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Abstract

Here we propose new module-based approaches to identify differentially regulated network sub-modules
combining temporal trajectories of expression profiles with static network skeletons. Starting from mod-
ules identified by network clustering of static networks, our analysis refines pre-defined genesets by parti-
tioning them into smaller homogeneous sets by non-paramettric Bayesian methods. Especially for case-
control time series data we developed multi-time point discriminative models and identified each network
module as a mixture or admixture of dynamic discriminative functions. Our results shows that our pro-
posed approach outperformed existing geneset enrichment methods in simulation studies. Moreover we
applied the methods to neural stem cell differentiation data, and discovered novel modules differentially
perturbed in different developmental stages.

Introduction

Dynamics of biological networks Studies on dynamic networks have heavily focused on node-level
analysis. Hub nodes of physical interaction and signaling networks were classified to so called “party” and
“date” hubs judged by average correlation with neighboring nodes [1]. Despite criticisms [2–4], dynamic
property of network and co-expression modules have provided new biological insights into dynamics and
systems (e.g., [1, 5–8]). Nevertheless, there still remains subtlety in the analysis. As pointed out [8],
node-based statistics and notion of modular structure can be highly data-dependent, but there is no
room for heterogeneity in models.

We propose new module-based approaches to dynamic network analysis. However, our notion of
module is based on network topology, not expressions. These structural modules can be inferred from
static edges. Previously we estimated a trace of dynamic modules while perturbing edges by expressions
[9]. Although modules are usually fixed and static, we strive to relax other aspects. We do not attempt to
summarize overall node-node relations by a single metric. Network modules are not fixed, but properties
of contained nodes change over time. Moreover, we can circumvent long-standing “n � p problem” by
not collecting statistics at node or node-pair level. Instead, we assume genes within well-defined modules
are independent identically distributed; then, our n is not number of samples but number of genes. We
turned the problem to opposite n� p regime.

In essence our proposed method resembles geneset analysis methods. We use interaction maps and
expression matrix. First we resolve modules from static interactions; then, search for significant dynamic
modules by set-based datamining. However, we greatly relaxed assumptions on the sets. Genes are not
always identical, i.e., there can be multiple subgroups within genesets. Samples are time-dependent and
dynamic. More importantly our goal is to identify significant module at specific timepoints. Modules are
not necessarily responsive to environments.
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Time-specific discriminative modules Regarding gene-wise set-heterogeneity, our solution is quite
straightforward. We sought to refine pre-defined genesets by partitioning them into smaller homogeneous
sets. We used Bayesian non-parametric method, Dirichlet Process Mixture [10]. However, we need a new
paradigm of set-based significance testing to account for sample heterogeneity, especially with time-series
samples. Let us put geneset analysis in a classification setting.

Suppose we have a time-series gene expression matrix X. Each xit element measures gene i’s mRNA
concentration at time t. There are n genes and T time points. Within this dataset, we may assume genes
are independent and identically distributed. We also have each gene i labeled with li to indicate that
was collected in wild-type (WT) cells if li = 1, or abnormal cells if li = 0. Then we can fit a logistic
regression model with parameter βt for each time point to classify the gene labels {li}, i.e.,

p(li|xit) = σ(βtxit)

where the sigmoid function σ(ξ) = 1/(1 + e−ξ). We may estimate β by maximizing likelihood function

L(Z,X,β) =
∏
i,t

σ(xitβt)
li σ(−xitβt)1−li . (1)

Temporal Expression Divergence (TED) model We think of a case-vs-control study in the same
classification context. Usually we measure two types of n×T gene expression matrices, X and Y for case
and control, or vice versa. Again, we may assume genes are identical and independent, but later we will
relax this assumption using predefined genesets. Although the label variable li not so explicit, we can set
all xit are labeled with li = 1 but yit with li = 0. Then, we want to estimate T logistic regressors, each
parameterized by βt, maximizing

L(X,Y ;β) =
∏
i,t

σ(βtxit)σ(−βtyit) . (2)

By this model, we can quantify discriminative power of homogeneous X,Y time-specifically by magnitude
of βt. Suppose a pair (xit, yit) is discriminative, e.g., xit � 0 while yit � 0. Then we maximize the
product of two sigmoids with strongly positive βt. However, if we have both xit � 0 and yit � 0, then
we want a neutral βt that is close to 0 to avoid σ(−∞) = 0.

Fig.1 demonstrates strength of this framework. We generated control datapoints xi ∼ N
(
xi
∣∣µcase, σ

2
)

(colored red) and case yi ∼ N
(
yi
∣∣µcontrol, σ

2
)

(colored blue). We tested three toy examples generated
under different variance parameters σ ∈ {0.1, 0.5, 0.75} (denoted on the top of subplots). Under small
variance σ = 0.1, patterns of diverging time points are visually evident. With increasing variance to
σ = 0.5, datasets became fuzzier and harder to separate out, but the beta parameters, corresponding to
decision boundary of time-specific logistic regressors, maintain large values deviating from zero. However,
with too large variance σ ≥ 0.75, two types of datasets became really indistinguishable, then decision
boundary was pulled toward zero. This aspect is also desirable. We want to say “I don’t know” for
unclear case-versus-control.

Contributions Our technical contributions are in two folds: (1) we developed highly sensitive and
accurate discriminative model for geneset analysis; (2) we then applied TED models in two well known
modeling frameworks, Dirichlet Process Mixture [10] and Latent Dirichlet Allocation [11]. Moreover, from
systematic analysis we were able to propose new hypothesis of disease mechanism of neural disorder; and
we revealed systematic bias of set- or pathway-based analysis and discussed new approaches.
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Figure 1. Demonstration of Temporal Expression Divergence on datasets with
time-dependent batch effects. (a) We simulated datasets varying standard deviation parameter
σ = 0.1, 0.5, 0.75 while fixing mean vectors for case (red) and control (blue) samples to
µcase = [1, 1, 1, .5, .2, .2, .5, 0,−1,−1,−1,−1] and µcontrol = [1, 1, 1,−.5,−.2,−.2,−.5, 0,−1,−1,−1,−1].
For each σ, we generated 20 of xi ∼ N

(
xi
∣∣µcase, σ

2I
)

and yi ∼ N
(
yi
∣∣µcontrol, σ

2I
)
. (b) TED model

parameters β fitted by our Bayesian inference algorithm (see Methods). Think solid black lines indicate
E[β] and shaded areas show confidence bands within 2 standard deviation.

Results and Discussion

Comparison with other geneset analysis methods

We compared performance of TED and TED-dpm with existing methods. Although exhaustive compari-
son with all existing methods could be beneficial, we chose: generally applicable geneset enrichment with
full pairwise sample comparison (GAGE), GAGE with paired sample comparison (GAGE-paired) [13],
and geneset analysis (GSA) [14]. We chose GAGE over PAGE [15] because of better performance [13];
GSA over others because of generally good performance in empirical comparison [16]. We did not include
the work of Goeman [17] based upon generalized linear models (GLMs) [18] fitting since our TED model
is also a special case of generalized linear model with temporal specificity.

Two types of setwise expression matrices of 10 samples were generated; one under the null hypothesis
(marked H0) and alternative (H1). Under the null hypothesis, both control xit and case yit expressions
were sampled from the standard Normal distribution, i.e., xit|H0 ∼ N (xit|0, 1) for all t ∈ [10]. However,
whiting genesets under the alternative hypothesis, 60% of genes were differentially expressed; xit ∼
N (xit|.5, 1) while yit ∼ N (yit|−.5, 1). All the method performed similarly well on completely differential
expression (100%). In addition, we tested conditions where not all time points were differntially expressed
under the alternative. We included a certain fraction of non-informative time points, following the null
distribution to the differentiating genesets, from 0% to 60%.

Fig.2 summarizes the results. Each column show dispersion of adjusted p-values found by different

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167734doi: bioRxiv preprint 

https://doi.org/10.1101/167734
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

0 0.2 0.4 0.6

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●
●

●

●

●
●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●
●

●

●

●●●●
●●

●●

●

●

●●

●

●●●●●●●●●

●

●●
●

●

● ●●●●●

●

●●●●

●

●●

●

●

●●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●●

●●●●
●

●●●●
●
●
●

●

●●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●

●

●

●

●●

●

●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●●

●

●●●

●

●
●

●●

●

●●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●

●●

●●●

●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●●
●●
●
●●●●●●●
●●●●●
●

●●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●●●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●

●

●

●

●●

●

●

●

●●

●●

●

●●●

●●●●●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●
●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

H
0

H
1

G
A

G
E

G
A

G
E

.p
ai

re
d

G
S

A
T

E
D

T
E

D
.d

pm

G
A

G
E

G
A

G
E

.p
ai

re
d

G
S

A
T

E
D

T
E

D
.d

pm

G
A

G
E

G
A

G
E

.p
ai

re
d

G
S

A
T

E
D

T
E

D
.d

pm

G
A

G
E

G
A

G
E

.p
ai

re
d

G
S

A
T

E
D

T
E

D
.d

pm

ad
ju

st
ed

 p
−

va
lu

e

Figure 2. Performance of geneset enrichment analysis. Abbreviation of methods are stated in
the text. Each method reported p-values of genesets; adjusted p-values were computed using
Benjamini-Hochberg method [12], implemented in p.adjust of R.

methods under the null (H0) and alternative (H1) hypotheses. We expect an oracle method, which gives
perfect separation, would generate p-values clustered to 1 under the null, but 0 under the alternative.
Without noisy samples (the 1st column), all the methods work well as expected. However, as we intro-
duce noisy samples more, we may not pick up significant fraction of true positives using GAGE or GSA.
Especially when 60 % noisy samples introduced, GAGE and GSA become significantly underpowered
compared to TED. However, TED, not using DPM-based set refinement, might have higher false dis-
covery rate than other methods (outliers of the boxplots); yet, the set refinement method corrected this
adequately.

Neural stem cell differentiation

Lesch-Nyhan Disease hints interesting links between aberrant purine biosynthesis and neurophysiolog-
ical and neurobehavioral disorder [19]. Although overall mechanisms are yet to be understood, pre-
vious studies discovered that mutations of HPRT (hypoxanthine guanine phosphoribosyltransferase)
causes defects in neuronal growth and differentiation [20]. Here we focused on changes of network mod-
ules/pathways. We used time-series case versus control expression matrices X and Y constructed from
the RNA-sequencing dataset (GSE42662) of 14 days of Dopaminergic (DA) neuronal differentiation of
spherical neural masses (SNMs) [21]. The dataset includes 10 snapshots of days 0, 1, 2, 3, 4, 6, 8, 10, 12
and 14, generated by human DA differentiation protocol [22], where they characterize 14 days as three
distinctive phases: (1) neuronal induction from days 0 to 4; (2) DA neuron induction from days 4 to 8;
(3) DA neuron maturation from days 8 to 14.
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Significant network modules

Network clustering We ran our hierarchical network clustering algorithm, improved upon our previ-
ous work [23], on BioGRID physical and Reactome co-reaction networks separately, and resolved 173 of
physical and 144 of co-reaction modules (see Methods for details). To ensure high quality of modules, we
compared results with other network clustering methods. In extensive benchmark and cross-validation
experiments, we found our algorithm substantially outperformed than others (see supplementary results;
Fig.7 and 8).

Time-specific network modules changing the fate of stem cell differentiation We focus on
results of TED-dpm (TED and DPM-based geneset refinement) because of substantial improvement of
statistical power and homogeneity of modules. As expected from the result of simulation study (Fig.2),
TED-dpm was able to identify more significant modules than other methods. Geneset refinement steps
effectively separated out noisy, or weak, gene expressions from genesets, highlighted true signals embedded
in the sets. We confirmed that after the refinement other methods such as GSA significantly better than
before (see supplementary Table.1, 2, 3 and 4). Fig.3 shows significantly changing modules found by
TED-dpm method at familywise error rate 0.01. Due to space limit, we only show those non-trivially
overlap with known canonical pathways [24], determined by hypergeometric test (FDR < 0.01 with
overlap > 0.25).
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Figure 3. network moduels. We determined significance of these modules at familywise error rate
(FWER) < 0.01; p-values corrected by Holm procedure (see e.g., [25]).

Throughout all time course, modules related to cell cycle, neucleotide and downstream lipid metabolism
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6

were upregulated in control samples; in other words, activity of these modules was unusually dampened
by HPRT gene KD. However, modules of GPCR signaling (Reactome), and a part of TGF-β and path-
ways (BioGRID), were up-regulated in the KD cells. A large fraction of modules did not change direction
of regulations either positive (red) or negative (blue). However, there are some modules undergo tran-
sient swapping (e.g., RNA processing in Reactome network, Fig.3a), or complete phase transition (e.g.,
anti-phasing modules in BioGRID network, Fig.3c). Unfortunately anti-phasing modules are poorly
characterized in current knowledge; and they may have not been recognized as functional modules. On
modules with almost equal amount of up- and down-regulated samples sample average of log2 ratio would
only remain close to zero effect (row-wise summation).

Day 4 Day 6 Day 10

Figure 4. Glycosaminoglycan complex. Six sub-networks show transcriptomic dynamics of
“Glycosaminoglycan” module in Reactome network. We show all parts of module inferred by network
clustering; green dashed circle encloses parts included by TED-DPM. Nodes and edges represent genes
and interactions of Reactome network (co-reaction). Genes were colored by expression level. Lowest
log2(control/KD) ratio was colored blue (RGB 0,0,255); equal amount of control and KD colored white
(RGB 255,255,255); highest colored red (RGB 255,0,0).

Glycosaminoglycan complex In Fig.4, we zoomed-in the glycosaminoglycan module of Reactome
network. It is evident that tightly co-expressed core sub-complex (green dashed circle) plays a major role
in the complex. The core includes glycan and chondroitin enzymes: B4GALT (β-1,4-galactosyltransferase),
B3GAT (β-1,3-glucuronyltransferase), CHST (carbohydrate sulfotransferase), CHSY (chondroitin syn-
thase), and CHPF (chondroitin polymerizing factor). In the knock-down HPRT cells, this core complex
was initially up-regulated during neuronal induction phase until day 4, but down-regulated during DA
neuron induction, then lost significant synchronous pattern during DA maturation (Fig.3a; Fig.4).

Along the same direction, recent studies show that neural stem cells can be identified specific glycan
makrers, and many stem cell signaling pathways regulated and marked by post-transnational modifica-
tions of glycans attached to membrane [26]. Moreover, there was a systematic assay that mRNA level
of many glycan enzymes strongly correlates with cell fate change of mouse embryonic stem cells [27]. In
some cases, abnormal expression B4GALT family genes has been shown to promote multi-drug resistance
in leukemia cells [28]. In sum, we may suggest an interesting hypothesis of LND: upon HPRT knock-
down, cells experience dysfunctional purine metabolism, which directly leads to inappropriate exposition
of glycans to cell surface; interplay of other signaling pathways (e.g., Wnt and GPCR) completely change
cell fates departing from DA neurons. However, we may find better picture by follow-up experimental
studies.
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Common signature of regulation

It was our surprise that a substantial faction of network modules were largely heterogeneous mixtures
of TED models. In fact, we modified TED to address this nature. Although our network clustering
algorithm recapitulated high-probability modules, we further tested to show heterogeneity of modules is
indeed algorithm-independent.

Pathways are mixed To answer that question, we incorporated TED models in Latent Dirichlet
Allocation (LDA) framework [11]. One may think of LDA as probabilistic principal components. We
looked for commonly observed expression patterns across genesets, and estimated mixing proportion of
genesets. Common patterns are termd topics, which are TED topics, characterized by β parameters.
We collected manually curated ≈ 1, 400 genesets (c2.cp) from MSigDB [24], which provides extensive
coverage of known and manually curated pathways collected from various databases. On top of that, we
also added Reactome and Biogrid network modules found in our network clustering.
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Figure 5. Genesets are mixed. (a) 3 distinctive TED topics. Each column shows each topic. Top
row enumerates topic-specific average of log2(control/KD). Bottom row shows topic-specific model
parameters β with 95% confidence bands (shaded area). (b) 6 TED topics. Top and bottom rows show
6 topic-specific data averages and model parameters. (c) Triplot of topic proportion. Each dot
corresponds to MSigDB’s “reactome” genesets. Three vertices of simplex correspond to topics 0 to 2 of
3 TED topics (counterclockwise from the left corner of triangle). (d) Topic proportion of MIPS
complexes (e) Topic proportion of BioGRID network modules.

We were able to cofirm that trained TED topics (Fig.5a,b) summarized what we repeatedly observed
pattern of gene expressions in many genesets and network modules. Models either with 3 or 6 topics
showed highest predictive performance in 10-fold cross validation experiments (see Supplementary result;
Fig.6). But we mapped genesets and network modules to 3-TED topic space for simplified visualization
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(Fig.5c-e). Genesets are apparently mixed. Although many of genesets locate nearby the top corners of
triangles (topic 2 in Fig.5a), a remaining portion of genesets are mixture of topics 0 and 1. Notably MIPS
complexes are biased toward topic 2, which means that these complexes were overexpressed in control
cells. It appears that MIPS complexes were established on normal cells. Therefore, future analysis
based solely on MIPSs would have to be limited and may not discover new disease-specific pathways and
complexes.

Conclusion

We developed a novel set-based method to annotate pre-defined genesets or modules inferred from net-
works. The methods were not only statistically more powerful, but also able to capture transient signals
reliably. We designed TED and variants in two philosophy: classification is easier than density estimation
(e.g., [29]). However, previous works approach the problem to sift out significant sets by unusual density
of observations. We also wanted to do discriminative learning, which is usually easier than generative
model fitting (e.g., [30]). TED and TED-variants outperformed in both synthetic and real-world than
other geneset analysis methods. Moreover, we empirically demonstrated prevalent heterogeneity dur-
ing the neural differentiation process. We also showed anti-phasing modules yet to be characterized by
subsequent experiments and analysis.

Methods

Data preparation

Interactome We constructed a physical interaction network dataset of 14, 995 proteins and 140, 006 in-
teractions from BioGRID 3.1.94 [31], which are edges labeled physical. We also constructed a co-reaction
network dataset of 4, 527 genes and 87, 947 interactions. We downloaded Reactome network database [32]
from http://www.reactome.org/download/current/homo_sapiens.interactions.txt.gz. We used
“current version” as of Aug 4 2013. We only included edges labeled reaction or neighbouring reaction,
so as to identify modules, which could not be found in physical interaction networks.

Transcriptome Over 98% of short reads were mapped to NCBI mm9 transcripts using tophat [33],
counted by htseq-count (http://www-huber.embl.de/users/anders/HTSeq/doc/count.html) and nor-
malized by DESeq taking into accounts of effective size factors [34]. The data was collected on mouse
embryonic stem cells but mouse interactomes were rather poorly characterized compared to human. We
mapped mouse genes to human genes using biomaRt [35]. Resulting X and Y matrices contained 10, 170
genes of 10 snapshots (days 0, 1, 2, 3, 4, 6, 8, 10, 12 and 14).

Variational inference of TED model

Bayesian inference and hypothesis testing We performed Bayesian inference on unknown param-
eters, especially the β parameters. We defined likelihood of observed X,Y under the parameter β of
TED model (Eq.2), and the β parameters directly translate to significance of observed X,Y , quantifying
steepness of decision boundary. Since we have (βt − E[β]t)/

√
V[β]t ≈ N (0, 1), both approximately and

asymptotically, we may construct level α Wald test of testing H0 : βt = 0 versus H0 : βt 6= 0 as:

rejectH0 if

∣∣∣∣∣ E[βt]√
V[βt]

∣∣∣∣∣ > zα/2 (3)
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where zα/2 = Φ−1(1− α/2). Then,

p-value = Pr
(
|Z| >

∣∣∣E[βt] /
√
V[βt]

∣∣∣) , (4)

where Z ∼ N (0, 1). In a strict sense, our hypothesis testing is more akin to controlling false discovery
rate rather than Type I error. We may consider TED as a “discriminative” version of Sun and Cai [36,37].

Bayesian sparse prior Now, let us discuss how to estimate E[βt] and V[βt] taking into account of
temporal smoothness. We introduced the Fused Lasso prior [38] on to β parameters.

p(β) ∝ exp

(
−λ

2

T∑
t=1

|βt| −
γ

2

T−1∑
t=1

|βt+1 − βt|

)
(5)

where λ and γ control static and kinetic sparsity of parameters. Under appropriate λ and γ we capture
sparse and temporally smooth β. However, estimation of β under the Fused Lasso prior may not be
technically difficult unlike regular Lasso prior [39]. Instead of direct usage, we used equivalent Bayesian
formulation to handle sparsity more gently (see [40] and [41] for details and proofs).

βj |τ ∼ N
(
βj
∣∣0, τ2j )

βj − βj+1|κ ∼ N
(
βj − βj+1

∣∣0, κ2j)
τ2j ∼ Exp

(
τ2j
∣∣λ/2)

κ2j ∼ Exp
(
κ2j
∣∣γ/2) .

Non-conjugate variational inference To work around non-conjugate relationship between the likeli-
hood function (Eq.2) and prior (Eq.5), we estimated posterior probability by the non-conjugate variational
inference [42]. First we find optimal β by coordinate descent algorithm [43], then construct approximate
distribution q(β) by the Laplace method [42].

Distribution of β First of all, it is not hard to verify convexity of negative log-likelihood function:

f(β) =

T∑
t=1

n∑
i=1

[
log
(
1 + e−βtxit

)
+ log

(
1 + eβtyit

)]
. (6)

Like other GLMs, we can construct local quadratic approximation [43, 44]. Using these results, we can

construct the following local quadratic form g(β) ≈ f(β) at current estimate β̂, defined by

g(β) =
1

2

T∑
t=1

n∑
i=1

wit(βt − vit)2 (7)

where
wit = x2itσ

(
xitβ̂t

)
σ
(
−xitβ̂t

)
+ y2itσ

(
yitβ̂t

)
σ
(
−yitβ̂t

)
(8)

and

vit = β̂t +
xitσ

(
−xitβ̂t

)
− yitσ

(
yitβ̂t

)
wit

. (9)

With the prior on β, we find the solution by solving

g(β) +
1

2

T∑
t=1

E
[

1

τ2t

]
β2
t +

1

2

T−1∑
t=1

E
[

1

κ2t

]
(βt − βt+1)2. (10)
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For each t ∈ {2, T − 1}, we can iteratively update βt until convergence as follows.

βt =

∑n
i=1 witvit + β̂t−1E

[
1/κ2t−1

]
+ β̂t+1E

[
1/κ2t

]∑n
i=1 wit + E[1/τ2t ] + E

[
1/κ2t−1

]
+ E[1/κ2t ]

, (11)

we drop the t− 1 term for t = 1 and t+ 1 for t = T .
Following Wang and Blei [42], we have

q(β) ≈ N
(
β
∣∣E[β] ,Λ−1

)
(12)

where E[β] = β̂ and tridiagonal precision matrix

Λtt =
n∑
i=1

wit + 1/τ2t + 1/κ2t−1 + 1/κ2t , Λt,t+1 = Λt+1,t = −1/κ2t . (13)

For subsequent updates, we need covariance matrix Σ ≡ Λ−1. Exploiting special structure of Λ, we
can easily resolve tri-diagonal elements of Σ, i.e., Σtt and Σt,t+1 by linear time algorithms (e.g., [45] or
Appendix B of [46]).

E
[
β2
t

]
= β̂t

2
+ Σtt, E

[
(βt − βt+1)2

]
= E

[
β2
t

]
+ E

[
β2
t+1

]
− 2(β̂tβ̂t+1 + Σt,t+1). (14)

Distribution of τ, κ From the general result of Kyung et al. [41], although tedious derivations

yield the same results, we have 1/τ2t ∼ invN
(

1/τ2t

∣∣∣√λ2

β2
t
, λ2
)

and 1/κ2t ∼ invN
(

1/κ2t

∣∣∣√ γ2

(βt−βt−1)2
, γ2
)

.

Therefore, we can find mean-field solution required for the update of q(β) and empirical Bayes estimation
penalty terms as:

E
[
1/τ2t

]
=

√
λ2

E[β2
t ]
, E

[
1/κ2t

]
=

√
γ2

E[(βt − βt−1)2]
(15)

and

E
[
τ2t
]

=

√
E[β2

t ]

λ2
+

1

λ2
, E

[
κ2t
]

=

√
E[(βt − βt−1)2]

γ2
+

1

γ2
. (16)

Empirical Bayes We adjust a proper degree of penalties, λ and γ, by optimizing the marginal likelihood
weighted by the variational distributions over β and τ, κ (see [40,41] for details). We update λ and γ as:

1

λ2
←
∑T
t=1 E

[
τ2t
]

2T
,

1

γ2
←
∑T−1
t=1 E

[
κ2t
]

2(T − 1)
. (17)

until convergence.

Overall inference algorithm Initially we set E
[
1/τ2t

]
= 0 for t ∈ [T ], and E

[
1/κ2t

]
= 0 for t ∈ [T −1].

Then, we repeat the following steps until convergence:

1. Optimize β̂ (Eq.11) and estimate q(β|·) ≈ N
(
β
∣∣∣β̂,Λ−1) (Eq.12).

2. Calculate covariance matrix Σ ≡ Λ−1 and E
[
β2
]

and E
[
(βt − βt+1)2

]
(Eq.14).

3. Update E
[
1/κ2

]
,E
[
1/τ2

]
(Eq.15).

4. Alternate update of E
[
τ2
]
,E
[
κ2
]

(Eq.16) and empirical Bayes estimation of λ, γ until convergence
(Eq.17).

C++ implementation of TED and related methods are available in public repository (https://code.
google.com/p/glmblock).
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Mixture and admixture of TED models

Locally collapsed latent update So far variational inference algorithm assumed a single TED model.
For both mixture or admixture models, we need a scoring function to evaluate probabilistic assignment
of each object, i.e., a pair of expression vectors xi and yi, to TED models.

We found “locally collapsed” variational inference (LCVI) [47] works better than regular mean-field
approximation methods. Suppose for each TED model k we have estimated variational qk(β). Essentially
LCVI helps avoid bad local optima infusing adequate stochasticity. Given them, latent assignment of x
and y is conditionally independent. Let ci ∈ [K] be a random variable of i’s model assignment, although

sometimes K → ∞. We integrate out uncertainty of β with respect qk(β) ≈ N
(
β
∣∣∣β̂k,Λ−1k ) previously

determined by each k-th model.

q(ci = k|x,y) ≈ Pr(ci = k)
T∏
t=1

exp

(
f(β̂kt) +

1

2

f ′(β̂kt)
2

Λktt − f ′′(β̂kt)

)(
Λktt

Λktt − f ′′(β̂kt)

)1/2

where βkt denotes t-th element of βk vector; Λktt denotes (t, t) element of Λk matrix. We calculate
appropriate prior factor Pr(ci = k) depending on DPM or LDA.

But we may not have previous observation at all. For instance, in DPM inference, we can discover
a new model which was never explored. We simply treat βt ∼ N

(
βt
∣∣0, τ2) with 1/τ2 = ∞; we use the

fact that 1/τ2 ≈ λ/|βt| → ∞ as β → 0. We elaborated detailed derivations and computationally efficient
update strategies in the appendix.

Dirichlet Process Mxiture Here we briefly mention sketch of overall algorithm. First we randomly
assign expression pairs (xi,yi) to models and update models given data. Iteratively we sample assign-
ments of (xi,yi), which works like E-step of Expectation Maximization [48]; then, we perform variational
update of each TED model including empirical Bayes routines, and this works like M-step. Interested
readers may refer to variational inference methods of general DPMs (e.g., [47, 49]). Our algorithm was
essentially equivalent to Wang and Blei [47].

Latent Dirichlet Allocation (admixture model) LDA [11] models corpus of documents, while
assigning topics to words and topic proportions to documents. Each topic is defined by its own topic-
specific word frequency vector. Here, we treat genesets as documents and genes as words. Topics are
defined by TED models. We sampled each gene’s topic assignment according to LCVI score (Eq.18). Each
TED model was trained by genes assigned in online stochastic learning [50]. While gradually observing
genesets, we udpated TED topics. We tested both batch and online learning, but online learning worked
in a more scalable way and resolved equally likely models. Again, details can be found in the original
paper [11] and algorithm paper [50].

Network clustering

We extended our previous method, called dynamic hierarchical model (DyHM) [23] in two aspects: (1)
we updated base-model to take into accounts of empirical degree distribution [51]; (2) we sped up the
overall algorithm using dynamic programming technique. Source codes are available in public repository
(https://code.google.com/p/hsblock).
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Figure Legends

Tables

Appendix: Derivation of update equations

TED

Locally Collapsed Variational Inference

Again, to circumvent non-conjugate relations, we approximate the likelihood by second order Taylor
expansion,

logL(x,y;β) ≈
T∑
t=1

[
f(β̂t) + f ′(β̂t)(β − β̂t) +

1

2
f ′′(β̂t)(β − β̂t)2

]
, (18)

where f(βt) = − log(1 + e−βtxt) − log(1 + eβtyt). Then, posterior probability of (xi,yi) assignment to
model k is straightforward.

For simplicity, let λ̃ ≡ (λ− f ′′(µ)) and µ̃ ≡ (µ+ f ′(µ)/λ̃).

S(x) = exp

(
f ′(µ)x+

1

2
f ′′(µ)(x− µ)2 − 1

2
λ(x− µ)2

)
(19)

= exp

(
− λ̃

2
(x− µ)2 + f ′(µ)x

)
(20)

= exp

(
− λ̃

2

[
x− 2µ̃x+ µ̃2

]
− λ̃

2
µ2 +

λ̃

2
µ̃2

)
(21)

= exp

(
− λ̃

2
(x− µ̃)2 − λ̃

2
µ2 +

λ̃

2
µ̃2

)
(22)

Then,

∫
S(x) dx = exp

(
− λ̃

2
µ2 +

λ̃

2
µ̃2

)(
λ̃

2π

)−1/2
(23)

E
[
ef(βt)

]
=

∫ ∞
−∞

exp(f(β))N
(
β
∣∣∣β̂t, λ−1t ) dβ (24)

≈
∫ ∞
−∞

exp

(
f(β̂t) + f ′(β̂t)(β − β̂t) +

1

2
f ′′(β̂t)(β − β̂t)2

)
N
(
β
∣∣∣β̂t, λ−1t ) dβ (25)

= exp
(
f(β̂t)− f ′(β̂t)β̂t

)
exp

(
− λ̃t

2
µ2 +

λ̃t
2
µ̃2

)(
λt

λ̃t

)1/2

(26)

= exp

(
f(β̂t) +

1

2

f ′(β̂t)
2

λt − f ′′(β̂t)

)(
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λt − f ′′(β̂t)

)1/2
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Appendix: supplementary results

Latent Dirichlet Allocation

10-fold cross validation
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Figure 6. Bold the first sentence. Rest of figure 2 caption. Caption should be left justified, as
specified by the options to the caption package.
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Geneset analysis (GSA)

We ran GSA [14]

Table 1. GSA results testing up-regulation (hi) of Reactome network modules

p-val cutoff Nobs E[N ] FDR N?
obs E[N?] FDR?

0.001 0 0.088 0.733 2 0.075 0.038
0.005 0 0.44 0.733 2 0.375 0.188
0.01 1 0.88 0.733 4 0.75 0.188
0.02 2 1.76 0.733 4 1.5 0.375
0.025 3 2.2 0.733 5 1.875 0.375
0.05 4 4.4 0.859 8 3.75 0.469
0.1 8 8.8 0.859 16 7.5 0.469
0.25 24 22 0.859 28 18.75 0.67
0.4 41 35.2 0.859 31 30 0.968
0.5 50 44 0.88 34 37.5 1

We ran GSA routine on Reactome network modules of size ≥ 10 with the following parameters set: total
1000 permutations, Maxmean statistics, Two class unpaired. We had less powerful results with Two

class paired.

Table 2. GSA results testing down-regulation (lo) of Reactome network modules

p-val cutoff Nobs E[N ] FDR N?
obs E[N?] FDR?

0.001 0 0.088 0.819 1 0.075 0.075
0.005 0 0.44 0.819 2 0.375 0.188
0.01 0 0.88 0.819 4 0.75 0.188
0.02 2 1.76 0.819 4 1.5 0.375
0.025 2 2.2 0.819 5 1.875 0.375
0.05 4 4.4 0.819 9 3.75 0.417
0.1 9 8.8 0.819 17 7.5 0.441
0.25 26 22 0.819 28 18.75 0.67
0.4 43 35.2 0.819 32 30 0.938
0.5 49 44 0.898 34 37.5 1

We ran GSA routine on Reactome network modules of size ≥ 10 with the following parameters set: total
1000 permutations, Maxmean statistics, Two class paired. We had less powerful results with Two

class unpaired.
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Table 3. GSA results testing up-regulation (hi) of BioGRID network modules

p-val cutoff Nobs E[N ] FDR N?
obs E[N?] FDR?

0.001 0 0.085 0.85 5 0.204 0.041
0.005 0 0.425 0.85 5 1.02 0.204
0.01 0 0.85 0.85 5 2.04 0.34
0.02 2 1.7 0.85 12 4.08 0.34
0.025 2 2.125 0.944 13 5.1 0.392
0.05 4 4.25 0.944 22 10.2 0.434
0.1 9 8.5 0.944 47 20.4 0.434
0.25 19 21.25 1 73 51 0.699
0.4 29 34 1 84 81.6 0.971
0.5 35 42.5 1 92 102 1

We ran GSA routine on BioGRID network modules of size ≥ 10 with the following parameters set: total
1000 permutations, Maxmean statistics, Two class unpaired. We had less powerful results with Two

class paired.

Table 4. GSA results testing down-regulation (lo) of BioGRID network modules

p-val cutoff Nobs E[N ] FDR N?
obs E[N?] FDR?

0.001 0 0.085 0.85 3 0.204 0.068
0.005 0 0.425 0.85 5 1.02 0.204
0.01 0 0.85 0.85 7 2.04 0.291
0.02 2 1.7 0.85 12 4.08 0.34
0.025 2 2.125 0.85 12 5.1 0.408
0.05 5 4.25 0.85 25 10.2 0.408
0.1 10 8.5 0.85 44 20.4 0.464
0.25 19 21.25 1 71 51 0.718
0.4 28 34 1 85 81.6 0.96
0.5 34 42.5 1 93 102 1

We ran GSA routine on BioGRID network modules of size ≥ 10 with the following parameters set: total
1000 permutations, Maxmean statistics, Two class paired. We had less powerful results with Two

class unpaired.
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Network clustering methods

20 50 100 150
● ●

●

● ●

●
●

●

● ●

● ●

●

● ●

●
●

●

● ●

●
●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

n=
10000

n=
5000

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
Noise

M
ut

ua
l I

nf
or

m
at

io
n Method

● hDSB−lcvi

hDSB−mf

Metis

hSB

CNM

Figure 7. Bold the first sentence. Rest of figure 2 caption. Caption should be left justified, as
specified by the options to the caption package.
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