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Abstract

High-throughput single-cell gene expression experiments can be used to uncover branching dynam-
ics in cell populations undergoing differentiation through use of pseudotime methods. We develop the
branching Gaussian process (BGP), a non-parametric model that is able to identify branching dynam-
ics for individual genes and provides an estimate of branching times for each gene with an associated
credible region. We demonstrate the effectiveness of our method on both synthetic data and a pub-
lished single-cell gene expression hematopoiesis study. The method requires prior information about
pseudotime and global cellular branching for each cell but the probabilistic nature of the method means
that it is robust to errors in these global branch labels and can be used to discover early branching
genes which diverge before the inferred global cell branching. The code is open-source and available at
https://github.com/ManchesterBioinference/BranchedGP.

1 Introduction

Single-cell gene expression data can be used to uncover cellular progression through different states
of a temporal transformation, e.g. during development, differentiation or disease. As single cell pro-
tocols improve, a flurry of methods have been proposed to model branching of cellular trajectories to
alternative cell fates (Haghverdi et al., 2016; Setty et al., 2016; Qiu et al., 2017; Street et al., 2017).
In these and similar methods, pseudotime is estimated and a global branching structure is inferred.
Our focus in this paper is to propose a downstream analysis method that can subsequently be used to
model branching gene expression dynamics for individual genes. We are interested in discovering which
genes follow the global cellular branching dynamics and whether these genes branch early or late with
respect to the global cellular branching time. Recently, Qiu et al. (2017) have proposed the branch
expression analysis modelling (BEAM) approach that uses penalised splines to infer the individual
gene branching time. Here we propose an alternative non-parametric method to model gene expression
branching dynamics. We develop a probabilistic generative model of branching dynamics which can
be used to assess the evidence for branching and provides a posterior estimate of the branching time.
The posterior distribution over branching time can be used to identify the most likely branching time
for each gene as well as an associated credible region capturing our uncertainty in the estimate.

Our approach is based on Gaussian processes (GPs) which are a class of flexible non-parametric
probabilistic models. GPs have a long history in temporal and spatial statistics and have gained
popularity in many areas of machine learning, including multivariate regression, classification and
dimensionality reduction (Rasmussen and Williams, 2006). In the case of non-parametric regression,
the dependent variables are flexible functions which can be fitted to data through a Bayesian inference
procedure. The Gaussian Process Latent Variable Model (GPLVM) further extends GPs to the case
where the independent variables in regression are treated as latent variables that can be estimated along
with the GP functions (Lawrence, 2005) or inferred in the Bayesian formulation (Titsias and Lawrence,
2010). The GPLVM has been used for dimensionality reduction of single-cell expression data (Buettner
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and Theis, 2012; Buettner et al., 2015) and more recently for pseudotime estimation where the effect of
uncertainty in the inferred pseudotime can be quantified (Campbell and Yau, 2016) and capture time
can be included as prior information (Reid and Wernisch, 2016). GP-based methods have also been
used for modelling global cellular branching dynamics from single-cell data after assigning pseudotime
to cells (Lönnberg et al., 2017).

Here, we build on the work of Yang et al. (2016) who developed a GP model for the identification
of the time where two gene expression time course datasets first diverge from one another. They
define a novel GP covariance function that constrains two functions to intersect at a single point.
The divergence time is inferred by numerically approximating the posterior using a simple histogram
approach. The model is used to identify when a gene first becomes differentially expressed in time
course gene expression data under control and perturbed conditions. In their approach all data points
have been labelled with the branch that generated them and the ordering of time points is assumed
known. Although similar to the problem of modelling branching in single-cell data after pseudotime
is inferred, this two-sample time series method cannot be applied directly to our problem because we
have to allow for uncertainty in which branch each cell belongs to.

Also closely related to the present work, the overlapping mixture of GPs (OMGP) (Lázaro-Gredilla
et al., 2012) is a mixture model for time-series data where the mixture components are GP functions
and data at any time can be assigned to any of the components. In the case of single-cell data, after
pseudotime is assigned to each cell then the OMGP model can be used to assign cells to different
trajectories. The cell labels do not have to be known in advance and can be inferred through fitting
the model to data. However, the OMGP models the cellular trajectories as independent rather than
branching. The OMGP model has been applied to single cell data to infer global cell branching
times (Lönnberg et al., 2017) but as the OMGP assumes the latent functions are independent without
any branching, a heuristic based on a piecewise linear fit of the log likelihood surface is proposed
to identify the most likely branching times. This is problematic since the OMGP does not provide
a proper generative model of branching dynamics and therefore it is not clear how to compute the
posterior distribution over the branching time.

Our main methodological contribution here is to generalise the OMGP model to explicitly account
for dependence between the functions in the mixture model. Specifically, we consider the case where
the functions branch as in Yang et al. (2016). This allows us to develop a probabilistic model over
branching cellular trajectories where the assignment of cells to branches is not known in advance. Our
new model allows us to calculate the posterior distribution over branching time for each gene while
allowing for uncertainty in the branch labels for each cell. This uncertainty is especially important for
early-branching genes, since cells are not labelled with a branch prior to the global cellular branching
time which we assume is known.

A naive implementation of GP models scales cubically with the size of the data. As increasing
numbers of cells can be profiled in new single cell protocols, we ensure the scalability of our approach
by employing two complementary approaches. Firstly we use sparse inference (Quiñonero-Candela
and Rasmussen, 2005) that allows model fitting to scale with the number of inducing points. The
latter is a user-defined value that trades off model accuracy and training time. Specifically for N
cells, naive covariance inversion scales as O(N3) while under sparse inference with k inducing points
it scales as O(k2N). Secondly, we provide an open-source implementation that leverages the GPflow
library (Matthews et al., 2017), which both simplifies the implementation due to automatic symbolic
differentiation and allows for the necessary matrix operations to be computed in parallel across many
CPU nodes or GPUs.

2 Methods

Before applying our algorithm we require the pseudotime for each cell and the global branching pattern
of the cells to be established. For pseudotime estimation we use the reversed graph embedding approach
of Qiu et al. (2017), termed DDRTree, which we have found to be effective in recovering pseudotime in
the presence of branching, although other approaches may be selected. Qiu et al. (2017) have shown
the reverse graph embedding approach to outperform DPT (Haghverdi et al., 2016), Wishbone (Setty
et al., 2016) and other methods in their analysis. The DDRTree method assigns each cell to a branch
and identifies a set of globally defined branching points across all genes.

The overlapping mixture of Gaussian processes (OMGP) (Lázaro-Gredilla et al., 2012) is a mixture
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model of independent Gaussian processes (GPs) that is able to associate an observation with the gen-
erating GP. The authors term this the association problem and derive a variational inference algorithm
for the case of independent GPs. Our work extends the OMGP model in two directions: firstly, we
remove the assumption of latent function independence and allow dependent GPs as required by a
branching model; secondly, we provide a sparse inducing point approximation that allows for scalable
inference.

Let F a branching Gaussian Process evaluated for N data points with M branches and Z ∈
{0, 1}N×M indicates which branch each cell comes from. The likelihood is p (Y |F,Z) = N

(
Y |ZF, σ2I

)
and as in Lázaro-Gredilla et al. (2012) we place a categorical prior on the indicator matrix p (Z) =∏N

n=1

∏M
m=1 [Π]

[Z]nm
n,m . We place a GP prior on the latent functions p (F | tb) = GP (0,K| tb) which

constrains the latent functions to branch at pseudotime tb. Note that the latter does not factorize
as in Lázaro-Gredilla et al. (2012) as the latent functions are dependent. Full details on the model
derivation and inference scheme used, including the inducing point approximation, is provided in the
supplementary material.

Global branching labels such as those provided by DDRTree can provide an informative prior p(Z)
for all genes. The prior before the global branching point is uninformative as no global assignment is
available. This is relevant for early-branching genes which may start branching earlier than the global
cellular branching. After the global branching point, the prior favours increased assignment probability
to the globally assigned branch. However, as the prior we use places non-zero mass on the alternative
assignment, the resulting assignment may differ from the global allocation given enough evidence from
the likelihood term. This allows the model to correct mislabelled cells as well as account for sources of
noise in the data such as dropout for lowly expressed genes. The simplest construction of the prior, as
used in this paper, is to specify a common uncertainty for all cells based on the global branching labels.
For our results we have assigned a fixed probability for all cells of 80% of belonging to the globally
assigned branch. However other constructions are possible; for instance the distance of the cells from
the global branching time may be used to adjust the associated prior uncertainty.

The model hyperparameters are fitted by maximising a bound on the log-likelihood. The log-
likelihood is not analytically tractable as it involves integrating out the indicator matrix Z and therefore
we use a variational approximation. A lower bound is available using Jensen’s inequality

log p (Y |F ) ≥ Eq(Z) [log p (Y |F,Z)]−KL [q (Z) ||p (Z)]

where we make use a mean-field approximation q (Z,F ) = q (Z) q (F ) with the latent functions F
independent of the association indicators Z and q(Z) =

∏
nm φnm. The φnm approximates the posterior

probability of cell n belonging to branch m. The latter is either the trunk state or one of the two
branches in the case of a single branching considered in the applications here. Then F can be integrated
out to get the marginal likelihood p(Y ).

The branching time posterior probability is calculated using the approximate marginal likelihood
evaluated at a set of candidate branching points SB of size Nb. The posterior for a candidate branching
time c is

p(tb = c|Y ) =
p(Y |tb = c)∑

i∈SB
p(Y |tb = i)

.

We can also calculate a likelihood ratio of branching versus not branching to rank genes by how likely
their expression exhibits branching. By numerically integrating out the uncertainty of the branching
location, the ratio statistic includes the effect of posterior uncertainty:

rg = log

[
1

Nb

∑
i∈SB

p (x|tb = i)

]
− log [p (x|tb = 1.1))]

where b = 1.1 specifies the model does not branch as the pseudotime is specified in [0, 1].
An example of the fit is shown in Figure 1 (b) where the uncertainty in the cell branch association is

shown in conjunction with the posterior on the branching times. For visualisation the cell assignment
to the top branch is shown. We see that most cells away from the branching point are assigned with
high confidence to one of the branches. However, cells that are equidistant from both branches have
high assignment uncertainty (0.5). This is also the case for cells close the branching location where the
two branches are in close proximity. In the bottom panel of the figure, the posterior on the branching
location is also shown. In this instance there are only two grid locations where the branching is likely
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to occur. This is reflected in Figure 1 (a) in the branching time uncertainty (magenta). The cell
assignment uncertainty is incorporated in the branching time posterior; in cases where the branches
separate quickly the posterior branching time uncertainty is likely to be small. This reflects one of
the main benefits of employing a probabilistic model to identify branching dynamics as the assignment
uncertainty is considered when calculating the branching time posterior. The cell assignment is inferred
in the BGP model in contrast to model in Yang et al. (2016) where the assignment is assumed known.
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(a) DDRTree prior assignment
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(b) Cell assignment

Figure 1: Hematopoiesis gene expression: BGP fit for MPO GMP marker gene. In panel
(a) the Monocle-DDRtree branching assignment is shown for each cell along with the global
branching time (black dashed), most likely branching time (blue solid) and posterior branching
time uncertainty (magenta background). In panel (b) the posterior cell assignment is shown
in top subpanel. In the bottom subpanel the posterior branching time is shown.

3 Results

3.1 Synthetic study

We evaluate three methods, the mixture of factors analysers (MFA) (Campbell and Yau, 2017), the
BEAM approach (Qiu et al., 2017) and the branching GP (BGP) model on synthetically generated
data. For the synthetic study we use Gaussian noise and therefore we use the BEAM algorithm with
a Gaussian likelihood function. MFA also assumes a Gaussian likelihood function. Data is generated
from a branching Gaussian process with signal variance σ2 = 2, lengthscale λ = 1.2 and a range of
noise levels (Table 2). Samples where the functions are crossing after the branching point were rejected
since these may be difficult for other methods, e.g. BEAM identifies the last crossing location for its
fitted splines and may therefore identify the wrong point in a time-series that crosses after branching.
We address this issue in the real data study considered in the next section but do not consider it in the
synthetic benchmark. We generate N = 150 data points with D = 40 genes and pseudotime in unit
interval [0, 1]. The genes are separated in three groups depending on their branching behaviour and
time (Table 1).

All methods were run with default parameter settings so it may be possible to improve on their
performance by tuning these parameters; for example as in Campbell and Yau (2017) we found the
performance of the algorithm dependent on the initialisation used. We contrast the performance of the
BGP model both without a prior on cell assignment and an informative prior (80% prior probability)
on cell assignment derived from the global Monocle assignment.

We first compare the pseudotime estimation accuracy of Monocle and MFA . Both methods achieve
good performance as measured by the rank correlation of the estimated pseudotime to the ground
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Table 1: Synthetic gene groups. All scenarios use N = 150 cells and a total of D = 40 genes.

Group Branching time Number of genes

Early 0.2 10
Late 0.8 20

No branching NA 10

truth (Table 2).

Table 2: Synthetic study: Pseudotime rank correlation to the true time for both MFA and
Monocle under both scenarios.

Noise MFA Monocle

0.001 -0.96 1.0
0.01 0.98 1.0
0.03 -0.93 1.0
0.08 -0.97 1.0
0.1 -0.97 1.0
0.2 0.91 1.0

The log likelihood ratio of the branching GP can be used to rank the evidence of branching for each
gene. Similar measures exist for the MFA and BEAM method. We first compare the three methods on
their ability to discriminate branching from non-branching genes (Table 3). The metric we use is the
area under the curve (AUC) which provides a reasonable measure when the number of positives and
negatives in the ground truth are not too imbalanced. Both BEAM and BGP have higher accuracy
than MFA whose performance varies significantly. The inclusion of an informative prior improves the
performance of the BGP model resulting in consistently high performance for all noise levels. The
performance of BEAM decreases with increased noise level which is also the case for the BGP model
to a lesser extent.

Table 3: Synthetic study: Area under the curve (AUC) for detecting branching genes

Noise MFA BEAM BGP No prior BGP prior

0.001 0.30 1.00 1.00 1.00
0.01 0.65 1.00 1.00 1.00
0.03 0.77 0.96 0.98 0.99
0.08 0.82 0.93 0.86 0.92
0.1 0.77 0.82 0.81 0.96
0.2 0.77 0.74 0.86 0.84

We also examine the error in identifying the branching time. As MFA does not provide such as an
estimate, we only consider the BEAM and BGP methods. The error in estimating branching time for
the BEAM and BGP methods is given in Table 4. The error for the BGP method is consistently lower
than the BEAM method. The informative prior allows for more consistent performance of the BGP
method with substantial increases in accuracy in some scenarios, especially so for the highest noise
level (0.2) where the error is reduced from 0.15 to 0.08.

The lack of robustness of the BEAM approach to high noise is demonstrated in Figure 2. In the
low noise scenario (Figure 2 (a)-(b)), both BEAM and BGP are able to recover the gene expression
branching dynamics. In the high noise scenario (Figure 2 (c)-(d)), the global branching time is early due
to the presence of early branching genes in the data. The later branching gene depicted has a branching
time of b = 0.8 and the global assignment correctly separates the two branches. However due to the
high noise in the data the spline is unable to identify the correct branching time and significantly
underestimates the branching time (Figure 2 (c)). In contrast the BGP model correctly identifies the
late branching nature of the gene despite the early global branching time and the high noise level of
the data (Figure 2 (d)).

More generally, the spline approach taken in BEAM suffers from a consistent bias in branching
time estimation that pulls all estimates towards the global branching time. To clearly demonstrate this
effect we examine an additional synthetic example with 3 genes branching very early (0.1), 27 genes
branching late (0.7) and 10 genes not branching and select a low noise level (0.001). The late global
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(a) BEAM Low noise
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(b) BGP Low noise
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(c) BEAM High noise
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(d) BGP High noise

Figure 2: Synthetic data: Example BEAM and BGP model predictions for a late branching
genes which branch at b=0.8. The vertical black bar is the global branching time. The vertical
red bar is the BEAM branching time estimate, the vertical blue bar the BGP estimate and
cells have been coloured by the global Monocle assignment.
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Table 4: Synthetic study: Root mean squared error (RMSE) for branching time estimation.
Only performed on branching genes.

Noise BEAM BGP No prior BGP prior

0.001 0.12 0.03 0.03
0.01 0.11 0.04 0.05
0.03 0.13 0.06 0.07
0.08 0.20 0.14 0.09
0.1 0.23 0.12 0.09
0.2 0.23 0.15 0.08

branching time (Figure 3) due to the presence of a majority of late branching genes and few early
branching genes, helps to clearly demonstrate the bias effect. As can be seen in the Figure 3 (a), the
estimates for the BEAM method are biased towards the global branching time. The underestimation
of branching times in BEAM for genes that branch later than the global branching time is most likely
due to the spline regularisation employed by BEAM that tends to over-smooth the spline fit. The
overestimation of branching times for genes branching prior to the global branching time is due to
the arbitrary assignment of cells prior the global branching time as no labels are provided by the
global algorithm and no estimation is performed by the spline-fitting algorithm; see Figure 3 (c) for
an illustrative example. The former could possibly be rectified by tuning the regularisation approach
employed but the latter is a fundamental restriction of the BEAM approach that does not directly
estimate branching assignments but only uses the globally derived label estimates. The BGP approach
(Figure 3 (b)) does not suffer from this deficiency as the branch assignment is performed on a gene by
gene basis at the cost of increased computation time. We note however the problem is parallelisable as
each gene is treated independently.
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(a) Posterior
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(b) BGP
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0.4

(c) BEAM

Figure 3: Synthetic data: fitting BGP and BEAM on an early branching gene. (a) The true
branching times (black dots), BEAM times (red crosses) and BGP mean (blue dots) and 98%
credible regions are shown. (b)-(c)The vertical grey bar is the global branching time. The
vertical red dashed bar is the BEAM branching time estimate, the vertical magenta bar the
BGP estimate and cells have been coloured by the global assignment.

Lastly, we examine the effect of poor state estimation on the BEAM and BGP methods (Figure
4). In Figures 4 (a)-(c) the Monocle state estimation accurately identifies the underlying branching
dynamics and both BGP and BEAM correctly estimate the branching dynamics. In Figures 4 (d)-(f)
we show an example of the effect of poor state estimation. The state estimation correctly identifies a
single branching point but the majority of cells are assigned to one of the branches (red). As one of the
global branches (red) spans both gene expression branches, it is unsurprising the spline approach fails
to correctly identify the branch location and in fact overestimates the true branching time of b = 0.2
(Figure 2 (a)). The corresponding BGP inference (Figure 2 (f)) overcomes the errors in global state
estimation and the confidence interval includes the true branching time.
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Figure 4: Synthetic data: Effect of Monocle global state estimation on BEAM and BGP model
predictions for an early branching genes (b=0.2). Two different examples shown corresponding
to accurate and inaccurate state estimation by Monocle. The vertical black bar is the global
branching time. The vertical red bar is the BEAM branching time estimate, the vertical blue
bar the BGP estimate and cells have been coloured by the global Monocle assignment.
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The robustness of the BGP model can be understood in terms of the probabilistic nature of the
model where both prior global state information is considered as well as a likelihood term that fits a
branching process. Therefore the BGP prior model incorporates the best of both worlds, inclusion of
global assignment information and assessment of cell assignment based on individual gene expression.

3.2 Hematopoiesis single cell RNA-seq

We apply the BGP model on single-cell RNA-seq of haematopoietic stem cells (HSC) differentiating
into myeloid and erythroid precursors (Paul et al., 2015). The data consists of 4423 cells and to reduce
processing time we randomly select a set of 800 cells after removing and cells with zero expression
to avoid strong deviations from our Gaussian likelihood assumption as we do not model drop-out.
Removing zeros will tend to make the method more conservative in terms of identifying branching as it
will tend to reduce the difference in mean between the two branches. We use M = 30 inducing points
in our sparse BGP model to further increase the computational efficiency of the model.

The root state was selected using marker genes for the common myeloid progenitors, erythrocytes
and granulocyte-macrophage progenitors (GMP). The two branches are clearly distinguishable in the
latent space (Figure 5). The common myeloid progenitor Flt3 is highly expressed in the root of the
tree whereas the erythrocyte marker KLF1 and GMP marker MPO are expressed in each branch
respectively. We also applied the Wishbone approach (Setty et al., 2016) and the two approaches have
good agreement in the estimated pseudotime with a high rank correlation (0.92) and significant overlap
in branching assignments.
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(a) CMP Marker Flt3
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(b) Erythrocyte marker KLF1
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Figure 5: Hematopoiesis marker genes in Monocle latent space.

A probabilistic model is an appropriate choice for early hematopoiesis which has been described as a
cellular continuum of low-primed HSCs (Velten et al., 2017). The continuum contains transitory states
rather than discrete progenitor cell types with some cell state transitions and lineage combinations more
likely to occur than others. (Velten et al., 2017). A probabilistic model such as BGP better reflects
the probabilistic nature of lineage selection highlighted in Velten et al. (2017). In the BGP model in
particular, each cell is associated with an allocation probability for each branch. The branching point
can be interpreted as the earliest pseudotime from which probabilistic biases in lineage selection can
be detected.

We find 827 genes out of a possible 1052 that show evidence of branching. The posterior branching
times for the top 128 genes are shown in Figure 6 (a). The spline branching times tend to be closer to
the global branching time or near the end of pseudotime. The latter behaviour is due to the transitory
gene expression which we discuss below. In Figure 6 (b) we show the branching times for ten marker
genes that have been found to show significant evidence of branching. The colours reflect which branch
is up-regulated after the most-likely branching time. For most GMP markers (PRTN3, CTSG, MPO)
the same branch is upregulated (brown) whereas for the FOXP1 marker the other branch (magenta) is
upregulated. When examining the individual gene expression for these markers (Figure 1 and Figure
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7), the FOXP1 expression exhibits a transitory phase where the magenta branch is initially upregulated
after the branching event but then is downregulated. This situation turns out to be quite common
and in which the spline approach fails. This is because after the transitory phase is completed, it is
likely the spline predictions for each branch will intersect. In the spline approach the latest intersection
point between the two fitted splines is selected as the branching point (Qiu et al., 2017). This results in
identifying the post-transitory phase point as the branching point. The same transitory gene expression
is also evident for APOE GMP marker (Figure 8) as well as other gene expression examples (Figure
9).

0.0 0.2 0.4 0.6 0.8 1.0

(a) Posterior branching times

0.0 0.2 0.4 0.6 0.8 1.0

KLF1

MPO
GATA2

PRTN3
MEF2C

APOECAR2
CTSG

FOXP1
NFE2

(b) Posterior branching for selected marker genes

Figure 6: Posterior summary of 128 genes with highest branching probability and selected
marker genes for the hematopoiesis data. The genes are ordered by the branching location.
The spline estimation is shown as red crosses and the global branching time by a vertical grey
bar (b=0.21).
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(d) FOXP1 Spline

Figure 7: Hematopoiesis gene expression: BGP and spline fits for GMP marker genes. The
global branching time (dashed black vertical line), BGP branching point mode (blue vertical
line) and 98% posterior intervals (magenta vertical span) are also shown. The cells are marked
according to the global allocation estimated by the DDRTree algorithm.
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Figure 8: Hematopoiesis gene expression: BGP and spline fits for myeloid marker genes. The
global branching time (dashed black vertical line), Spline branching point mode (blue vertical
line) and 98% posterior intervals (magenta vertical span) are also shown. The cells are marked
according to the global allocation estimated by the DDRTree algorithm.

4 Discussion

We have presented a flexible non-parametric probabilistic approach to robustly identify individual gene
branching times. For scalability our model uses sparse variational inference implemented in a scalable
computing architecture.

Using a deterministic model on the global assignments such as the spline model used in BEAM
is unable to accurately identify branching times earlier than the global branching time and provides
biased estimates towards to global branching time as evidenced in the synthetic study presented. In
contrast the BGP method can robustly identify branching times as it estimates cell branch association
for each gene independently while accounting for cell assignment uncertainty in the posterior branching
times. We also found the BGP approach to be robust to global state estimation errors and high noise.
The BGP branching time uncertainty can also be used in downstream analysis of the individual gene
branching times; for example ranking genes in terms of their most likely or minimum branching times.

We have also included in our comparison a probabilistic linear method (Campbell and Yau, 2017).
The linearity allows for an efficient joint estimation of both the pseudotime and global branching
structure. Although this method does not estimate gene bifurcation times, a probabilistic estimate of
an individual gene exhibiting branching behaviour is available. However, in our synthetic study we have
found the pseudotime estimation not to be robust and this reduces the effectiveness of the method.

The application of the BGP method to the hematopoiesis data, revealed the importance of modelling
transitory gene expression which has the potential to confuse non-probabilistic methods. The model
was able to automatically select the most likely branching location even in the presence of multiple
crossing points in the gene expression without the need of any post-processing heuristics such as those
included in the BEAM package.

In the future we would like to extend our model to non-Gaussian likelihoods which would more
accurately describe single cell data. This would increase inference complexity but could provide better
calibrated uncertainty estimates. Another useful extension would be to jointly infer pseudotime and
branching behaviour, which would also improve uncertainty estimation as the uncertainty arising from
the estimation of the former would be included in the posterior branching uncertainty. Extending
our model to multiple branching points is straightforward from a modelling standpoint but presents
a more challenging optimisation problem wherein a tree prior on the branching structure may prove
helpful (Simek et al., 2016). This extension would allow us to address the problem of selecting the
correct number of branches in the global cellular branching dynamics.
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MR/M008908/1.

11

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 21, 2017. ; https://doi.org/10.1101/166868doi: bioRxiv preprint 

https://doi.org/10.1101/166868
http://creativecommons.org/licenses/by-nd/4.0/


0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

(a) VAMP5 Spline

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

(b) VAMP5 BGP

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(c) ZYX Spline

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(d) ZYX BGP

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

(e) RPSA Spline

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

(f) RPSA BGP

Figure 9: Hematopoiesis gene expression: contrasting Spline and BGP fits under transitory
gene expression. The global branching time (dashed black vertical line), Spline branching
point mode (blue vertical line) and 98% posterior intervals (magenta vertical span) are also
shown. The cells are marked according to the global allocation estimated by DDRTree.
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Supplementary material

A Introduction

In this appendix, we present in detail the probabilistic model description of the branching Gaussian
process. We derive a lower bound on the model likelihood using variational inference techniques. Lastly
we present present a formulation of a sparse inducing point approximation that allows the application
of the model to large datasets. We also discuss how to calculate the bound in a numerically stable
manner and how to perform prediction on our model.

B Full GP inference

Let Y ∈ RN the data of interest and let Mf the number of functions that are dependent. We specify a

set of latent functions F for each data point of size M × 1 where M = NMf
1. Let Z ∈ {0, 1}N×M the

binary indicator matrix which describes the association of each data point to a latent function. Each
row or Z has only one non-zero entry. The model likelihood is

p (Y |F,Z) = N
(
Y |ZF, σ2I

)
(1)

The extension to multiple independent outputs is straightforward as the likelihood factorizes

p (Y |F,Z) =
D∏

d=1

N
(
Yd|ZFd, σ

2I
)

(2)

where Yd denotes the N × 1 column vector of observations for output d and similarly Fd denotes the
M × 1 column vector of latent function values. We omit the multiple output case from the derivation
below for clarity.

As in Lázaro-Gredilla et al. (2012) we place a categorical prior on the indicator matrix Z and a
GP prior on the latent functions F . Note that the latter does not factorize as in Lázaro-Gredilla et al.
(2012) as we assume the latent functions are dependent.

p (Z) =
N∏

n=1

M∏
m=1

[Π]
[Z]nm
n,m (3)

p (F ) = N (0,K) (4)

where for the multinomial distribution we have
∑M

m=1 [Π]nm = 1 and K the GP kernel2.
The log likelihood is not analytically tractable as it involves integrating out the indicator matrix Z

log p (Y |F ) = log

∫
p (Y,Z|F ) dZ

We proceed to compute a lower bound using Jensen’s inequality

log p (Y |F ) = log

∫
p (Y,Z|F )

q (Z)

q (Z)
dZ

= log

(
Eq(Z)

[
p (Y,Z|F )

q (Z)

])
≥ Eq(Z)

[
log

p (Y, Z|F )

q (Z)

]
= Eq(Z) [log p (Y,Z|F )]− Eq(Z) [log q (Z)]

1This expanded representation allows for for efficient recomputation of the marginal likelihood for different branching
times.

2For simplicity we assume the same kernel for every output and latent trajectory function. Removing this restriction does
not affect the derivation but will increase the inference complexity.
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The last equation is usually presented in terms of a likelihood term and the tractable KL term

log p (Y |F ) ≥ Eq(Z) [log p (Y |F,Z)− log p (Z)]− Eq(Z) [log q (Z)]

= Eq(Z) [log p (Y |F,Z)]− Eq(Z) [log q (Z)− log p (Z)]

= Eq(Z) [log p (Y |F,Z)]−KL [q (Z) ||p (Z)]

where
q (Z,F ) = q (Z) q (F ) (5)

as by mean-field assumption the latent functions F are independent of the association indicators
Z. The log likelihood term is

logN
(
Y |ZF, σ2I

)
= −N

2
log(2π)− N

2
log
(
σ2
)
− 1

2σ2
(Y − ZF )

T
(Y − ZF )

Taking the expectation with respect to the variational distribution q(Z)

Eq(Z)

[
logN

(
Y |ZF, σ2I

)]
= −N

2
log(2π)− N

2
log
(
σ2
)

− 1

2σ2

(
Y TY + FTEq(Z)

[
ZTZ

]
F − 2FTEq(Z) [Z]

T
Y
)

Our selected variational approximation is

q (Z) =
∏
n,m

ΦZn,m
n,m (6)

This encodes the mean-field assumption where we assume the posterior indicators factorize. The
required expectations are

Eq(Z) (Z) = Φ

Eq(Z)

(
ZTZ

)
, A

The second expectation can be derived as follows: let zi the N×1 indicator vector for latent function
i = m. We then have

[Ai,j ] = Eq(Z)

[∑
n

zn,izn,j

]
= Eq(Z)

[∑
n

zn,izn,j

]
(1− δi,j) + Eq(Z)

[∑
n

z2
n,i

]
δi,j

= Eq(Z)

[∑
n

zn,izn,j

]
(1− δi,j) + Eq(Z)

[∑
n

zn,i

]
δi,j

=

[∑
n

Φn,i

]
δi,j

The third step follows from the fact the zn,i is binary and hence z2
n,i = zn,i and we have used the

notation δi,j to denote the delta function which is 1 when i = j and 0 otherwise. In matrix notation
the expectation is

A = diag

[∑
n

Φn,i

]M
i=1


where diag denotes the diagonalisation of a vector and [.]

M
i=1 the construction of an M dimensional

vector.
The KL divergence term is computable as KL [q (Z) ||p (Z)] =

∑
n,m Φn,m log

(
Φn,m

[Π]n,m

)
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Our bound is therefore

log p (Y |F ) ≥ L1

where we have defined

L1 , −N
2

log(2πσ2)−
2σ2

(
Y TY + FTAF − 2FT ΦTY

)
−KL [q (Z) ||p (Z)] (7)

We proceed to integrate out the latent functions F to obtain the variational collapsed bound

log p (Y ) = log

∫
p (Y |F ) p (F ) dF (8)

≥ log

∫
exp [L1] p (F ) dF (9)

This bound holds because L1 is a bound to log p (Y |F ) and the exponent function is monotonic.
More details can be found in King and Lawrence (2006). Substituting (7) into (9)

log

∫
exp [L1] p (F ) dF = −N

2
log(2πσ2)−KL [q (Z) ||p (Z)]−

2σ2
Y TY (10)∫

exp

[
− 1

2σ2

(
FTAF − 2FT ΦTY

)]
p (F ) dF (11)

The prior on the latent function is a GP

log p (F ) = logN (F |0,K)

= −M
2

log (2π)− 1

2
log |K| − 1

2
FTK−1F

Substituting the GP prior in (10)

∫
exp

[
− 1

2σ2

(
FTAF − 2FT ΦTY

)]
p (F ) dF = −M

2
log (2π)− 1

2
log |K|

+

∫
exp

[
−1

2

(
FTAσ−2F − 2σ−2FT ΦTY − FTK−1F

)]
dF

Completing the square in the exponential term for the last term

−1

2

(
FTAσ−2F − 2σ−2FT ΦTY − FK−1F

)
= −1

2
FT
(
Aσ−2 +K−1

)
F + FTσ−2ΦTY

where we have

q (F ) = N (µF ,ΣF ) (12)

ΣF =
(
Aσ−2 +K−1

)−1
(13)

µF =
(
Aσ−2 +K−1

)
σ−2ΦTY

Now recollect expanding the exponent for a multivariate Gaussian

−1

2
(x− µ)

T
Σ−1 (x− µ) = −1

2
xT Σ−1x+ xT Σ−1µ− 1

2
µT Σ−1µ

The last term will therefore appear in the normalisation:

∫
exp

[
−1

2

(
FTAσ−2F − 2σ−2FT ΦTY − FTK−1F

)]
dF =

1

2
log |ΣF |+

1

2
µT
F Σ−1

F µF +
M

2
log (2π)
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The collapsed bound therefore is

L2 ,− N

2
log(2πσ2)− 1

2σ2
Y TY − 1

2
log |K| (14)

− 1

2
log
∣∣Aσ−2 +K−1

∣∣+
1

2
µT
F

(
Aσ−2 +K−1

)−1
µF

−KL [q (Z) ||p (Z)]

Expanding the quadratic term with the mean expression:

L2 ,− N

2
log(2πσ2)− 1

2σ2
Y TY − 1

2
log |K| (15)

− 1

2
log
∣∣Aσ−2 +K−1

∣∣+
1

2
σ−4Y T Φ

(
Aσ−2 +K−1

)−1
ΦTY

−KL [q (Z) ||p (Z)]

This bound should not be computed in practice in this form which can be numerically unstable. A
numerically stable computational approach is described in the next section.

B.1 Numerically stable computation via Cholesky decomposition

Specifically the log determinant and inverse term can be computed in numerically stable manner as:

(
Aσ−2 +K−1

)−1
=
(
Aσ−2 + L−TL−1

)−1
= LL−1

(
Aσ−2 + L−TL−1

)−1
L−TLT

= L
(
LTALσ−2 + I

)−1
LT

The last step follows from the property A−1B−1C−1 = (CBA)
−1

.

L
(
LTALσ−2 + I

)
LT = L

(
LTA1/2A1/2Lσ−2 + I

)−1

LT

= L
(
WWT + I

)
LT = LP−1LT

Let P = RRT

LP−1LT = LR−TR−1LT

= L
(
WWT + I

)
LT

The whole expression can then be composed as a series of Cholesky decompositions.

1

2
σ−4Y T Φ

(
Aσ−2 +K−1

)−1
ΦTY =

1

2
cT c

where c = R−1LT ΦY σ−2.

C Sparse GP

To improve the performance of the Branching GP, we using a sparse inducing point approximation.
This allows the algorithm to scale linearly with the number of training points. The number of inducing
points is specified by the user and determines the trade-off between model accuracy and runtime:
decreasing the number of inducing points will reduce runtime but will increase the approximation
error.

The inducing points are treated as additional variational parameters which are optimised. The
model specification is the same as before:

p (Y |F,Z) = N
(
Y |ZF, σ2I

)
(16)
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We introduce the inducing points u and explicitly specify their conditional relationship to the latent
noise-free data f

p (f |u) = N
(
f |KfuK

−1
uu u,Kff −KfuK

−1
uuKuf

)
(17)

p (u) = N (u|0,Kuu) (18)

We now introduce the sparse GP approximation:

q (f, u, Z) = q (Z) p (f |u) q (u)

This is similar to the mean field approximation for the full model (Equation (5)) but we have
introduced an additional mean-field factorisation q (F ) = p (f |u) q (u).

The derivation proceeds as before with the resulting bound

Ls ,−
N

2
log(2πσ2)− 1

2σ2
Y TY −

1

2
log |P |−

1

2σ2
tr (AKff) (19)

+
1

2
cT c+

1

2σ2
tr
(
AKfuK

−1
uuKuf

)
−KL [q (Z) ||p (Z)]

where the terms in bold are different compared to the full model bound (Equation (15)). In bound
above we have defined

P , I + L−1KufAKfuL
−Tσ−2

Kuu , LLT

c , R−1L−1KufΦTY σ−2

P , RRT

D Prediction

In the full model the predictive posterior a new point f∗ is

p (f∗|y) = p (f |y) p (f∗|f)

The training data posterior p (f |y) is approximated by q (f) . To predict at a single f∗ point we
integrate over the latent functions values at the training data f .

p (f∗|y) =

∫
p (f∗|f) p (f |y) df

≈
∫
p (f∗|f) q (f) df

where p (f∗|f) = N
(
f∗|K∗fK−1

ff f,K∗∗ −K∗fK
−1
ff Kf∗

)
the usual GP predictive density and q (f) =

N (f |µF ,ΣF ) as defined in Equation (13). The latter integral is tractable. Therefore there is no further
approximation required past the original mean-field approximation (Equation (5)).

Similarly for the sparse inducing point approximation

p (f∗|y) =

∫
p (f∗|f, u) p (f, u|y) dfdu

≈
∫
p (f∗|f, u) q (u) p (f |u) dfdu

=

∫
p (f∗|u) q (u) du

18
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