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Abstract 

Progesterone is a natural steroid hormone excreted by animals and humans, 

which has been frequently detected in the aquatic ecosystems. The effects of the 

residual progesterone on fish are unclear. In this study, we aimed to examine the 

effects of progesterone on the hypothalamic-pituitary-thyroid (HPT) axis by 

detecting the gene transcriptional expression levels. Zebrafish embryos were 

treated with different concentrations of progesterone from 12 hours post-

fertilization (hpf) to 120 hpf. Total mRNA was extracted and the transcriptional 

profiles of genes involved in HPT axis were examined using qPCR. The genes 

related to thyroid hormone metabolism and thyroid hormone synthesis were up-

regulated in zebrafish exposed to progesterone. These results indicated that 

progesterone affected the mRNA expression of genes involved in the HPT axis, 

which might interrupt the endocrine system in zebrafish. Our data also suggested 

that zebrafish is a useful tool for evaluating the effects of chemicals on the 

thyroid endocrine system.  

 

Introduction 
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Natural and synthetic steroid hormones are active endocrine disrupters, which 

have been detected in the aquatic systems [1-5]. These endocrine disrupters 

have the potential effects on the fish reproductive system at very low 

concentration, such as environmental levels [6-9]. Progesterone is a steroid 

hormone that impairs the reproduction in animals and humans [10-12]. Previous 

studies report that progesterone can affect the meiotic oocyte maturation in 

human, mammals and female fish [13-18].  

Low levels of progesterone and its metabolites, which are originally excreted by 

human and mammals, have been detected in the aquatic ecosystems including 

surface water and rivers [19-25].  

Thyroid hormones play an essential role in the maintenance of tissues and 

biological functions in vertebrates [26-31]. In fish, the HPT axis regulates the 

thyroid endocrine system by modulating their homeostasis [32-35]. In this study, 

we investigated the effects of progesterone on the transcriptional profiles of 

genes involved in HPT axis of zebrafish. Our results confirmed that progesterone 

can cause disruption to the thyroid system by impairing the endocrine 

homeostasis.  

 

Materials and methods 

Chemicals 

Progesterone was purchased from Sigma-Aldrich (Cat NO. P0130-25G) and 

dissolved in dimethyl sulfoxide to make the stock solution.  
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Zebrafish maintenance and drug treatment 

Wild type AB line zebrafish were raised and kept under standard laboratory 

conditions at 28 ± 0.5 °C. Adult fish were naturally crossed and normally 

developed embryos were collected. Embryos were randomly divided into each 

group containing different concentrations of progesterone (0, 1, 10, 100 and 1000 

ng/L). The eggs were treated with progesterone from 12 hours post-fertilization 

(hpf) to 120 hpf. Water was changed twice per day and exposed-eggs were 

collected for mRNA analysis at 5 days post-fertilization (dpf). Control group was 

treated with 0.05% DMSO.  

 

Quantitative real-time PCR (qPCR) 

Quantitative real-time PCR was performed as described somewhere else [36]. 

Fifty zebrafish larvae per group were collected and homogenized, total RNA was 

extracted using Direct-zolTM RNA MiniPrep Kit (Zymo Research) following 

manufacturer’s protocol. First-strand cDNA was synthesized using SuperScript III 

First-Strand Synthesis System (Thermo Fisher Scientific). The qPCR was 

performed using SYBR Green Real-Time PCR Master Mixes (Thermo Fisher 

Scentific) and analyzed on a QuantStudioTM 6 Flex Real-Time PCR System. The 

primer sequences of target genes were listed somewhere else. The amplification 

protocol was as follows: denaturation at 95 °C for 15 min, followed by 40 cycles 

of 95 °C for 10 s, 60 °C for 60 s. 

 

Statistical analysis 
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The normality and homogeneity of variance were tested using Kolmogorov-

Smirnov and Levene’s tests, respectively. Differences between the control and 

drug-treated groups were evaluated by on-way analysis of variance (ANOVA), 

followed by Tukey’s test. P< 0.05 was considered statistically significant.  

 

Results 

In order to investigate the effect of progesterone on the mRNA expression of 

genes involved in HPT axis of zebrafish, embryos were exposed to different 

concentrations of progesterone (0, 1, 10, 100 and 1000 ng/L), and mRNA 

expression profiles were examined at 5 dpf. Treated with 100 ng/L progesterone 

significantly increased the gene expression of sodium/iodide symporter (slc5a5) 

and thyroid-stimulating hormone beta (tshβ). The gene expression involved in the 

HPT axis had no significant changes in the 1 and 10 ng/L progesterone-treated 

groups. Treatment with higher concentrations  (1000 ng/L) significantly induced 

the expression of NK2 homeobox 1a (nkx2.1), paired box protein 8 (pax8) and 

uridinediphosphate glucuronosyltransferase (ugt1ab).  
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Discussion 

Very little is known of the effects of progesterone on the thyroid endocrine 

system in fish. In this study, zebrafish embryos were used to evaluate effects of 

progesterone on expression of genes involved in the HPT axis. Exposure to 100 

ng/L progesterone significantly increased slc5a5 and tshβ expression. The gene 

slc5a5 and tshβ are involved in thyroid hormone synthesis pathways [37-39]. 

Previous studies have reported that tshβ is a useful biomarker for investigating 

the function of thyroid system [40, 41]. In this study, the tshβ mRNA expression 

was significantly increased when exposed to progesterone. Moreover, higher 

concentration of progesterone increased nkx2.1, pax8 and ugt1ab expression. 

Genes regulate the thyroid development (nkx2.1 and pax8) and thyroid hormone 
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synthesis (slc5a5) were significantly upregulated after exposed to progesterone, 

these results suggested that HPT axis in the 5 dpf zebrafish is sensitive to 

chemical treatment, that can be used to examine the effects of chemicals on the 

thyroid endocrine system.  

Taken together, treatment with progesterone changed the gene expression levels 

involved in the HPT axis, indicating an overt endocrine-disrupting activity. This 

study showed that 5 dpf zebrafish can be used to evaluate the effects of 

chemicals on the thyroid endocrine system. 
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