are  nearly  as  reliable  as  experimental  measurements,  and  that  computational
refinement can improve upon experimental measures. 

Genome sequencing  is  likely  to  become common in  clinical  practice.  Current  estimates
suggest  that  every human carries  an average of  100-400 rare variants that  have never
before been seen in the clinic. DMS meets a critical need for fast, reliable interpretation of
variant effects. Instead of generating clones and functionally testing variants of unknown
significance after they are first observed, DMS offers exhaustive maps of functional variation
that enable interpretation immediately upon clinical presentation, even for rare and personal
variation.  Our survey of assays revealed that the majority (57%) of human disease genes
are potentially already accessible to DMS analysis, so that we may begin to imagine an atlas
of DMS maps to reveal pathogenic variation for all human disease proteins. 
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Figures

Figure 1: UBE2I screening and validation. (A) Modular structure of the screening framework.
(B) Fitness scores in technical replicates (separate assays of the same pool) and biological
replicates (separate substrains in the pool carrying the same variants). (C) Manual spotting
assay validation of a representative set of variants. Each row represents a consecutive 5-
fold dilution. Marked in red: Maximal dilution visible in empty vector control. Marked in green:
Maximal dilution with visible human wt control. Marked in yellow: Dilution steps exceeding
visible human wt control. Bar heights represent summary screen scores. Error bars indicate
bayesian refined s.e.m. (D) Variants grouped by evolutionary conservation (AMAS score) of
their respective sites (top) and grouped by structural context within the protein core, within
protein-protein interaction interfaces or on remaining protein surface (bottom). See online
methods for statistical details.
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Figure  2:  Validation  of  machine  learning  imputation  for  UBE2I.  (A)  Cross-validation
evaluation:  Scores  measured in  screen compared to machine learning prediction in  10x
cross validation. The agreement is comparable to that between biological replicates in the
screen itself (compare to Main Figure 1) (B) Error map, showing cross-validation results for
each  data  point  sorted  by  amino  acid  position  and  mutant  residue.  (C)  Comparison  of
imputation predictions with individual spotting assays. (D) Most informative features in the
RandomForest  imputation,  as measured in  % increase in  mean squared deviation  upon
randomization of a given feature.
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Figure 3: (A) A complete functional map of UBE2I as resulting from the combination of the
complementation  screen  and  machine  learning  imputation.  An  impact  score  of  0  (blue)
corresponds  to  a  fitness  equivalent  to  the  empty  vector  control.  A score  of  1  (white)
corresponds to a fitness equivalent  to the wildtype control.  A score greater than 1 (red)
corresponds to fitness above wildtype levels. Shown above, for comparison are sequence
conservation, secondary structure, solvent accessibility, and burial of the respective amino
acid  in  protein-protein  interaction  interfaces  with  covalently  and  non-covalently  bound
SUMO, the E1 UBA2, the sumoylation target RanGAP1, the E3 RanBP2 and UBE2I itself.
Hydrogen bonds or salt bridges between residues and the respective interaction partner are
marked with red asterisks. Residues buried in both the covalent SUMO and client interfaces
are framed with dotted lines, marking the core members of the active site. (B) UBE2I crystal
structure with residues colored according to the median mutant fitness. Colors as in A. The
interacting substrate’s ΨKxE motif is shown in green stick model; Covalently bound SUMO is
shown as a red cartoon model; and non-covalently bound SUMO is shown in brown cartoon
model. The structures shown were obtained by alignment of PDB entries 3UIP and 2PE6.
(C) UBE2I crystal structure as in B, with residues colored according to maximum mutant
fitness.
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Figure 4:  Functional  maps of  SUMO1,  TPK1 and calmodulin  (CALM1/2/3).  Colors as in
Figure 3.

The Calmodulin DMS data is currently used as the blinded test set in
the 2017 CAGI challenge and will be revealed on October 19 2017.

See https://genomeinterpretation.org/content/calm
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Figure 5: (A) Comparison of functional scores between rare polymorphisms (GnomAD) and
somatic tumor mutations (COSMIC) in UBE2I and SUMO1. Bars show median and quartiles.
One-sided Wilcoxon test, n={26,31} (unit:variants), W=570.5, P=3.73x10-3. (B) Impact score
distributions in calmodulin overlayed with previously observed alleles in CALM1, CALM2 and
CALM3:  Rare  alleles  from  GnomAD  are  shown  in  green;  ClinVar  alleles  classified  as
pathogenic are shown in red. (C) Precision-Recall Curves for our DMS atlas, PROVEAN,
and PolyPhen-2 with respect to distinguishing Gnomad variants from pathogenic alleles from
ClinVar.
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Tables

Table 1: Map quality comparison

Gene Possible
AA 
changes

Achieved
AA changes

Imputation
RMSD

Experimental
max(stderr)

Refined
max(stderr)

Refinement 
> 0.05

UBE2I 3021 2563 (85%) 0.24 0.36 0.25 2.46%

SUMO1 1919 1700 (89%) 0.25 0.19 0.17 1.06%

TPK1 4617 3181 (69%) 0.34 0.49 0.37 5.51%

CALM1 2831 1813 (64%) 0.29 0.28 0.22 6.84%

Table 2: Invitae VUS classification

Variant MAF sd/rmsd imp/reg prereg DMS DMS call indication

D94A NA 0.26 imputed NA 0.46 likely damaging Cardio

D96H NA 0.26 imputed NA 0.72 likely damaging Cardio

I28V 10-5 0.05 mild 0.88 0.88 uncertain Cardio

N98S NA 0.05 mild 0.89 0.89 uncertain Cardio

T35I 4x10-6 0.04 mild 0.93 0.93 likely benign Non-Cardio

E48G NA 0.05 mild 0.93 0.93 likely benign Cardio

G26D NA 0.06 mild 0.94 0.94 likely benign Non-Cardio

T27S 3x10-5 0.05 mild 0.96 0.96 likely benign Non-Cardio

V122A NA 0.05 mild 0.98 0.98 likely benign Non-Cardio

A104G NA 0.08 mild 1.00 1.00 likely benign Non-Cardio
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Online Methods

POPCode Mutagenesis

The Precision Oligo-Pool based Code Alteration (POPCode) scales up a previous method1.
to  achieve coverage over  the complete spectrum of  possible amino acid  changes at  all
protein positions.  POPCode requires design of an oligonucleotide centered on each codon
in the Open Reading Frame (ORF) of interest, such that the target codon is replaced with an
NNK degenerate codon.  This  has been previously  demonstrated to allow all  amino acid
changes while  reducing  the chance  of  generating  stop  codons2.  Within  each  mutagenic
oligonucleotide, the arm flanking the target codon is varied to achieve a predicted melting
temperature that is as uniform as possible to facilitate an even mutation rate across the ORF
sequence. We developed a web tool that automates this design step, available online at
http://llama.mshri.on.ca/cgi/popcodeSuite/main. (See also: Code Availability section).

The POPCode mutagenesis experiment was performed via the following steps: (i) the uracil-
containing wild type template was generated by PCR-amplifying the ORF with dNTP/dUTP
mix and HotTaq DNA polymerase, (ii) the mixture of phosphorylated oligonucleotide pool and
uracil-containing template was denatured by heating it to 95 degrees for 3 minutes and then
cooled down to 4 degrees to allow the oligos hybridize to the template, (iii) gaps between
hybridized  oligonucleotides  were  filled  with  the  non-strand-displacing  Sulpholobus
Polymerase IV (NEB) and sealed with T4 DNA ligase (NEB), (iv) after degradation of the
uracil-doped wild-type strand using Uracil-DNA-Glycosylase (UDG) (NEB), the mutant strand
was amplified with attB-sites-containing primers and subsequently transferred en masse to a
donor vector by Gateway BP reaction to generate a library of entry clones. 

Synthesis of uracil-containing template. A 50µl PCR reaction contained the following: 1ng
template  DNA,  1X  Taq  buffer,  0.2mM  dNTPs-dTTP,  0.2mM  dUTP,  0.4uM  forward  and
reverse oligos, and 1U Hot Taq Polymerase.  Thermal cycler conditions are as follows: 98°C
for 30s, 25 cycles of 98°C for 15s, 60°C for 30s, and 72°C for 1min. A final extension was
performed at 72°C for 5 min.  Uracilated amplicon was gel-purified using the Minelute gel
purification kit (Qiagen). 

Phosphorylation  of  mutagenic  oligos.  Desalted oligos  were purchased from Eurofins  or
Thermo Scientific. The phosphorylation reaction is as follows: a 50µl reaction containing 1X
PNK buffer,  300  pmoles  oligos,  1mM  ATP,  and  10U  Polynucleotide  Kinase  (NEB)  was
incubated at 37°C for 2 hours.  The reaction was used directly in the subsequent POPCode
reaction. 

POPCode  oligo  annealing  and  fill-in. A 20µl  reaction  containing  20ng  uracilated  DNA,
0.15uM phosphorylated oligo pool, and 1.5uM 5’-oligo was incubated at 95°C for 3 minutes
followed by immediate cooling to 4°C.  A 30µl reaction containing 1X Taq DNA Ligase buffer,
0.2mM dNTPs, 2U Sulfolobus DNA Polymerase IV (NEB), and 40U Taq DNA Ligase (NEB)
was added to the DNA and was incubated at 37°C for 2 hours. 

Degradation of wild-type template. 1µl fill-in reaction was added to a 20µl reaction containing
1X UDG buffer and 5U Uracil DNA Glycosylase (NEB) and incubated at 37°C for 2 hours.

Amplification  of  mutegenized  DNA.  1µl  UDG  reaction  was  added  to  a  50µl  reaction
containing 1X Taq buffer, 0.2mM dNTPs, 0.4uM forward and reverse oligos, and 1U Hot Taq
Polymerase.  Thermal cycler conditions are as follows: 98°C for 30s, 25 cycles of 98°C for
15s, 60°C for 30s, and 72°C for 1min. A final extension was performed at 72°C for 5 min.
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Single-nucleotide mutagenesis

Oxidized nucleotide PCR was performed as previously described by Mohan and colleagues3.
Primers were designed to attach attB sites to the product in preparation for Gateway cloning.

Preparation of oxidized nucleotides.  A 100μM dNTP mixture was incubated at 37°C with
5mM FeSO4 for  10  minutes.  Addition  of  0.5M Mannitol  was  used  to  stop  the  reaction.
Oxidized nucleotides were prepared fresh for every PCR reaction.

PCR in presence of oxidized nucleotides. PCR reaction containing: 1-5ng template DNA, 1X
Thermopol Buffer  (Invitrogen),  1.5mM MgCl2,  0.2mM dNTP, 0.33μM forward and reverse
primers containing attB sites, 1U Taq polymerase was set up during the nucleotide oxidation
reaction.  Oxidized nucleotides were the last component added to the PCR reaction at  a
concentration of 0.1mM (half the amount of regular dNTP). Thermal cycler program: 95°C for
10 min, 30 cycles of 95°C for 1 min, 50°C for 1 min, 72°C for 1 min, final extension at 72°C
for  10  min.  Mutagenized  PCR  product  was  visualised  on  a  1% agarose  gel,  and  gel-
extracted using a gel extraction kit (Qiagen). The gel extracted PCR product is the pooled
mutagenesis product carrying attB sites that is carried through to the KiloSeq stage.

Library generation

Generation of mutagenised pool of Entries.  An en masse Gateway BP reaction containing
150ng of pooled mutagenesis PCR product carrying attB sites, 150ng of pDONR223, 1μL
Gateway BP Clonase II Enzyme Mix (Invitrogen), 1X TE Buffer is prepared. This reaction is
incubated overnight at room temperature and then transformed into  E. coli  aiming for the
maximum  number  of  transformants  (at  least  100,000  CFUs)  to  keep  complexity  high.
Several colonies are picked at this stage for a quality control check by sanger sequencing,
and the rest are put through a pooled DNA extraction. The result is a pool of mutagenised
PCR product inserted into the entry vector pDONR223.

Generation of Barcoded Destination Pools. Barcoded destination plasmids were generated
as previously reported4, but instead of being arrayed were maintained as pools with high
complexity.  Briefly,  a linear PCR product containing two random 25 nucleotide “barcode”
regions flanked by loxP and lox2272 sites along with common linker sequences for priming
was combined with a gateway compatible vector at a SacI restriction site through  in vitro
DNA assembly5. This barcoded destination vector pool was transformed into One Shot ccdB
Survival  T1R Competent  Cells  (Invitrogen).  The transformations  were spread  onto  large
round LB+ampicillin petri plates for increased selection capacity and pool complexity was
estimated from CFU counts. The plates were combined into a single pool for plasmid DNA
extraction by maxiprep.

En masse Gateway LR reaction. An en masse Gateway LR reaction was used to transfer the
mutagenised pool of entries into the barcoded destination pool. This reaction takes place
over five days. On Day 1 a 5μL reaction containing 150ng of mutagenised ORF pool in
pDONR223 backbone, 150ng barcoded pHYC expression vector pool, 1μL LR Clonase II
Enzyme Mix,  1X TE buffer  is  prepared.  The  reaction  is  incubated at  room temperature
overnight. On each of days 2-5 add in a 5μL volume consisting of 150ng barcoded pHYC
expression  vector,  1μL  LR  Clonase II  Enzyme  Mix,  1X  TE  Buffer,  incubating  at  room
temperature overnight each day. On day 5 the final volume is 25μL. 

Transformations and colony picking. LR reactions were transformed into E. coli and plated to
achieve a density of 400-600 individual colonies per plate. A Biomatrix robot (Biomatrix BM5-
BC robot, S&P Robotics) was then used to automatically pick and array 384 colonies per
plate for a total of ~20,000 clones in ~52 plates per ORF of interest. Each colony at this
stage should contain a pHYC expression vector harbouring a variant of the ORF of interest
and a unique barcode.
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KiloSeq

For the BarSeq method, to establish the identity of each plasmid barcode and its associated
set of mutations in the target ORF we used KiloSeq (either carried out in our laboratory or as
a service from SeqWell Inc., Beverly, MA).  The first step is to PCR-amplify a segment of the
plasmid  containing  both  ORF  and  barcode  locus.  PCRs  were  carried  out  using  the
Hydrocycler  16  (LGC  Group,  Ltd.),  using  primers  with  well-specific  index  sequences.
Amplicons from each plate were pooled, and subjected to Nextera ‘tagmentation’ using Tn5
transposase to generate a library of amplicons with random breaks to which the adapters
have been ligated. We then re-amplify those fragments to generate a library of amplicons
such that one end of each amplicon bears the well-specific tag and the other ‘ladder’ end
bears the Nextera adapter. These libraries can be re-amplified to introduce Illumina TruSeq
adaptors,  allowing  multiple  plates  of  amplicons  to  be  sequenced  together.   Paired-end
sequencing was carried out using Illumina NextSEQ 500. In each pair of reads, one read will
reveal the well tag and the barcode locus, whereas the other will contain a fragment of the
mutant ORF, and these fragments can be assembled into a contiguous sequence.

To perform demultiplexing, barcode identification and insert resequencing, we developed a
sequence analysis pipeline (see Code Availability section). In the first step Illumina bcl2fastq
is used to demultiplex the reads at the plate level using the custom Nextera indices. The
resulting FASTQ files are then further demultiplexed using the well-tags in a highly parallel
fashion. This results in a folder structure containing tens of thousands of individual fastq files
sorted by plate and well location. These are then further processed in parallel to identify
barcodes.  Wells  can  sometimes  contain  more  than  one  clone  (e.g.,  due  to  incomplete
washing in the robotic pinning process). Thus barcode sequences are extracted from each
read and then clustered by edit distance to determine the set of barcodes in each well. The
associated paired reads for each barcodes are then further split by barcode. Each barcode-
specific set of ORF reads can then be analyzed with respect to mutations. Bowtie2 software6

is used to align reads to the ORF template, PCR duplicates are removed and nucleotide
variants called using samtools pileup7.  Given limited read lengths, identification of longer
indels is not straightforward. A solution was found by extracting depth of coverage tracks for
each clone and normalizing them with respect to average positional coverage across each
384-well plate, applying an edge-detection algorithm to find sudden increases or decreases
within normalized coverage, indicating the presence under-covered regions that can arise as
a result of insertions or deletions.

After  successful  genotyping  with  KiloSeq,  we  determined  the  subset  of  clones  that  (i)
contained  a  minimum  of  one  missense  mutation,  (ii)  did  not  contain  any  insertions  or
deletions, (iii) did not contain mutations outside of the ORF, (iii) had unique barcodes, (iv)
had sufficient read coverage during KiloSeq to allow for confident genotyping. We re-arrayed
this filtered subset of clones (Biomatrix BM5-BC robot, S&P Robotics) into a condensed final
library of 40 plates containing 6,548 clones.

High-throughput yeast based complementation screen

The yeast based functional assays were established and validated in our previous study8.
The mutant alleles of the yeast temperature sensitive strains used in this study are ubc9-2,
smt3-331, thi80-ph, and cmd1-1. The high-throughput screen was performed as follows: the
POPCode generated mutant library was transferred to the expression vector pHYCDest8 by
en masse Gateway LR reactions followed by transformation into NEB5α competent E. coli
cells (New England Biolabs) and selection for ampicillin resistance. 

For  the  DMS-BarSeq approach,  plasmids  extracted from a pool  of  6,548 barcoded and
KiloSeq-validated mutant clones, together with barcoded null  and wildtype controls,  were
transformed into a S. cerevisiae strain carrying a temperature-sensitive (ts) allele which can
be functionally complemented by the corresponding wild-type human gene8. Complexity for
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this transformation was ~100,000 CFU. For the time series BarSeq screen, the pools were
grown  separately  at  both  non-selective  (25°C)  and  selective  (38°C)  temperatures  in
triplicates  to  be  examined  at  5  different  timepoints  (0h,  6h,  12h,  24h,  48h)  yielding  30
samples.  For each sample, plasmids were extracted from 10 ODU of  cells and used as
templates for the downstream barcode PCR amplification. The barcode loci were amplified
for each library of plasmids with primers carrying sample-specific tags and then sequenced
on an Illumina NextSeq 500. 

For the DMS-TileSeq approach, plasmids extracted from a pool of ~100,000 clones were
transformed  into  the  corresponding  S.  cerevisiae temperature  sensitive  strain  yielding
around 1,000,000 total transformants. Plasmids were prepared from two of 10 ODU of cells
and  used  as  templates  for  the  downstream  tiling  PCR  (two  replicates  of  non-selective
condition). Two of 40 ODU of cells were inoculated into 200ml medium and grown to full
density with shaking at 36°C and plasmids extracted from 10 ODU of each culture were
used as templates for the downstream tiling PCR (two replicates of selective condition). In
parallel,  plasmid expressing the wild-type ORF was transformed to the corresponding S.
cerevisiae ts strain and grown to full density under the selection. Plasmids were extracted
from two of 10 ODU of cells and used as templates for the downstream tiling PCR (two
replicates of wild-type control). For each plasmid library, the tiling PCR was performed in two
steps: (i) the targeted region of the ORF was amplified with primers carrying a binding site
for illumina sequencing adaptors, (ii) each first-step amplicon was indexed with an illumina
sequencing adaptor in the second-step PCR. We perform paired end sequencing on the tiled
regions across the ORF. 

Fitness scoring and refinement

For DMS-BarSeq, a computational pipeline was implemented to identify and count individual
sample tags and barcode combinations within each read (see Code Availability section). We
first calculated the relative population size by dividing each clone's barcode count by the
total  number  of  barcodes in  each condition.  We then calculated the estimated absolute
population size for each clone by multiplying the relative population size with the estimated
total number of cells on the respective plate at the corresponding time point (obtained from
OD measurements). We then treat the amount of growth between each individual time point
compared  to  the  pool  average  as  an  individual  estimate  of  fitness,  all  of  which  act
cumulatively. This is calculated as follows: Let  be the barcode count for clone i, timepoint
tk at temperature , then  �  
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Where is the relative population size for clone i, timepoint  tk at temperature ,   �  is

the absolute population size for clone i, timepoint  tk at temperature ,   �  is the measured

hourly growth rate for clone  i,  timepoint  tk at  temperature ,   �  is the fitness advantage
relative to the pool growth for clone i, timepoint  tk at temperature ,   �  is the normalized
relative fitness advantage for clone i, timepoint tk, and si is the cumulative normalized relative
fitness advantage for clone i. Finally,  s’i is the fitness score relative to the internall null and
wildtype controls, this results in null-like mutants receiving a score of zero and wildtype-like
mutants receiving a score of one. 

Given limited amounts of replicates, the empirical standard deviations calculated for each
clone or variant can be expected to be imprecise. Baldi and Long9 have previously described
a method for Bayesian regularization or refinement of the standard deviations which yield
more robust estimates, leading to less classification error in statistical tests. Briefly, a prior
estimate of the standard deviation is computed by linear regression based on the number of
barcodes in the permissive condition and the fitness score. The prior is then combined with
the empirical value using Baldi and Long's original formula

where v0 represents the degrees of freedom assigned to the prior estimate, σ0 is the prior
estimate resulting according to the regression, n represents the degrees of freedom for the
empirical data (i.e. the number of replicates) and s is the empirical standard deviation. The
methods were implemented as part of a larger DMS analysis package (see Code Availability)

For  DMS-TileSEQ,  raw  sequencing  reads  were  aligned  to  the  reference  ORF  cDNA
sequences using Bowtie-26 and a custom Perl script was used to parse and compare the
forward and reverse read alignment files to count the number of co-occurrences of a codon
change  in  both  paired  reads.  Mutational  counts  in  each  condition  were  normalized  to
sequencing depth at the respective position. Then, the normalized mutational counts from
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the  wild  type  control  libraries  (control  for  sequencing  errors)  were  subtracted  from  the
normalized mutational counts from the non-selective and selective conditions respectively.
Finally,  the  enrichment  ratio  was  calculated  for  each  variant  based  on  the  adjusted
mutational counts before and after selection.

Re-scaling of fitness metrics

The results from the barcoded and regional sequencing screens do not scale linearly to each
other.  We  used  regression  to  find  a  monotonic  transformation  function

between  the  two  screens'  respective  scales.  The  standard
deviation  is  transformed  accordingly  using  a  Taylor  series-based  approximation:

. After both datasets have been brought to the same scale we can

join  corresponding  data  points  using  weighted  means,  where  the  weight  is  inversely
proportional to the Bayesian regularized standard error. Output standard error was adjusted
to account for differences in input fitness values and increased sample size:

where �0 is the DMS-BarSeq value, �0 the associated standard deviation, the associated

standard error,  df0 the associated degrees of freedom, �1 is the DMS-TileSeq value, �1 the
associated standard deviation,   the associated standard error, and  df1 the associated
degrees  of  freedom.  These  steps  were  implemented  as  part  of  a  larger  DMS analysis
package (see Code Availability)

Imputation of missing data

Next we aimed to find a machine learning method that would allow us to input the missing
parts  of  the  map.  The  first  step  towards  this  was  to  gather  suitable  features.  We first
evaluated the most promising features using linear regression and then applied a random
forest model using all the available features.

The most important features were intrinsic, i.e. directly derived from unused information in
the  screen.  These  are:  The  average  fitness  across  variants  at  the  same position;  The
average fitness of  multi-mutant  clones that  contain the variant  of  interest;  the estimated
fitness according to a multiplicative model to infer mutant fitness A using a double mutant AB
and  single  mutant  B.  Another  set  of  features  was  computed  from  differences  between
various  chemical  properties  of  the  wildtype  and  mutant  amino  acids.  These  properties
include size, volume, polarity, charge, hydropathy.A third set of features is derived from the
structural context of each amino acid position. This includes secondary structure, solvent
accessibility,  burial  in  interfaces  with  different  interaction  partners  and  involvement  in
hydrogen  bonds  or  salt  bridges  with  interaction  partners.  Secondary  structures  were
calculated using Stride10. Solvent accessibility and interface burial were calculated using the
GETAREA tool11 on the following PDB entries: For UBE2I: 3UIP12 ; 4W5V (Boucher  et al.
unpublished)  ;  3KYD13 ;  2UYZ14 ;  4Y1L15.  For  SUMO1:  2G4D16;  2IO217;  3KYD13;  3UIP12;
2ASQ18; 4WJO19; 4WJQ19; 1WYW20. For calmodulin: 3G4321; 4DJC22. And for TPK1:  3S4Y23
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Hydrogen bond and salt bridge candidates were predicted using OpenPyMol and evaluated
for validity by manual inspection. Additional features used are the BLOSUM score for a given
amino acid change, the PROVEAN score, and the evolutionary conservation of the amino
acid  position.  Conservation  was  obtained  by  generating  a  multiple  alignment  of  direct
functional orthologues across many eukaryotic species using CLUSTAL24, which was used
as input for AMAS25. We then applied the complete set of features in a random forest model
using the R package randomForest26.  These procedures were implemented as part  of  a
larger DMS analysis package (see Code Availability section).

Refinement of low-confidence measurements

The machine-learning  predictions  resulting  generated above  can also  be used  to  refine
experimental measurements of lower confidence. To this end, the corrected standard error
associated with each datapoint  can be used to determine the weight  of  assigned to the
measurement.

Where �0 is the measured value, �0 the associated standard deviation,   the associated
standard error,  df0 the associated degrees of freedom,  � 1 is the RandomForest predicted
value, �1 the associated standard deviation as approximated by cross-validation RMSD, 
the  associated  standard  error  and  df1 the  associated  virtual  degrees  of  freedom.  The
methods were implemented as part of a larger DMS analysis package (see Code Availability
section)

Experimental validation by yeast spotting assays

To validate the reliability of the fitness scores obtained during the screen, we selected  three
subsets of clones from our original UBE2I variant library: (1) A set of clones carrying variants
with  functional  scores  representing  the  full  spectrum in  the  screen;  (2)  A set  of  clones
carrying hypercomplementing variants in the screen; and (3) A set of clones carrying variants
not  present  in  the imputation  training data  set.  After  genotype verification  using Sanger
sequencing,  each variant  was transferred to the yeast  expression plasmid pHYCDest by
Gateway technology and individually transformed into the yeast ts mutant strain. Cells were
grown to saturation in 96-well cell culture plates at room temperature.  Each culture was then
adjusted to an OD600 of 1.0 and serially diluted to 5-1, 5-2, 5-3, 5-4, and 5-5. These cultures
(5μl of each) were then spotted on SC-LEU plates as appropriate to maintain the plasmid
and incubated at either the permissive or nonpermissive temperatures for two days. Each
variant was assayed alongside negative and positive controls for loss of complementation
(expression of either the wild type human protein or a GFP control). Results were interpreted
by comparing the growth difference between the yeast strains expressing human genes and
the corresponding control strain expressing the GFP gene.   

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 27, 2017. ; https://doi.org/10.1101/166595doi: bioRxiv preprint 

https://paperpile.com/c/Au395F/vg7ax
https://paperpile.com/c/Au395F/jNnkm
https://paperpile.com/c/Au395F/XJTBo
https://doi.org/10.1101/166595


Assessing relationship of hyperactive complementation to reversion

To examine whether changing amino acid residues into those residues naturally occur in
yeast were more likely to show hyperactive complementation we compared these cases to
changes into residues occurring in  other species.  The UBE2I amino acid sequence was
aligned to that of its orthologues in S. cerevisiae, D. discoideum and D. melanogaster using
CLUSTAL24.  A custom script  was used to extract  inter-species amino acid  changes and
lookup the corresponding complementation fitness values in the UBE2I map. Distributions
were plotted using the R package beeswarm. The methods were implemented as part of a
larger DMS analysis package (see Code Availability section).

In vitro sumoylation comparison

Images from in vitro sumoylation assays performed for UBE2I variants by Bernier-Villamor et
al.27 were scored by visual inspection while blinded to the underlying variant information.
Scores were then represented as a heatmap and compared complementation scores from
the UBE2I map. The methods were implemented as part of a larger DMS analysis package
provided and also available online at https://bitbucket.org/rothlabto/dmspipeline.

Phylogenetic comparison of different models for hypercomplementation

We used the phydms software package28 to test three different models relating the effect of
complementation-enhancing substitutions in SUMO1 and UBE2I to actual preference for the
substituted amino acid in a real biological context. Specifically, using the substitution models
described  in  Bloom  201628,  we  tested  three  different  ways  of  relating  the  evolutionary
preference πr,a for amino-acid a at site r to the fitness score f r,a for this variant. In the first
model, πr,a = fr,a. In the second model, πr,a = min(fr,a, fr,wt) where fr,wt is the fitness score for the
wildtype amino-acid at site r. In the third model, πr,a = fr,a, if fr,a <= fr,wt and 1/fr,a otherwise. We
fit each of these models to the set of Ensembl homologs with at least 75% sequence identity
to the human protein. As shown in Supplementary Table S2, in all  cases the last model
(which  assigns  low  preference  to  variants  that  strongly  enhance  activity)  best  fits  the
sequences.  The  computer  code  that  performs  this  analysis  is  available  on  GitHub  at
https://github.com/jbloomlab/AtlasPaper_SUMO1_UBE2I_ExpCM

Statistical details

Figure 1C: Error bars show Bayesian regularized standard error based on three technical
replicates and a prior  based on pre-selection counts and final  score (see subsection on
score calculation for details).

Figure 1D: As normality cannot be assumed for the distributions of fitness scores, one-sided
two-sample Wilcoxon-Mann-Whitney tests were used. Low conservation (n=60 clones) vs
Medium Conservation (n=105 clones) W = 3789, P = 0.015; Medium Conservation (n=105
clones) vs High Conservation (n=404 clones) W = 28043, P = 1.8x10-7; Core (n=208 clones)
vs Surface (n=42 clones) W = 1649, P = 1.01x10-10; Interface (n=215 clones) vs Surface
(n=42 clones) W = 2461, P = 1.58x10-6.

Figure 5A: As normality cannot be assumed for the distributions of fitness scores, a one-
sided  two-sample  Wilcoxon-Mann-Whitney  test  was  used:  n={26,31}  variants,  W=570.5,
P=3.73x10-3.

Code and data availability

All code associated with this work can be checked out using mercurial from the following
repositories: (1) For the KiloSeq analysis pipeline: https://bitbucket.org/rothlabto/kiloseq; (2)
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for the popcode oligo design tool:  https://bitbucket.org/rothlabto/popcodesuite; (3) For the
BarSeq sequence analysis pipeline: https://bitbucket.org/rothlabto/screenpipeline; (4) For the
TileSeq sequence  analysis  pipeline:  https://bitbucket.org/rothlabto/tileseq_package  For  all
raw  data  and  downstream  analyses:  https://bitbucket.org/rothlabto/dmspipeline.  All  final
variant  maps  and  associated  data  tables  can  be  downloaded  at
http://dalai.mshri.on.ca/~jweile/projects/dmsData/
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