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Abstract  

Many signaling networks involve scaffold proteins that bind multiple kinases in kinase 

cascades.  While scaffolds play a fundamental role in regulating signaling, few hypotheses 

regarding their function have been rigorously examined.  Here, we used dynamical models 

of scaffold signaling to investigate the impact scaffolds have on network behavior.  We 

considered two paradigms of scaffold assembly: as either the nucleation point for assembly 

of discrete multi-subunit proteins (the machine paradigm) or a platform upon which 

kinases independently associate (the ensemble paradigm).  We found that several well-

accepted hypotheses regarding the role of scaffolds in regulating signal response either do 

not hold or depend critically on the assembly paradigm employed.  In addition to providing 

novel insights into the function of scaffold proteins, our work suggests experiments that 

could distinguish between assembly paradigms.   Our findings should also inform attempts 

to target scaffold proteins for therapeutic intervention and the design of scaffolds for 

synthetic biology.  
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Introduction 

Intracellular signaling networks form the basis for cellular adaptation to the environment, and 

kinase cascades are a common motif in these networks, particularly in eukaryotes (1, 2).  

Interestingly, many of these cascades involve a dedicated “scaffold protein,” which often have 

no catalytic activity themselves, but rather serve as a multivalent nucleation point for the 

assembly of signaling complexes (1, 3, 4).  While scaffolds are common, there are clear 

examples of kinase cascades that function without them (1); this has led to a wide array of 

hypotheses regarding the functional role scaffolds play in the cascades in which they are found 

(3, 4).  For instance, many have argued that scaffolds prevent signal amplification, based on the 

intuition that stoichiometric limitations imposed by the scaffold should limit activation of 

downstream species (3, 4).  Others have speculated that scaffolds serve to prevent unwanted 

crosstalk between pathways, by sequestering kinases that are shared by two cascades onto a 

physical platform specific to one of them (5, 6).  Despite the fact that scaffold proteins have been 

the subject of numerous theoretical and experimental studies (7-10), surprisingly few of these 

hypotheses have ever been explored in a rigorous way.  Nonetheless, many of these ideas 

(particularly the concept that scaffolds limit or prevent signal amplification) have become widely 

accepted within the field (3, 4). 

There are, of course, exceptions to the above statement, and one of the most prominent of 

these is combinatorial inhibition, a phenomenon similar to the prozone effect observed in 

immune response, in which excess scaffold concentration inhibits response to signal (9).  The 

capacity for scaffold proteins to induce this effect was first explored computationally by 

Levchenko and co-workers (9) and was later confirmed experimentally in the yeast pheromone 

signaling network, which involves one of the most well-characterized MAP kinase cascades 

organized on the scaffold protein Ste5 (11, 12).  Another computational study indicated that 

scaffolds are capable of preventing signal attenuation in kinase cascades that exhibit strong 

phosphatase activity (8).  In particular, Locasale et al. found that increasing the binding affinity 
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between kinases and the scaffold correspondingly increases the probability of activation events, 

since kinases are more likely to be located near one another on a scaffold.  While this could 

represent one function of scaffold proteins, the authors modeled substrate activation/deactivation 

using instantaneous collision events, and so it is unclear how phenomena such as direct substrate 

binding by kinases, or enzyme saturation, might influence their results (8).  Optimal binding to 

the scaffold and the effect of scaffold-enzyme association on the rate of catalysis have also been 

explored computationally in the context of scaffold-based cascades (13).  Regardless, many 

prevailing hypotheses regarding scaffold function have yet to be investigated in detail (3). 

One barrier to developing a general understanding of scaffold function is the fact that it is 

currently unclear exactly how kinases assemble onto the scaffold.  Most representations of 

scaffold-based cascades in the literature summarize the relevant interactions by drawing all the 

kinases simultaneously bound to the scaffold (14).  This is evocative of the orderly assembly of a 

machine-like “signalosome” with a well-defined composition and quaternary structure.  Existing 

computational models of scaffold assembly, however, usually assume that binding to the scaffold 

is independent; in other words, the binding of one kinase to the scaffold does not influence the 

binding probability of other kinases (15, 16).  One consequence of independent binding, however, 

is combinatorial complexity: as the number of binding partners of the scaffold grows (call this 

number “N”), the number of possible distinct molecular species increases as 2N.  We recently 

showed that, given scaffold dimerization and the many phosphorylation states of the kinases 

themselves, the interactions involving the Ste5 scaffold in the yeast pheromone network can 

generate over 3 billion distinct biochemical species (14).  If binding is (largely) independent, we 

found that the common representation of a fully assembled scaffold complex actually never 

forms during simulations of signaling dynamics; instead, signaling tends to proceed via a 

heterogeneous ensemble of protein complexes (14, 17).  Formation of a more machine-like 

structure with all of the relevant proteins simultaneously bound to the scaffold requires specific 

hierarchical assembly constraints (14). 
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There is currently little experimental evidence regarding whether any given scaffold 

protein nucleates the formation of ensembles or machines in vivo.  Interestingly, in our 

simulations of the pheromone network we found that machines and ensembles can exhibit very 

different behaviors; for instance, the classical result of combinatorial inhibition is only possible 

in ensemble-like signaling, at least in the Ste5 cascade (12, 14).  This is similar to the reduction 

in combinatorial inhibition that had been observed with increasing cooperativity between the 

effectors that bind the scaffold (13).  In this work, we constructed a series of computational 

models in order to systematically understand how scaffold-based cascades differ from cascades 

where there is no scaffold, and how ensemble-like signaling differs from signaling through 

machine-like structures.  Our investigation of these models revealed that a number of seemingly 

intuitive and well-accepted ideas about scaffold function do not necessarily hold.  For instance, 

while ensembles tend to have slightly less amplification than cascades without a scaffold, they 

can still amplify signals by over 100-fold, depending on the strength of the input signal.  

Machine-like assembly results in amplification equivalent to, or even greater than, that observed 

in solution cascades, implying that the existence of a scaffold within a cascade is by no means a 

guarantee that signal amplification will not occur.  Scaffolds also do not necessarily prevent 

crosstalk: in ensemble models, we found that crosstalk is reduced, but not eliminated, when two 

cascades share a kinase but have distinct scaffolds.  While machine-like scaffolds can prevent 

one cascade from inadvertently activating another, we found that activation of one pathway can 

actually decrease the activity of another in this model, indicating a potential for crosstalk even in 

that case. 

These results underscore one of our key findings: in many cases, the assembly 

mechanism employed by the scaffold matters more than the presence of the scaffold itself.  This 

implies that characterizing the assembly pathway is necessary for understanding the functional 

role of a scaffold within a signaling network.  Since experimental work has generally not 

explored this aspect of scaffold dynamics, this is clearly an important area for future 
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investigation.  Our results also imply that many scaffold functions are mutually exclusive 

between paradigms, which could help to constrain hypotheses on scaffold function.  As 

mentioned above, overexpressing the scaffold Ste5 in yeast results in significant combinatorial 

inhibition, which implies at least some ensemble-like character in Ste5 signaling (12).  One 

component of the Ste5 cascade is the MAPKK Ste11, which is shared between the Ste5-based 

pheromone cascade and the High Osmolarity Glycerol (HOG) pathway in yeast, which is based 

on a different scaffold Pbs2.   One of the main hypotheses regarding Ste5 function is the 

prevention of crosstalk between these two pathways (5); since ensemble-like scaffolds cannot 

prevent crosstalk, however, that is unlikely to be Ste5’s role in the network. 

While more work is clearly necessary to fully characterize specific scaffolds’ assembly 

pathways and functions, the above highlights how the systematic modeling approach taken in 

this work can inform our interpretation of experimental data.  In addition to suggesting 

experiments that could help constrain scaffold assembly mechanisms and function, our findings 

also have important implications for synthetic biology (3, 7) and the development of cancer 

therapies involving dysregulation of signaling cascades involving scaffold proteins, such as the 

Ras-Raf-MEK-ERK network (18).  Further investigation of the assembly of scaffold-based 

signaling complexes will likely prove key to our attempts to understand and modify signaling 

systems within cells. 

Materials and Methods 

We performed stochastic simulations as well as causality analysis using KaSim and the Kappa 

rule-based modeling language, and we employed the BioNetGen software package for 

deterministic simulations (19-21).  Stochastic simulations were run until reaching an empirically 

determined steady-state or 105 seconds in simulation-time, due to the computationally intensive 

nature of exact agent-based Doob-Gillespie numerical simulations (22).  Both xmgrace (2D 

plots) and matplotlib in Python (3D plots with linear interpolation) were used for data 
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visualization, and custom analytical tools were developed in Python (available upon request). 

Results 

Model construction 

As a brief recap of the ensemble and machine signaling paradigms (described in ref. (14)), in our 

model of ensemble-based signaling, signal transduction events depend purely on local 

interactions; kinases bind the scaffold independently of one another, and a fully assembled 

scaffold complex need not be formed for the signal to propagate (Fig. 1A, black and red lines) 

(14, 23).  In contrast to ensemble-like signaling, proteins associate with the scaffold in a 

particular order in our machine-like signaling models, so that the possible binding reactions are 

driven by the global state of the complex.  In this paradigm, signaling machines are constructed 

in a hierarchical manner (Fig. 1A, red lines), ultimately forming a multi-subunit enzyme that 

activates downstream components (e.g. transcription factors) only when fully formed (14).  

Finally, the solution model operates as a set of independent kinases that directly bind and 

phosphorylate the next protein in the cascade (24). 

The most fundamental aspect of these models’ construction is the implementation of the 

scaffold-kinase binding rules.  For all scaffold-based models, we required that signal 

transduction occurs via scaffold-bound signaling species, compared to prior theoretical 

investigations in which the signal could propagate regardless of whether the kinases were bound 

to the scaffold (8, 13).  Our models’ scaffold proteins are based on those found in the yeast 

pheromone MAPK network (25), and thus activation of any kinase in the MAPK cascade cannot 

occur in the absence of scaffold proteins.  Furthermore, since the simulations take place in a 

well-mixed environment (22), our analyses are solely concerned with how the multivalent nature 

of scaffolds as adaptor proteins influence the dynamics of signaling and not with any spatial 

effects that scaffolds might have.   
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Stimulation of both ensemble- and machine-like cascades takes place via a signaling 

agent that enzymatically activates the first of a series of N kinases.  The strength of activation is 

determined by modifying the catalytic rate of the first kinase’s phosphatase; signal strength is 

measured as the ratio of the maximum velocities of this first “stimulation” agent and the 

phosphatase that acts on the first kinase in the cascade (see the Supplement for further details) 

(26).  Each subsequent kinase, which also has a corresponding phosphatase to prevent undue 

cascade saturation (24), binds the scaffold and propagates signal according to paradigm-specific 

rules.  Our ensemble-like signaling models require only that an active kinase and its substrate are 

simultaneously bound to the scaffold for phosphorylation to occur; machine-like signaling 

requires that all upstream association and phosphorylation events have also occurred (Fig. 1A).  

The steady-state concentration of activated final kinase (KF
*) is considered the output of the 

cascade, consistent with previous theoretical studies (8, 9).  Previous models of scaffold-based 

signaling have considered how phosphatase-based dephosphorylation of scaffold-bound kinases 

is implemented, and found that, in many cases, changes in qualitative signaling behavior are 

minimal (8, 9). Due to a lack of evidence to the contrary, we therefore assume that phosphatases 

may operate on scaffold-bound kinases with the same activity and parameters as freely diffusing 

(i.e. unbound) kinases. 

In addition to our two scaffold-based signaling paradigms, we implemented a scaffoldless 

or solution model to serve as a control.  This multi-stage cascade is based on the covalent 

modification cycle that was first mathematically characterized by Goldbeter & Koshland over 30 

years ago (Fig. 1B) (24, 26). Importantly, we modified the typical representation of this process 

to allow phosphatase-mediated deactivation of substrate-bound kinases.  This change reflects the 

ability of phosphatases in the machine and ensemble paradigms to dephosphorylate scaffold-

bound kinases, and thus serves as an additional measure of control for the two scaffold-based 

models.  We label this type of model noncompetitive since substrate and phosphatase can 

simultaneously bind an active kinase (Fig. 1C, top).  This has the interesting impact of causing 
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the first phosphorylation cycle, or Goldbeter-Koshland (GK) loop, in the cascade to have the 

properties of an isolated GK loop since there is no sequestration of the modified substrate (i.e. 

the second kinase) in the subsequent GK loop’s kinase-substrate complex (the competitive 

model; Fig. 1C, bottom).  Said another way, the phosphatase of the initial loop may bind the 

kinase-substrate complex of the second loop and thus has access to the entire pool of active 

second kinase. 

The kinetic parameters for these models were chosen based on the parameters from our 

previous model of the yeast pheromone signaling pathway (14).  For simplicity’s sake, kinase 

copy numbers are identical to one another except for the final kinase, which is at a copy number 

that is 10-fold larger than all other kinases, and interactions between specific protein types (e.g. 

kinase-scaffold or phosphatase-kinase) have identical kinetics.  Since the initial rate parameters 

we chose resulted in enzymes that were universally unsaturated (i.e. substrates were always at 

low concentrations compared to the KM’s of their kinases and phosphatases), we constructed a 

second set of parameters to consider the influence of enzyme saturation. In these saturated 

models, the KM of any arbitrary kinase-substrate pair was at least 2 orders of magnitude smaller 

than the substrate concentration (Table 1).  Our results focus mainly on the models acting in the 

unsaturated parameter regime, since the noncompetitive nature of the phosphatases induces a 

strong switch-like behavior in the saturated cascades across all three signaling paradigms (see 

Supplement). 

Steady state dose-response trends 

The first step in characterizing these signaling paradigms was to generate sets of dose-response 

data while varying key aspects of the cascade, namely the phosphatase copy number and the 

number of distinct kinase types in the cascade (equivalent to the number of kinase binding sites 

on the scaffold, which we refer to as the cascade’s depth; Fig. 2A).  The resultant dose-response 

trends were universally sigmoidal in shape, and so we characterized the behavior of each model 
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by fitting the response data to a Hill function: 

[1] 

We can thus describe the steady state response properties of each model in terms of the Hill 

function’s parameters: maximum response (Rmax), sensitivity to signal (S50; the signal producing 

a half-maximal response), and response ultrasensitivity (n; the sharpness of the switch from 

minimum to maximum response).  A representative data set is shown in Fig. 2B with the Rmax 

and S50 parameters obtained from the fit indicated.  In general, our analyses refer mainly to 

models with 100 phosphatases for each kinase, so that there is a 1:10 ratio of phosphatases to 

kinases (except with the final kinase in the cascade where there is a 1:100 ratio) unless otherwise 

noted.  This allows for stronger signal throughput as compared to models with higher 

phosphatase to kinase ratios. 

The Hill parameter governing maximal response, Rmax, is nearly identical between 

machine and solution models when both are in the same parameter regime (Fig. 2A).  For these 

two paradigms, over 90% of final kinase pool is active at steady state when stimulated with a 

strong activating signal, regardless of whether the kinases in the cascade are unsaturated or 

saturated.  On the other hand, the unsaturated ensemble models exhibit a much lower maximum 

response, with about 40% activation of the final kinase concentration even at very high levels of 

cascade stimulation.  This indicates that the maximum response of a network is much more 

dependent on the rules governing the protein interactions than the presence of a scaffold protein, 

a trend that is consistent throughout this work.  In other words, it is not the mere presence of the 

scaffold itself, but rather how the scaffold-based signaling complex assembles that ultimately 

determines Rmax. 

Prior theoretical studies have shown that increasing the depth of a scaffoldless cascade 

increases the sensitivity to signal (i.e. decreases S50) (24, 26). Our results support this claim (Fig. 

3A), despite operating in a different parameter regime.  Similar to the maximal response trends 
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described above, addition of a scaffold protein alters the quantitative response in a paradigm-

dependent manner.  The ensemble models exhibit increased sensitivity to signal as a function of 

cascade depth, but the increase is shallower than the increase observed for solution models.  The 

increase in sensitivity with cascade depth for the machine models, on the other hand, is much 

sharper, further highlighting the fact that the knowledge of the binding mechanisms between 

kinases and scaffold proteins is central to understanding how scaffolds perturb the response to 

incoming signals.  As a side note, the sensitivity of saturated scaffold-based simulations is 

essentially invariant with respect to cascade depth when the phosphatase-to-kinase ratio is 1:10 

(see Supplement).   

This increase in sensitivity to signal with cascade depth directly impacts another posited 

role in signaling dynamics for scaffolds, which is a mechanism for prevention of signal 

amplification (3, 4, 8).  Specifically, the hypothesis is that scaffold proteins might limit signal 

amplification due to stoichiometric constraints on the assembly of relevant signaling species.  In 

order to examine this systematically in our three signaling paradigms, we defined signal 

amplification similarly to Locasale, et al. as the ratio of the final kinase’s activity to the first 

kinase’s activity: KF
* / K1

*.  Our results reveal that all signaling paradigms exhibit some degree 

of signal amplification at moderately low levels of signal (Fig. 3B, Supplement).  The reason for 

this, as alluded to above, results from the increased sensitivity corresponding to increased 

cascade depth (Fig. 3A).  As the depth of a cascade increases the relatively low signal levels that 

activate only a small portion of the K1 pool (which behaves as a substrate within an isolated GK 

loop in all three signaling paradigms) may subsequently activate all final kinase molecules (3, 4, 

8). 

Additionally, the presence of modified scaffold proteins in a signaling network has been 

shown to modify the steepness of the dose-response curve (7).  As a result, we expect that 

differences in scaffold implementation could impact the steepness or ultrasensitivity of the dose-

response curve as characterized by the Hill coefficient, n.  Our models show reduced 
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ultrasensitivity for the ensemble and machine paradigms as compared to the solution paradigm in 

the unsaturated, low phosphatase parameter regime (Fig. 3C).  Quantitatively, the saturated 

cascades have a much larger n relative to the unsaturated cascades (as might be expected from 

prior analyses of GK loops (24, 26)).  It is important to note that our simulated data sets lack the 

signal-space resolution for accurate characterization of the Hill coefficient, n, for saturated 

models, since they are all extremely ultrasensitive compared to the unsaturated models.  Further 

simulations would need to be performed to thoroughly characterize the extreme ultrasensitivity 

of the saturated models, and this computationally expensive task is outside the scope of this 

study.  Nonetheless, previous hypotheses regarding scaffold-induced dose-response linearization 

are supported by our findings for both the machine and ensemble models in the unsaturated 

regime. 

Speed and reliability of response 

In addition to steady state dose-response behavior, other properties of signaling networks could 

easily contribute to their function and evolution.  One such property is the speed at which cells 

are able to respond to some environmental stimulus.  We explored the influence that scaffold 

proteins have on the speed of response by calculating the time it takes for a simulation to reach a 

response greater than half of that observed at steady state (T50).  We calculated this value at two 

signaling strengths: the signal nearest that required to reach half-maximal response (S50) and the 

signal resulting in maximal response (Smax).  In the unsaturated models, T50 increases 

monotonically with cascade depth for all three signaling paradigms at both Smax and S50 (Figs. 4A 

and 4B).  However, the machine model consistently takes longer to respond, likely due to the 

time required to successfully assemble discrete signaling machines on the scaffold.  In fact, the 

machine model does not reach T50 for nearly one day of simulated time for signal values nearest 

S50 (Fig. 4A).  Note that the association rates employed here (>105 M-1 s-1 assuming a volume 

similar to that of a yeast cell, Table 1) represent fairly fast binding kinetics for proteins, so the 

relatively slow response in this case is not due to unrealistically slow kinetic rates.  On the other 
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hand, there is negligible difference between the ensemble and solution model response times at 

both signal values (with the exception of the two-kinase cascades).  As observed above, the 

influence of a scaffold on signaling dynamics in this case is highly dependent on the nature of 

the binding rules themselves. 

In addition to providing a timely response, some signaling networks must reliably 

respond to signals on the single-cell level (e.g. gradient tracking for chemotaxis or shmoo 

formation in yeast) (27).  Reduction of biochemical noise may thus be a key property of 

signaling cascades, and we posit that scaffold proteins could play a role in controlling 

fluctuations.  To test this possibility, we examined the variability in response (as measured by the 

coefficient of variation) for simulations with signal values nearest to their respective S50 values 

and found that scaffolds strongly reduce intrinsic noise for intermediate response values (i.e. the 

steepest region of the dose-response curve), especially for relatively deep cascades (Fig. 4C).  

This makes intuitive sense in the case of the machine model: by constructing a discrete 

multimeric enzyme (signaling machine) instead of relying on a series of GK loops to activate the 

final kinase in a cascade, the machine model exhibits less variability in active kinase numbers 

during signal transduction, thus limiting noise.  Perhaps more interesting, however, is the fact 

that the ensemble models also significantly reduce noise levels, which is particularly striking 

when considering that the ensemble models are sufficiently combinatorially complex to generate 

nearly an order of magnitude more signaling species than the machine and solution models in 

deeper cascades (Supplement).  These results indicate that scaffold proteins provide a 

mechanism for reducing fluctuations regardless of how they assemble, damping the noise that 

can arise from the strong response amplification present in cascades that do not utilize a scaffold.  

Effects of scaffold number variation 

The results described above were all produced with a stoichiometric ratio of scaffold proteins to 

kinases for kinases 1 through N – 1 (where N is the cascade depth).  It has been shown repeatedly 
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that variations in scaffold concentration can have strong and sometimes nonintuitive effects on 

network response.  A common example is the prozone effect, or combinatorial inhibition (9, 12).  

We therefore examined our models in the context of scaffold copy number, varying this quantity 

by over two orders of magnitude.   

As previously studied in a model of the yeast pheromone MAPK network, machine-based 

signaling does not exhibit the experimentally-verified effect of combinatorial inhibition (14). 

Instead, the machine model exhibits an upper limit on Rmax that is realized near stoichiometric 

copy numbers and Rmax does not decrease as the concentration of scaffold increases (Fig. 5A, 

right).  This is similar to previous results where increasing cooperativity between the scaffold’s 

binding partners results in a decrease in combinatorial inhibition (13).  The ensemble models, 

however, do exhibit combinatorial inhibition, with peak Rmax near stoichiometric scaffold 

concentration that drops sharply at higher scaffold concentration (Fig. 5A, left).  This decrease 

becomes more pronounced as the cascade depth becomes larger: as the valency of the scaffold 

increases, so does the combinatorial complexity of the system, and thus the influence of 

combinatorial inhibition is larger.   

We also observed that both assembly paradigms are less sensitive to signal (i.e. their S50 

increases) when the scaffold copy number is decreased for a cascade depth of 3 (Figure S6).  

This is consistent with experimental findings for the KSR1 scaffold involved in the mammalian 

Ras-Raf-MEK-ERK MAPK cascade (28).  Increasing scaffold number results in increased 

sensitivity to signal up to some saturating maximal sensitivity in both models.  The maximum 

sensitivity observed in machine models is due to the fact that, once the scaffold reaches the same 

copy number as the kinases in the cascade, additional scaffold molecules do not bind kinases and 

thus have a minimal effect on steady-state response (Fig. 5A, right).  The saturation in sensitivity 

for the ensemble models occurs because, at high scaffold concentrations, combinatorial 

inhibition essentially prevents any response at all (see Supplement).  We found that varying 

scaffold numbers in the machine and ensemble signaling paradigm has little noticeable effect on 
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ultrasensitivity or the noise in response (see Supplement).  

Another signaling property that shows a clear scaffold-dependent trend is the variation of 

T50 with scaffold concentration.  In the machine models, increased scaffold numbers universally 

decrease the measured T50 over the explored range of cascade depths until reaching a limit 

between 5000-10000 scaffold proteins (Fig. 5B, right).  This occurs because higher scaffold 

concentrations raise the probability of initiating machine assembly, increasing the frequency of 

association between the scaffold and the first kinase in the cascade.  This phenomenon is also 

present in the 2-kinase ensemble model, possibly due to the fact that the model essentially builds 

a 2-subunit signaling machine (though the reduced Rmax resulting from combinatorial inhibition 

may also contribute to lower T50 values; Fig. 5B, left).  For deeper ensemble cascades, increasing 

the scaffold copy number raises the T50 as does the presence of combinatorial inhibition: as 

scaffold numbers grow, the time it takes to propagate signal also grows due to sequestration of 

signaling components on different scaffold molecules.   

Crosstalk 

The ubiquity of crosstalk between signaling pathways (defined as one pathway’s signaling 

components influencing another pathway’s activity) in eukaryotic organisms is uncontested (29, 

30), and it is currently unclear how any degree of specificity is maintained in the face of this 

abundant crosstalk (6, 31).  One supposition is that scaffold proteins act as some sort of 

intracellular circuit board, directing signal transduction towards specific outputs for any given 

input (3).  It is likely that the assembly paradigm will influence the efficacy of crosstalk 

prevention in signaling cascades: in the absence of some sort of well-defined signaling complex 

(i.e. machine), it is unclear how scaffolds could prevent cross-pathway activation.  To examine 

this, we adapted our three model types to include two pathways, each with a scaffold (except the 

solution model) and a shared kinase, in this case, the second in a 4-kinase cascade, K2 (Fig. 6A).  

Motivating this analysis is the existence of parallel MAPK networks in yeast that involve distinct 
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scaffold proteins (Ste5 in the pheromone signaling network and Pbs2 in the osmolarity response 

pathway) but share an upstream kinase (Ste11) that binds to both scaffolds (1).   

Initially, we examined the effects for a scenario with a maximally activated pathway A 

(SA = 105 in the ensemble and solution models and SA = 102 in the machine models), combined 

with a minimally activated pathway B (SB = 10-5 in the ensemble and solution models and SB = 

10-8 in the machine models).  We found that the solution model exhibited equal response from 

both pathways, despite stimulating only one (Fig. 6B, bottom).  This is intuitive when 

considering that the 3rd kinase, K3, in each pathway competes equally for the pool of active 

shared K2.  Similarly, an active K2 in the ensemble model may bind either scaffold A or scaffold 

B if it dissociates from pathway A’s scaffold.  Despite this fact, pathway A maintains a higher 

steady-state response than pathway B in this scenario (Fig. 6B, top).  This is likely due to the 

additional biochemical events necessary for K2 to activate pathway B.  Upon its activation, the 

shared kinase can immediately phosphorylate the 3rd kinase in pathway A, assuming K3,A is 

already present on pathway A’s scaffold protein.  Activation of K3,B requires an additional 

dissociation event (as mentioned above) and an association event (K2 binding pathway B’s 

scaffold), presumably resulting in a lower absolute response.  This can be visualized via causality 

analysis tools present in the KaSim software package (see Supplement) (20, 32).  Finally, no 

inappropriate cross-pathway activation exists in the machine model in this scenario (Fig. 6B, 

middle) since assembly of the signaling machine requires that pathway B’s first kinase is active, 

which occurs very infrequently due to the low external activation of pathway B.  In both the 

ensemble and machine models, increasing the signal input to pathway B eventually causes it to 

respond at levels similar to those of pathway A (Fig. 6B). 

The machine model is thus the only signaling paradigm we examined that prevents one 

pathway from activating a second pathway where the second has no (or minimal) signaling input.  

However, an alternative form of crosstalk still arises in the machine paradigm and can be 

observed in Fig. 6B.  In the case of our initial crosstalk models, the shared kinase is the limiting 
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factor in signal transduction (i.e. the component with the smallest copy number) since its per-

pathway concentration is halved.  Competition for this kinase alters signal throughput, albeit in a 

different way than inappropriate activation of another pathway’s output.  In this case, the activity 

of one pathway is reduced when its components are recruited to another active pathway, and the 

output of pathway A actually decreases as pathway B becomes fully active (Fig. 6B, middle).  

To better characterize this phenomenon, we calculated the difference in KF,A
* between two cases: 

case 1, where pathway A is maximally active and pathway B is inactive, and case 2, where both 

pathways are maximally active.   We represent the difference between case 1 and 2 as ∆KF,A
*.  

Due to the sequestration of the shared kinase, the machine model with a K2 concentration of 500 

molecules (i.e. half the concentration of the scaffold) has a ∆KF,A
* > 1000, indicating that full 

activation of pathway B can reduce the total pool of active KF,A by 10% (Fig. 6C).  As one would 

expect, this drop in response output is mitigated with an increase in K2 concentration: doubling 

the K2 concentration relative to the scaffold (i.e. K2  = 2000) results in essentially identical 

response from the first pathway regardless of the second pathway’s level of stimulation.   Thus, 

even if separate scaffolds nucleate formation of a machine-like signaling complex in two 

pathways, establishing true independence between those pathways requires detailed knowledge 

of the relative concentrations of the scaffold and any kinase that is shared between them.  

Interestingly, limiting K2 concentrations do not generate similar behaviors in the ensemble 

models (Fig. 6C), likely due to the fact that the shared kinase is not sequestered in an assembled 

(or assembling) signaling complex.  

Discussion 

Our results clearly indicate that the dynamical features of a signaling cascade can be drastically 

influenced not just by the presence of a scaffold protein, but also how the kinases in that cascade 

assemble onto the scaffold itself.  These findings are summarized in Fig. 7.  Strikingly, we found 

that only two of the response characteristics we considered were similar between the ensemble 

and machine signaling paradigms.  The most notable of these was the fact that presence of a 
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scaffold protein in the cascade universally reduces noise and variability in molecular responses.  

Suppression of noise would clearly be advantageous in cases where individual cells must gather 

accurate information about their environment, such as determining if a potential mating partner is 

present (7, 14, 27, 33).  This is likely related to the fact that scaffolds also generally linearize 

dose-response behavior, preventing the massive increase in ultrasensitivity that generally occurs 

as kinase cascades become deeper (24, 26). 

The majority of the dynamic features we considered, however, showed strong 

dependence on how the kinases actually assemble onto the scaffold itself (Fig. 7).   Machine-like 

structures generate higher absolute levels of output than ensembles, but require much longer 

times to achieve those responses, especially when signals are near the half-maximal level.  

Ensembles, on the other hand, can exhibit high degrees of combinatorial inhibition if scaffold 

concentrations are not tightly maintained near stoichiometric concentrations.  The two assembly 

paradigms also have very distinct behaviors in terms of how they handle components that are 

shared between multiple pathways.  The machine model exhibits complete insulation from 

inappropriate activation by other pathways with shared downstream components, while the 

ensemble model does not.   However, our models predict that scaffold proteins will reduce cross-

pathway activation even in the ensemble case, improving signaling specificity relative to 

cascades that have no scaffold at all.  These specific predictions can be used to inform 

experiments in the yeast MAPK network, upon which our models are based.  In particular, the 

shared kinase Ste11 binds to scaffolds in both the pheromone response pathway (Ste5) and the 

high osmolarity response pathway (Pbs2).  From the results seen in Figure 6, maximal activation 

of both pathways should not affect the relative pheromone response as compared to the response 

given maximal activation of the pheromone pathway with no activity in the high osmolarity 

pathway, regardless of the quantity of Ste11 in the system if the Ste5 scaffold binds its effectors 

independently.  This should be relatively easy to test experimentally, requiring only a mechanism 

to vary the expression of Ste11 and a reliable means to independently stimulate the two pathways.  
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In general, these observations suggest that various assembly paradigms could play 

strikingly different evolutionary roles (3).  The nature of the signaling machine’s complex 

structure and hierarchical assembly is reminiscent of highly-conserved multi-subunit proteins 

like the ribosome (34).  In this paradigm, the lack of combinatorial inhibition and decreased 

signaling time with increases in scaffold concentration indicate a resistance to fluctuations in 

protein concentration, which might arise due to the inherent noise in gene expression or from 

other, possibly “extrinsic,” sources (35).  These traits couple well with scaffold-specific, but 

paradigm-independent, properties, such as reduced dose-response ultrasensitivity and noise in 

response (Figs. 3, 4).  Scaffold complexes that assemble like machines can thus provide finely 

tuned and phenotypically robust behaviors.  However, this type of multi-subunit protein might be 

difficult to evolve in comparison to the ensemble paradigm, since the scaffold would need to 

evolve extensive allosteric communication among its subunits in order to enforce hierarchical 

assembly (e.g., the fact that kinase i will not bind the scaffold until kinase i - 1 is already present 

in the complex, Fig. 1).  Adding a new kinase to the cascade, or generating an entire signaling 

machine de novo, would thus likely require a rather lengthy process of evolving those constraints.  

In contrast, adding a new kinase to the ensemble model simply involves adding the relevant 

binding domain somewhere in the scaffold.  Interestingly, extensive experimental work has 

shown that Ste5, the prototypical MAPK scaffold, can easily accommodate this kind of novel 

interaction, often generating highly functional dynamics just by adding new interactions or 

shuffling existing ones (7, 36, 37).  Ensembles thus exhibit a much higher degree of functional 

plasticity, generating weak regulatory linkage among signaling components and enabling the 

rapid evolution of new phenotypes (38). Weak linkage, coupled with other ensemble-specific 

features (e.g. noise suppression, fast responses to signal) could provide strong fitness advantages 

in rapidly changing environments.  In essence, scaffold proteins in the ensemble paradigm 

facilitate the evolution of additional cellular functionality (e.g. “rewiring” signaling pathways) 

whereas scaffold proteins in the machine paradigm better conserve existing cellular functions 

(e.g. reliably constructing ribosomes) (38).   
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While our findings indicate that the specific mechanisms of scaffold complex assembly 

are important for the function and evolution of signaling networks, little is known empirically 

about the process itself in living cells.  Since Ste5 exhibits combinatorial inhibition, and is quite 

tolerant to the addition of new interactions or the permutation of existing ones, it is fairly likely 

that Ste5 signaling exhibits at least some ensemble-like properties (7, 14, 36, 37).  While there is 

some recent work examining the assembly of other multivalent scaffolds in vitro (39), the 

generality of the ensemble paradigm is currently unclear.  Our work suggests that several 

relatively simple experiments could be helpful in establishing whether or not a particular scaffold 

assembles as a machine or an ensemble.  For instance, varying scaffold concentrations by under- 

and over-expressing the protein and measuring the variation in response speed and steady-state 

response level could provide at least some preliminary indication of the assembly pathway 

involved (e.g. Fig. 5).  Mutations aimed at disrupting allosteric communication among subunits 

(e.g. by replacing wild-type interaction domains with novel ones) could also be helpful in 

assaying the assembly paradigm employed by any given scaffold.   

Scaffold proteins have been recognized both as important drug targets (such as the 

Kinase Suppressor of Ras (KSR) in the MAPK/ERK cascade) and as key components in the 

design of synthetic or biologically-inspired signaling systems (3).  Our work indicates that any 

attempt to rationally control the behavior of a scaffold-based signaling cascade, either through 

small molecules or through engineered mutations, must consider how the complexes themselves 

are assembled.  Experimentally characterizing these assembly processes for a wide range of 

scaffold proteins thus represents a key unmet challenge in systems and synthetic biology.  
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Table 1 

 

Parameters used in our simulations.  Note that all possible parameter combinations were not 

necessarily explored in this work.  The stochastic simulation algorithm we used requires 

parameters to be in units relative to the number of molecules in the system (e.g. molecule-1 s-1 

instead of M-1 s-1).  In the case of association constants, conversion to units of concentration 

requires multiplication by a volume and Avogadro’s number.  For example, given a yeast cell 

with a volume of 40 fL, the unsaturated kon of 10-5 molecule-1 s-1 is approximately 2 x 105 M-1 s-1.  

We vary kon (the denominator of the Michaelis constant) to control the saturation of the kinases, 

rather than saturating the kinases by increasing the copy number of the substrates.  This allows 

us to simulate a saturated condition without increasing copy numbers, which could alter the noise 

properties of the system.  Note that increasing the stochastic kon corresponds to increasing 

substrate concentration by simulating the same number of molecules in a smaller effective 

volume.  Abbreviations: Ensemble (e), Machine (m), Solution (s), Depth in cascade (i), 

Michaelis constant (KM). 
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Figure 1 

 

Figure 1. Schematics of key interaction types in scaffold-dependent signaling paradigms 

(A) Signaling components, e.g. kinases (small, variously colored), bind to a scaffold (large, 

green) in order to propagate signal.  Components may either bind independently of the scaffold’s 

binding state (black and red lines) or hierarchically (red lines), representing the ensemble 
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signaling paradigm and machine signaling paradigm, respectively. (14, 23) Note that only in the 

machine signaling paradigm is the right-most complex required; ensemble signaling requires 

only neighboring components to be simultaneously scaffold-bound for signal propagation. (B) A 

multi-step kinase cascade based on Goldbeter and Koshland’s covalent modification cycle (26). 

Here, some kinase (Ki) activates the next kinase in the cascade (Ki+1 → Ki+1
*) and its associated 

phosphatase (Pi) similarly deactivates it (Ki
* → Ki).  The amount of active final kinase (KF

*) is 

considered the output of the cascade.  In cascades with scaffold proteins, the general mechanism 

remains the same, though the kinases actively engaged in the activation step must be bound to 

the scaffold. (C) Traditional enzyme kinetics involves competition in binding between a kinase’s 

phosphatase and substrate (competitive binding, bottom).  However, since the machine and 

ensemble signaling paradigms allow phosphatases to bind and dephosphorylate kinases both on 

and off the scaffold, we implemented noncompetitive binding behavior (top) in the solution 

model as a more relevant control.  Kinases in the solution models may therefore bind a substrate 

and phosphatase simultaneously.  
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Figure 2 

Figure 2. Dose-response dynamics for the different signaling paradigms. (A) Dose-response 

surfaces for unsaturated, low phosphatase simulations of the three signaling paradigms.  Depth 

describes the number of stages in the multi-kinase cascade, S is signal strength, and KF* is the 

number of active final kinases, which we consider to be the output.  We used simple linear 

interpolation to smooth these surfaces.  (B) A representative data set from ensemble model 

simulations (10 replications, with 95% confidence intervals about the mean) for a depth of 4 

kinases (4K) and a 1:10 phosphatase to kinase ratio (100P).  The x- and y-axes (S and KF*, 

respectively) are as in (A).  The solid line is the 3-parameter Hill function fit, where Rmax = 3067 

(dotted line), S50 = 0.00717 (dashed line), and n = 0.991; all parameters are statistically 

significant (p < 10-16). 
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Figure 3 

 

Figure 3.  Scaffolding generates both general and paradigm-specific behaviors (A) 

Examining sensitivity to signal (y-axis) given the depth of the cascade (x-axis) for both high 
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(dashed lines, Pi > 1 = 1000) and low (solid lines, Pi > 1 = 100) phosphatase activity reveals that 

lower phosphatase activity, as well as increased cascade depth, leads to increased sensitivity.  

Notably, for cascades with depth ≥ 3, machine-based signaling generally exhibits increased 

sensitivity to signal compared to ensemble and solution based signaling regardless of the level of 

phosphatase activity.  (B) Signal amplification, defined as the ratio of first to last kinase activity 

in a cascade (KF
* / K1

*), occurs in all signaling paradigms.  The data shown here are taken from 

models with depth = 4.  The underlying cause is a shift in signal sensitivity with cascade depth 

(A), which induces this amplification at moderately low signal levels. (C) Scaffolding decreases 

the ultrasensitivity of the response in unsaturated models with low phosphatase activity.  Despite 

the stark difference in scaffold protein assembly in the ensemble and machine paradigms, the 

scaffold has a similar “linearizing” effect relative to the solution paradigm.   
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Figure 4 

 

Figure 4. Scaffolding alters variability and speed of response.  (A & B) Response time at S50 

(A) and Smax (B) increases with cascade depth.  These plots indicate the length of time (in 
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simulated seconds) taken to exceed half the observed response at steady state (T50; y-axis) as a 

function of cascade depth (x-axis).  Similar to Rmax and S50 (Figs. 2A and 3A, respectively), the 

response time does not specifically depend on the presence of the scaffold, but rather on the 

assembly paradigm.  Strikingly, the machine model exhibits response times nearly two orders of 

magnitude greater than those observed in ensemble and solution models for deeper cascades with 

intermediate signal strength (A). (C) Scaffold proteins suppress the noise present in deep 

solution cascades independent of the assembly paradigm.  The coefficients of variation (y-axis) 

are taken from the simulation whose signal is nearest the fitted S50 value. 
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Figure 5 

 

Figure 5.  Scaffold concentration modulates select signaling behaviors.  (A) Maximum 

response as a function of depth and scaffold number.  Consistent with findings from prior 

experimental and theoretical studies (9, 12), we observe combinatorial inhibition due to high 

concentrations of scaffold proteins in the ensemble model simulations (left).  Contrary to this, the 

machine model produces no such inhibitory effect since the hierarchical nature of signaling 

machine assembly prevents the combinatorial explosion of scaffold-based species that is present 

in the ensemble model (14).  (B) Response time as a function of depth and scaffold number at 

Smax.  We observe a universal decrease in response time with respect to scaffold number in the 
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machine model for all cascade depths (right), though in the parameter space considered here, this 

increase is less than an order of magnitude.  Increasing scaffold numbers in the ensemble model, 

while showing faster responses in the 2-kinase cascade (likely due to the relative similarity 

between the 2-kinase ensemble model and the 2-kinase machine model rule structures, in 

addition to the reduced response due to combinatorial inhibition), displays slower response times 

for deeper cascades as a result of increased combinatorial complexity.   
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Figure 6 

 

Figure 6. Crosstalk in the three signaling paradigms.  (A) Schematic of crosstalk in scaffold-

based signaling networks.  In this figure, red components belong exclusively to pathway A while 

blue components belong to pathway B.  The second kinase in both cascades (purple) is shared.  

Here, solid lines represent activation events, while dotted lines show translocation.  In the 
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solution model, kinases bind to one another, thus both K1,A and K1,B are capable of activating and 

binding K2, which then binds and activates both K3,A and K3,B.  (B) Various cascade outputs (y-

axis) as a function of log-transformed signals in pathway B (x-axis); pathway A is exposed to 

maximum signal (SA = 105 for ensemble/solution simulations and SA = 102 for machine 

simulations) for all data points.  Black and red points indicate pathway A and B response, 

respectively.  As a reference, blue points show the response for a single pathway model 

stimulated with SB-strength signal.  (C) Difference in pathway A response (y-axis) between a 

model with maximal stimulation of pathway A and minimal stimulation of pathway B and a 

model with maximal stimulation of both pathways as a function of the number of shared kinases 

(K2; x-axis).  As seen in panel (B), maximal activation of both pathways in the machine signaling 

paradigm introduces a decrease in output relative to maximal activation of only pathway A, 

whereas this difference is negligible in the ensemble model.  This occurs when K2 is the limiting 

factor in the signaling cascade (i.e. the component with the lowest copy number). 
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Figure 7 

 

Figure 7.  Comparison of various features between signaling paradigms.  The three columns 

represent the three distinct types of signaling models considered in this work.  Each row 

corresponds to a different dynamical feature.  For two of these features, namely the variability of 

the response and the change in ultrasensitivity as cascades become deeper, the two scaffold-

based signaling paradigms demonstrate similar behavior.   In all other cases, however, the 

manner in which scaffold-based signaling complexes assemble is as important as whether or not 

the cascade uses a scaffold in the first place.  Note that the results summarized in this figure are 

for unsaturated models of varying depths. 
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