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Abstract

Constraint-based metabolic flux analysis of knockout strategies is an efficient method to

simulate the production of useful metabolites in microbes. Owing to the recent

development of technologies for artificial DNA synthesis, it may become important in

the near future to mathematically design minimum metabolic networks to simulate

metabolite production. Accordingly, we have developed a computational method where

parsimonious metabolic flux distribution is computed for designated constraints on

growth and production rates which are represented by grids. When the growth rate of

this obtained parsimonious metabolic network is maximized, higher production rates

compared to those noted using existing methods are observed for many target

metabolites. The set of reactions used in this parsimonious flux distribution consists of

reactions included in the original genome scale model iAF1260. The computational

experiments show that the grid size affects the obtained production rates. Under the

conditions that the growth rate is maximized and the minimum cases of flux variability

analysis are considered, the developed method produced more than 90% of metabolites,

while the existing methods produced less than 50%. Mathematical explanations using

examples are provided to demonstrate potential reasons for the ability of the proposed

1/19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/166777doi: bioRxiv preprint 

https://doi.org/10.1101/166777
http://creativecommons.org/licenses/by/4.0/


algorithm to identify design strategies that the existing methods could not identify. The

source code is freely available, and is implemented in MATLAB and COBRA toolbox.

Author summary

Metabolic networks represent the relationships between biochemical reactions and

compounds in living cells. By computationally modifying a given metabolic network of

microbes, we can simulate the effect of knockouts and estimate the production of

valuable metabolites. A common mathematical model of metabolic networks is the

constraint-based flux model. In constraint-based flux balance analysis, a pseudo-steady

state is assumed to predict the metabolic profile where the sum of all incoming fluxes is

equal to the sum of all outgoing fluxes for each internal metabolite. Based on these

constraints, the biomass objective function, written as a linear combination of fluxes, is

maximized. In this study, we developed an efficient method for computing the design of

minimum metabolic networks by using constraint-based flux balance analysis to

simulate the production of useful metabolites.

Introduction

Finding knockout strategies with minimum sets of genes for the production of valuable

metabolites is an important problem in computational biology. Because a significant

amount of time and effort is required for knocking out several genes, a smaller number

of knockouts is preferred in knockout strategies.

However, the technologies for DNA synthesis are being improved [9]. Although the

ability to read DNA is still better than the ability to write DNA, designing synthetic

DNA may become important in the near future for the production of metabolites

instead of knocking out genes in the original genome. Furthermore, it is more

reasonable to design DNA by utilizing already existing genes than to create new genes

on a nucleotide level. One to one control relation between each gene and reaction may

become possible by modifying existing genes. In contrast to knockout strategies, the

number of genes included in the design of synthetic DNA should be as small as possible

owing to the requirement of significant experimental effort and time.
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Flux balance analysis (FBA) is a widely used method for estimating metabolic flux.

In FBA, a pseudo-steady sate is assumed where the sum of incoming fluxes is equal to

the sum of outgoing fluxes for each internal metabolite [14]. Computationally, FBA is

formalized as linear programming (LP) that maximizes biomass production flux, the

value of which is called the growth rate (GR). The production rate (PR) of each

metabolite is estimated under the condition that the GR is maximized. Since LP is

polynomial-time solvable and there are many efficient solvers, FBA is applicable for use

in genome-scale metabolic models. The fluxes calculated by FBA are known to be

correspond with experimentally obtained fluxes [24].

Therefore, many computational methods have been developed to identify optimal

knockout strategies in genome-scale models using FBA. For example, OptKnock

identifies global optimal reaction knockouts with a bi-level linear optimization using

mixed integer linear programming (MILP) [1]. The inner problem performs the flux

allocation based on the optimization of a particular cellular objective (e.g.,

maximization of biomass yield, minimization of metabolic adjustment (MOMA [22])).

The outer problem then maximizes the target production based on gene/reaction

knockouts. RobustKnock maximizes the minimum value of the outer problem [23].

OptOrf and genetic design through multi-objective optimization (GDMO) find gene

deletion strategies by MILP with regulatory models and Pareto-optimal solutions,

respectively [2, 7]. Dynamic Strain Scanning Optimization (DySScO) integrates the

dynamic flux balance analysis (dFBA) method with other strain algorithms [26].

OptStrain and SimOptStrain can identify non-native reactions for target

production [8, 16]. In addition to knockouts, OptReg considers flux upregulation and

downregulation [17].

Many of the above algorithms are formalized as MILP, which is an NP-hard problem

and is computationally very expensive [21]. For example, OptKnock takes around 10

hours to find a triple knockout for acetate production in E.coli [11]. To improve runtime

performance, different approaches have been developed. OptGene and Genetic Design

through Local Search (GDLS) find gene deletion strategies using a genetic algorithm

(GA) and local search with multiple search paths, respectively [11,15]. EMILio and

Redirector use iterative linear programs [18,25]. Genetic Design through Branch and

Bound (GDBB) uses a truncated branch and branch algorithm for bi-level
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optimization [3]. Fast algorithm of knockout screening for target production based on

shadow price analysis (FastPros) is an iterative screening approach to discover reaction

knockout strategies [13].

Recently, Gu et al. [6] developed IdealKnock, which can identify knockout strategies

that achieve a higher target production rate for many metabolites compared to the

existing methods. The computational time for IdealKnock is within a few minutes for

each target metabolite, and the number of knockouts is not explicitly limited before

searching. On the other hand, parsimonious enzyme usage FBA (pFBA) [10] finds a

subset of genes and proteins that contribute to the most efficient metabolic network

topology under the given growth conditions. Owing to recent development of

technologies for artificial DNA synthesis, it may become important in the near future to

design minimum metabolic networks that can achieve the overproduction of useful

metabolites by selecting a set of reactions or genes from a genome-scale model.

In IdealKnock, ideal-type flux distribution (ITF) and the ideal point=(GR, PR) are

important concepts. Since the lower GR tends to result in a higher PR in many cases,

IdealKnock uses the minimum “P×TMGR” as the lower bound of the GR and

maximizes the PR to find the ITF, where 0 < P < 1 and TMGR stands for Theoretical

Maximum Growth Rate. Reactions carrying no flux in ITF are treated as candidates for

knockout. Although IdealKnock calculates ITF by optimizing the PR with a minimum

GR, this method may fail to find the optimal (GR, PR) that achieves a higher PR of

target metabolites as discussed in Section .

In this study, we introduce a novel method of calculating parsimonious metabolic

networks for producing metabolites (GridProd) by extending the idea of IdealKnock

and pFBA. In contrast to IdealKnock, in the calculation of the ideal points, GridProd

applies “P” to PR as well as GR. Furthermore, GridProd divides the solution space of

FBA into P−2 small grids, and conducts LP twice for each grid. The area size of each

grid is (P × TMGR)× (P × TMPR). TMPR stands for theoretical maximum

production rate. The first LP obtains reactions included in the designed DNA, and the

second LP calculates the PR of the target metabolite under the condition that the GR

is maximized for each grid. The design strategy of the grid whose PR is the best is then

adopted as the GridProd solution.

Computational experiments were conducted to inspect the efficiency of GridProd
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using a genome-scale model, iAF1260. The production ability of GridProd strategies

was compared to those of IdealKnock and FastPros strategies. GridProd achieves higher

PR than IdealKnock for many target metabolites. The average computation time for

GridProd is within a few minutes for each target metabolite. The effects of the grid

sizes were also inspected. When the solution space was divided into 625 small grids, the

obtained PRs were the optimal in the computational experiments, which corresponds to

P−1 = 25.

Results

Test for the production of 82 metabolites by exchange reactions

In the first computational experiment, the PRs of the GridProd design strategies were

compared to those of the knockout strategies of IdealKnock and FastPros using 82

native metabolites produced by the exchange reactions of iAF1260. For IdealKnock and

FastPros, we referred to the results shown in [6].

In the experiments in [6], FastPros took around 3 hours to obtain a strategy for each

target metabolite with ten reactions. Therefore, the number of reaction knockouts in

that experiments was limited to ten in the experiment of [6]. On the other hand,

IdealKnock took 0.3 hours to obtain a strategy for each target metabolite and the

knockout number was not limited. All procedures for IdealKnock and FastPros were

implemented on a personal computer with 3.40 GHz Intel(R) Core(TM) i7-2600k and

16.0 GB RAM [6].

All procedures for GridProd were implemented on a personal computer with Gurobi,

COBRA Toolbox [20] and MATLAB on a Windows machine with Intel(R) Xeon(R)

CPU E502630 v2 2.60GHz processors. Although the computers used in the experiments

for GridProd and the controls were different, the purpose of this study is not to

compare the exact computational times, but rather the of reaction network design each

method can find. The results of FastPros may be improved if a larger number of

reaction knockouts were allowed.

In the computational experiments described in this study, if the PR was more than

or equal to 10−5, then the target metabolite was treated as producible. The production
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ability of each method corresponding to the maximum and minimum PRs calculated by

flux variability analysis (FVA) is shown in Table 1. For the maximum case, GridProd

produced 75 of the 82 metabolites, while FastPros and IdealKnock produced 45 and 55

metabolites, respectively. For the minimum case, GridProd produced 74 of the 82

metabolites, while FastPros and IdealKnock produced 26 and 40 metabolites,

respectively.

Table 1. The amount of the 82 iAF1260 target metabolites produced by GridProd,
FastPros and IdealKnock strategies. “min” and “max” represent the minimum cases
and maximum cases from FVA, respectively.

FastPros IdealKnock GridProd
min 26 40 74
max 45 55 75

The maximum and minimum numbers of reactions used by GridProd for the

producible cases were 452 and 406, respectively, for both the maximum and minimum

cases from FVA. The average number of reactions used for the producible cases by

GridProd were 417.91 and 417.84 for the maximum and minimum cases from FVA,

respectively.

The eight target metabolites that were not producible by the GridProd strategies in

the minimum cases from FVA are listed in Table 2. The production ability of the eight

target metabolites by the FastPros and IdealKnock strategies are also represented in the

table. Since IdealKnock could produce seven of the eight target metabolites even for the

minimum case from FVA, 81 of the 82 target metabolites were producible by either the

GridProd or IdealKnock strategies even for the minimum cases from FVA.

Table 2. The production ability of each method for the eight target metabolites that
were not producible by GridProd in the minimum case from FVA. FP, IK, and GP
represent FastPros, IdealKnock and GridProd, respectively. “min” and “max” represent
the minimum and the maximum cases from FVA, respectively.

metabolites FP min FP max IK min IK max GP min GP max
DM OXAM fail fail success success fail fail
EX anhgm(e) fail fail success success fail fail
EX colipa(e) success sucess success success fail fail
EX etha(e) fail fail fail fail fail fail
EX glcn(e) fail fail success success fail fail
EX glyc3p(e) success sucess success success fail fail
EX phe L(e) success sucess success success fail fail
EX urea(e) success sucess success success fail success
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In the second computational experiment, the PRs by the GridProd and IdealKnock

strategies were compared for the 82 target metabolites under the condition that the

GRs were maximized. As shown in Table 3, for the minimum case from FVA, the PRs

of GridProd were higher than those of IdealKnock for 57 of the 82 target metabolites,

while the PRs of IdealKnock were higher than those of GridProd for 19 of the 82 target

metabolites. The PRs were the same for six target metabolites. As for the maximum

case from FVA, the PRs of GridProd were higher than those of IdealKnock for 46 of the

82 target metabolites, while the PRs of IdealKnock were higher than those of GridProd

for 35 of the 82 target metabolites. The values were the same for one target metabolite.

Table 3. Comparison of the PRs by the GridProd and IdealKnock strategies under the
condition that the GRs were maximized. The minimum and maximum cases from FVA
were compared, respectively.

GridProd is better IdealKnock is better same
min of FVA 57 19 6
max of FVA 46 35 1

In the third computational experiment, another comparison was conducted between

the PRs of GridProd and FastPros under the same condition. The results are shown in

Table 4.

Table 4. The comparison of the PRs by the strategies of GridProd and FastPros under
the condition that the GRs were maximized. The minimum and maximum cases by FVA
were compared, respectively.

GridProd is better FastPros is better same
min of FVA 64 11 7
max of FVA 59 21 2

In the fourth computational experiment, various values for P were examined for

GridProd. Table 5 shows how many of the 82 target metabolites were produced by the

strategies of GridProd for different values of P, where 0 < P ≤ 1. When P−1 was less

than five, the number of producible metabolites was significantly increased as P−1

became larger. When P−1 ≤ 25 held, the number of producible metabolites was almost

monotone increase for both the minimum and maximum cases from FVA. When

P−1 = 25 was applied, the numbers of producible metabolites were 74 and 75 for the

minimum and maximum cases of FVA, respectively, and this was the best case among
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the experiments. The average elapsed time for the P−1 = 25 case was 115.82s.

Table 5. The number of producible metabolites by the GridProd strategies in the
minimum and maximum cases from FVA for various values of P−1.

P−1 min max avg elapsed time (s)
1 1 1 7.72
2 33 35 8.97
3 47 53 9.82
4 58 59 11.22
5 64 64 12.09
6 65 66 14.07
7 65 66 17.09
8 64 64 17.55
9 68 69 21.34
10 71 71 22.92
15 70 71 42.57
20 72 72 77.95
25 74 75 115.82
30 72 72 164.78
100 69 71 1481.84

Test for production of 625 metabolites by transport reactions

In the fifth computational experiment, the PRs by the Grid and FastPros strategies

were compared for the 625 target metabolites used in [13]. According to [13], FastPros

produced 472 of the 625 metabolites when the number of reaction knockouts was

limited to 25, and the average computation time was between 2.6 h and 11.4 h with

GNU Linear Programming Kit (GLPK) and MATLAB on a Windows machine with

Intel Xeon 2.66 GHz processors.

However, GridProd produced 528 and 535 metabolites for the minimum and

maximum cases from FVA, respectively, with P−1 = 25 as shown in Table 6. Note that

the PRs more than or equal to 10−5 are treated as producible.

Table 6. The number of the 625 target metabolites that were producible by the FastPros
and GridProd strategies.

Method success fail success ratio
FastPros [13] 472 153 75.5%
GridProd (P−1 = 25, min of FVA) 528 97 84.5%
GridProd (P−1 = 25, max of FVA) 535 90 85.6%

The PRs of GridProd were better than those of FastPros for 530 of the 625 target
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metabolites, while FastPros was better than GridProd for 94 target metabolites. They

were the same for one metabolite.

For both the minimum and maximum cases from FVA, the maximum, and minimum

numbers of reactions used by GridProd for the producible cases were 442 and 404,

respectively. The average numbers of reactions used by GridProd for the producible

cases were 414.64 and 414.65 for the maximum and minimum cases from FVA,

respectively.

Discussion

FastPros is a shadow price-based iterative knockout screening method. The shadow

price in a LP problem is defined as the small change in the objective function associated

with the strengthening or relaxing of a particular constraint [13]. Since the knockout

candidate is calculated one by one in FastPros, the computational time increases with

an increase in the number of knockouts. Therefore, the number of knockouts was

limited to less than or equal to 25 in [13]. FastPros showed better performance than

OptGene and GDLS for the 625 target metabolites of iAF1260 in the computational

experiment described in [13]. When FastPros is combined with OptKnock, improved

PRs are observed.

IdealKnock sets the GR to P × TMGR for various values of P , and then maximizes

the PRs to obtain the ideal fluxes. All reactions carrying no fluxes in the ideal flux are

directly removed. The best results were obtained when P was set to 0.05 in [6].

IdealKnock can identify strategies within a few minutes while the number of knockouts

is not explicitly limited. For most cases, the sizes of reaction knockout sets were less

than 60.

On comparison of the reaction knockout strategies by FastPros and IdealKnock

using 82 metabolites based on the computational experiments in [6], IdealKnock

exhibited a relatively better performance [6]. FastPros could uniquely predict the

overproduction of seven metabolites, while IdealKnock could uniquely predict the

production strategies of another 17 metabolites.

While IdealKnock maximizes the PRs with fixed GRs values to find an ideal flux,
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GridProd imposes the following two constraints

TMGR× P × i ≤ GR ≤ TMGR× P × (i+ 1)

TMPR× P × j ≤ PR ≤ TMPR× P × (j + 1)

for all integers 1 ≤ i, j ≤ P−1, and then minimizes the sum of absolute values of all

fluxes.

The core idea of GridProd is explained using the following examples. Suppose that a

toy model of the metabolic network as shown in Fig. 1 is given. {R1,. . . ,R8} and

{C1,C2,C3} are sets of reactions and metabolites, respectively. R1 is a source exchange

reaction such as glucose or oxygen uptake. R2 is a constant reaction such as ATPM. R7

is the biomass objective function, and R6 is the exchange reaction of the target

metabolite. [a, b] indicates that a and b are the lower and upper bounds of the flux for

the corresponding reaction. Suppose that the necessary minimum GR is 1 in this

example.

source
biomass

target

[0,5] [0,10]

[0,5]

[0,10]

[0,3]

[0,10]

[0,1]

R1
R3

R4

R6

R7

R5 R8

C1

C2

C3
[5,5]

R2
constant
(ATPM)

Figure 1. A toy example of the metabolic network, in which GridProd can identify the
optimal strategy but IdealKnock cannot under the condition that GR is maximized.

In the original state, if GR is maximized, GR becomes 10 by (R1,R2,R3,R7) =

(5,5,10,10). However, PR becomes 0 since the sum of upper bounds of R1 and R2 is 10,

and all flow from R1 and R2 goes to R7. If PR is maximized, R6 becomes 8 since R4=5

and R5=3 are the bottle necks. Therefore, TMGR and TMPR are 10 and 8, respectively.

If PR is maximized for a fixed GR as in IdealKnock, PR becomes max(10-GR,8).

The optimal design strategy in this network to obtain the maximum PR under the

condition that GR is maximized is to knockout R3 where R5 is optional. In this case,

(GR,PR)=(1,4) is obtained. Note that the minimum necessary GR is set to 1 in this

example. If R3 is not knocked out, (GR,PR)=(10,0) is always obtained.
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Suppose we adopt the strategy where a set of reactions not included in the initially

obtained flux is knocked out. If GR > 1 is fixed and PR is maximized, R3 must be used

since the upper bound of R8 is 1. Therefore, R3 is not knocked out, and then

(GR,PR)=(10,0) is obtained when GR is maximized. Next, suppose that GR ≤ 1 is

fixed and PR is maximized. Note that setting GR < 1 is possible for the first LP,

although the necessary minimum GR is 1 for the second LP. Then, (R3,R5)=(3+GR,5)

is obtained, and PR is 8. Since R3 is not knocked out in this case, (GR,PR)=(10,0) is

obtained when GR is maximized. Thus, the ideal flow-based approach that maximizes

PR for the fixed values of GR cannot identify the strategy of knocking out R3 and does

not obtain PR=4.

To address this, GridProd applies P to both GR and PR. However, there may be

multiple flows that satisfy the given constraints for GR and PR. For example, if

(GR,PR)=(1,4) is given as the constraints, there are multiple flows satisfying these

constraints. However, R4 must be used in any flow since the upper bound of R5 is 3. If

R4 is 5, then R8 is 1 and R3=R5=0 holds. If R3 and R5 are knocked out,

(GR,PR)=(1,4) is achieved. However, if R4< 5 holds, then R3 and R8 must be used and

R5 is optional. Then (GR,PR)=(10,0) is obtained. Since GridProd minimizes the total

sum of absolute values of fluxes, (GR,PR)=(1,4) is obtained by knocking out R3.

To discuss the effects of the size of each grid, we analyze each case where

GR∈ {0, 1, 2} and PR∈ {3, 4, 5} are given in the following. Suppose that (GR,PR)=(1,5)

or (GR,PR)=(2,4) is given. Then, R4 must be used since the upper bound of R5 is 3.

In addition to R4, R3 also must be used since R1 +R2 = 6 must hold. R5 and R8 are

optional. In every case, the consequent reaction knockout results in (GR,PR)=(10,0).

Note that the necessary minimum growth is assumed as 1 in this example, however, GR

is allowed to be less than 1 if GR≥ 1 is satisfied in the consequent strategies. When

(GR,PR)=(0,5) is given, R4 must be used since the upper bound of R5 is 3. R3 is

optional. If R3 is used, then R5 must be used, and R8 is optional. If {R3,R5,R8} is

knocked out, then GR becomes 0 and minGrowth cannot be satisfied. If only R8 is

knocked out, then (GR,PR)=(10,0) is obtained. When (GR,PR)=(2,3) is given, there

are multiple flows. If R4 is not used, then R3 and R5 must be 5 and 3, respectively.

Consequently, R4 and R8 are knocked out, and then (GR,PR)=(10,0) is obtained. If R4

is used, R3 must be used since the upper bound of R8 is 1. R5 and R8 are optional.
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Then, (GR,PR)=(10,0) is obtained. When (GR,PR)=(2,5) is given, R4 must be used

since the upper bound of R5 is 3. Since the upper bound of R8 is 1, R3 must be used.

R5 and R8 are optional. Then, (GR,PR)=(10,0) is obtained. If (GR,PR) is (0,3), (1,3),

or (0,4), then there is no flux satisfying the condition since the lower bound of R2 is 5.

Therefore, when GR∈ {0, 1, 2} and PR∈ {3, 4, 5} are given for the first LP, the

consequent (GR,PR) obtained by the second LP is represented in Table 7. Although

(GR,PR) is given as exact values in the above example for simplicity, they are given as

constraints represented by the inequalities in GridProd. Suppose that the size of each

grid is relatively large, and the corresponding constraints are 0 ≤ GR ≤ 2 and

3 ≤ PR ≤ 5. Then, one of the possible obtained flow by the first LP is

(R1,...,R8)=(0,5,0,5,0,0,0,0) since the sum of absolute values of fluxes are minimized in

the first LP of GridProd. Consequently, R3, R5, and R8 are knockedout. Then the

second LP is not feasible. However, if the size of each grid is small and the

corresponding constraints are 1− ε ≤ GR ≤ 1 + ε and 4− ε ≤ PR ≤ 4 + ε where ε is a

small positive constant , then (GR,PR)=(1,4) is achieved in the second LP. Therefore,

the size of each grid affects the resulting PR of the target metabolites. Table 5 shows

that as P−1 becomes larger, the production ability improves when P−1 ≤ 25. However,

when P−1 > 25 holds, the production ability does not improve as P−1 becomes larger.

This indicates that the necessary minimum size of ε in the above example is related to

the necessary minimum size of P−1.

Table 7. Values of (GR,PR) obtained by the second LP of GridProd when GR∈ {0, 1, 2}
and PR∈ {3, 4, 5} are given as the constraints for the first LP.

GR=2 (10,0) (10,0) (10,0)
GR=1 NA (1,4) (10,0)
GR=0 NA NA (10,0)

PR=3 PR=4 PR=5

Table 1 shows that GridProd could find the strategies for producing at least 20

target metabolites that IdealKnock could not identify. Potential reasons for this

improvement include the effects of the parsimonious-based approach and the grid-based

approach as explained above. Since 74 of the 82 target metabolites were producible via

the GridProd strategies even for the minimum cases from FVA, there are eight target

metabolites that may not be producible by the GridProd strategies. Table 2 shows that
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FastPros and IdealKnock produced many of these eight target metabolites. Since

IdealKnock could produce all target metabolites but ’Ex etha(e)’ even for the minimum

cases from FVA, 81 of the 82 target metabolites were producible either by FastPros,

IdealKnock or GridProd. The reason as to why none of the methods could identify a

strategy to produce ’Ex etha(e)’ requires further investigation.

GridProd computes the design of chemical reaction networks by choosing reactions

used in the first LP. Because many reactions in iAF1260 are not associated with genes, it

is not directly possible to extend the idea of GridProd for the selection of a set of genes.

Materials and Methods

The pseudo-code of GridProd is as follows.

Procedure GridProd(target, P )

TMGR =max vgrowth

s.t. Σ Si,j · vj = 0

LBj ≤ vj ≤ UBj

vglc uptake ≥ −GUR

vo2 uptake ≥ −OUR

vatp main ≥ NGAM

TMPR =max vtarget

s.t. Σ Si,j · vj = 0

LBj ≤ vj ≤ UBj

vglc uptake ≥ −GUR

vo2 uptake ≥ −OUR

vatp main ≥ NGAM

vgrowth ≥ vmin
growth

for i = 1 to P do

biomassLB = TMGR× P × (i− 1)

biomassUB = TMGR× P × i

for j = 1 to P do

targetLB = TMPR× P × (j − 1)

targetUB = TMPR× P × j
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% The first LP for (i, j).

RKO(i, j) is such that

min Σ tj

s.t. Σ Si,j · vj = 0

LBj ≤ vj ≤ UBj

−tj ≤ vj ≤ tj

vglc uptake ≥ −GUR

vo2 uptake ≥ −OUR

vatp main ≥ NGAM

biomassLB ≤ vgrowth ≤ biomassUB

targetLB ≤ vtarget ≤ targetUB

Rnot used = {vj |vj < 10−5}

if the first LP is not feasible

Rnot used(i, j) = φ

% The second LP for (i, j).

vtarget is such that

max vgrowth

s.t. Σ Si,j · vj = 0

LBj ≤ vj ≤ UBj for {j|vj /∈ Rnot used(i, j)}

vj = 0 for {j|vj ∈ Rnot used(i, j)}

vglc uptake ≥ −GUR

vo2 uptake ≥ −OUR

vatp main ≥ NGAM

if vgrowth ≥ vmin
growth

PR(i, j) = vtarget

else

PR(i, j) = 0

(i, j) = argmax(PR(i, j))

return Rnot used(i, j), PR(i, j), FVAmin(i, j), FVAmax(i, j)

In the above pseudo-code, the TMGR and TMPR are calculated first. Si,j is the
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stoichiometric matrix. LBj and UBj are the lower and upper bounds of vj , respectively,

that represents the flux of the jth reaction.

vglc uptake, vo2 uptake, and vatp main are the lower bounds for the uptake rate of

glucose (GUR), the oxygen uptake rate (OUR), and the non-growth-associated APR

maintenance requirement (NGAM), respectively. vmin
growth is the minimum cell growth

rate.

In each grid, LP is conducted twice. “biomassLB” and “biomassUB” represent the

lower and upper bounds of GR, respectively. Similarly, “targetLB” and “targetUB”

represent the lower and upper bounds of PR, respectively, which are used as the

constraints in the first LP. Each grid is represented by the two constraints,

“biomassLB ≤ vgrowth ≤ biomassUB” and “targetLB ≤ vtarget ≤ targetUB”.

TMPR× P and TMGR× P represent the horizontal and vertical lengths of the grids,

respectively.

In the solution of the first LP, a set of reactions whose fluxes are almost 0 (less than

10−5) are represented as Rnot used, which is used as a set of unused reactions in the

second LP. In the second LP, none of the “biomassLB”, “biomassUB‘”, “targetLB”, and

“targetUB” are used, but the fluxes of the reactions included in Rnot used were forced to

be 0. If the obtained PR is more than or equal to vmin
growth in the solution of the second

LP, the value of PR is stored to PR(i, j). Otherwise 0 is stored. Finally, the (i, j) that

yields the maximum value in PR(i, j) is searched, and the corresponding Rnot used(i, j)

and PR(i, j) are obtained. The minimum and maximum PRs from FVA for

Rnot used(i, j) are also calculated. vmin
growth is set to 0.05 in GridProd as in [13].

Genome-scale metabolic model of Escherichia coli

iAF1260 is a genome-scale reconstruction of the metabolic network in Escherichia coli

K-12 MG1655 and includes 1260 open reading frames and more than 2000 transport

and intracellular reactions [5]. We used iAF1260 as an original mathematical model of

metabolic networks. To simulate the production potential for each target metabolite in

this model, we added a transport reaction for the target metabolite if it were absent in

the original model, which was assumed to be a diffusion transport as in [13].

In our computational experiments, glucose was the sole carbon source, and the GUR
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was set to 10 mmol/gDW/h, the OUR was set to 5 mmol/gDW/h, the NGAM was set

to 8.39, and the minimum cell growth rate (vmin
growth) was set to 0.05, as in [13]. These

conditions correspond to microaerobic conditions, where the oxygen uptake is

insufficient to oxidize all NADH produced in glycolysis and the tricarboxylic acid cycle

in the electron transfer system. This relatively low OUR was chosen because higher

production yields of target metabolites can be obtained under such conditions compared

with under the higher OUR when carbon is mainly used to generate biomass and

CO2 [13]. Other external metabolites such as CO2 and NH3 were allowed to be freely

transported through the cell membrane in accordance with [5]. Although it is not

realistic to assume that large molecules diffuse out of E. coli, it may become important

in the near future to compute the design of parsimonious chemical reaction networks to

produce various metabolites.

For constraint-based analysis using GSMs, simplified models are often considered to

reduce computational time [4, 19]; such models provide identical flux estimation and

screening results as the original model [12]. However, in this study, we used the original

iAF1260 model as opposed to such simplified models because it takes only a few

minutes for GridProd to obtain a solution for each target metabolite in most cases.

Supporting information

S1 File All source codes and the solutions obtained by GridProd in the

computational experiments described in this manuscript are included.
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