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Abstract 

Understanding is emerging about microRNAs as mediators in the regulation of white 

adipose tissue (WAT) and obesity. The expression level of miR-199a in mice was 

investigated to test our hypothesis: miR-199a might be related to fat accumulation and 

try to find its target mRNA, which perhaps could propose strategies with a therapeutic 

potential affecting the fat storage. C57/BL6J mice were randomly assigned to either a 

control group or an obesity model group (n=10 in both groups). Control mice were 

fed a normal diet (fat: 10 kcal %) ad libitum for 12 weeks, and model mice were fed a 

high-fat diet (fat: 30 kcal %) ad libitum for 12 weeks to induce obesity. At the end of 

the experiment, body fat mass and the free fatty acids (FFAs) and triglycerides (TGs) 

in WAT were tested. Fat cell size was measured by hematoxylin-eosin (H&E) staining 

method. The fat mass of the model group was higher than that of the control group 

(P<0.05). In addition, the concentrations of the FFAs and TGs were higher (P<0.05) 

and the adipocyte count was lower (P<0.05) in the model group. We tested the 

expression levels of miR-199a and key adipogenic transcription factors, including 

peroxisome proliferator activated receptor gamma2 (PPARγ2), CCAAT/enhancer 

binding proteins alpha (C/EBPα), adipocyte fatty acid-binding protein (aP2), and 

sterol regulatory element binding protein-1c (SREBP-1c). Up-regulated expression of 

miR-199a was observed in model group. Increased levels of miR-199a was 

accompanied by high expression levels of SREBP-1c. We found that the 3'-UTR of 

SREBP-1c mRNA has a predicted binding site for miR-199a. Based on the current 

discoveries, we suggest that miR-199a may exert its action by binding to its target 

mRNA and cooperate with SREBP-1c to induce obesity. Therefore, if the predicted 

binding site is confirmed by further research, miR-199a may have therapeutic 

potential for obesity.  

Keywords microRNA-199a; white adipose tissue; obesity; SREBP-1c; high-fat diet 

 

Introduction 

 

Obesity is closely linked to metabolic syndrome, and it is a risk factor for various 
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metabolic diseases, including type 2 diabetes, hypertension, hyperlipidemia and 

atherosclerosis(Kadakia, Fox et al. 2011; Kahn and Flier 2000; Malik, Willett et al. 

2013). Excessive storage of white adipose tissue (WAT) is the main manifestation of 

obesity. WAT has been characterized as an endocrine organ that participates in energy 

metabolism (Alexander, Lodish et al. 2011). Although WAT is important in the 

regulation of metabolism, excessive fat accumulation in WAT is associated with 

metabolic syndrome(Wajchenberg 2000). Several key adipocytokines (e.g., adipocyte 

fatty acid-binding protein [aP2], CCAAT/enhancer binding proteins alpha [C/EBPα], 

peroxisome proliferator activated receptor gamma2 [PPARγ2], and sterol regulatory 

element binding protein-1c [SREBP-1c]) play a significant role in the regulation of fat 

storage (Chung, Kim et al. 2016; Yang, Vought et al. 2006; Zuo, Qiang et al. 2006), 

which in turn will affects the normal function of WAT. 

MicroRNAs (miRNAs) are highly conserved, single-stranded non-coding 

RNAs(Ambros 2004). At present, numerous studies have confirmed that miRNAs are 

involved in the regulation of various human tumors, such as ovarian cancer, colorectal 

cancer, and others (Du and Sha 2017; Han, Zhao et al. 2017). Accumulating evidence 

has recently shown that miRNAs participate in the regulation of adipose tissue 

function, affecting adipose tissue metabolism and related diseases (Seton-Rogers 2012; 

van Rooij and Olson 2012). Many miRNAs are dysregulated in the WAT of obese 

animals and human subjects, potentially contributing to the pathogenesis of 

obesity-associated complications (Alexander, Lodish et al. 2011; Hilton, Neville et al. 

2013; Peng, Yu et al. 2014). In addition, we also want to know the relationship 

between miRNAs and key adipocytokines, and whether their interaction leads to 

adipose tissue dysfunction. Despite wide study in the past decade, knowledge of the 

functional role between miRNAs and key adipocytokines remains limited. Further 

exploration of more miRNAs is required. Identification and exploration of more 

obesity-related miRNAs will be helpful for better understanding of fat accumulation 

and WAT dysfunction.   

Among the many miRNAs that have been identified in humans, we focus on 

miR-199a because of its potential effect on obesity. Previous studies showed 
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miR-199a was highly expressed in 3T3-L1 preadipocytes (Kajimoto, Naraba et al. 

2006), and subcutaneous adipose tissue from piglets were shown to have a higher 

level of miR-199a(Shi, Li et al. 2014). Several studies have reported that miR-199a 

participates in the regulation of adipogenesis (Gu, You et al. 2016; Song, Gao et al. 

2014), which indicates that miR-199a may play an important regulatory role in 

obesity. However, there is currently no report on the relationship between miR-199a 

and obesity.  

In the present study, an obesity model was established in C57/BL6J mice. Free 

fatty acids (FFAs), triglycerides (TGs), adipocyte counts, and fat mass were observed 

among the obese and non-obese groups. The expression level of miR-199a in mice 

was investigated to test our hypothesis that miR-199a may be associated with fat 

accumulation. Furthermore, the study aimed to establish its target mRNA, which may 

propose strategies with a therapeutic potential that affect fat storage.  

 

Materials and methods 

 

Animals. All experimental protocols were approved by the Shandong University 

Institutional Animal Ethics Committee, and all procedures were performed in 

accordance with ethical standards. Male C57/BL6J mice (n=20) were obtained from 

PLA Nanjing Military Medical College (Nanjing, China). The weight of mice were 

18~22g (4~6 weeks), and housing conditions was as follows: environment 

temperature 22~25℃, relative humidity 55%~65%, 12h light and 12 darkness cycle. 

The C57/BL6J male mice were randomly assigned to one of two groups (n=10 per 

group for this pilot study). In the control group, mice were fed a normal diet (10% 

kcal from fat) ad libitum for 12 weeks. In the model group, mice were fed a high-fat 

diet (30% kcal from fat) ad libitum for 12 weeks to induce obesity. Weight 

measurements were performed weekly. At the end of the experiment, adipose tissue 

mass was scanned in vivo using digital dual-energy X-ray (DEXA) scanners (Norland 

at Swissray. Fort Atkinson, WI, USA). After all of the mice were euthanized, WAT 
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samples were dissected to detect associated indicators of obesity. 

 

Body fat mass. Fat mass was measured using digital DEXA scanners. DEXA data 

were processed for study of morphometry. Mice were anesthetized for ~1 h by 

injection of pentobarbital sodium (30 mg/kg bodyweight). The anesthetized mice 

were individually placed on a foam board and the scanning arm of the DEXA scanner 

assessed the fat mass (in grams) from neck to tail. After several minutes, the fat mass 

was recorded (Fig. 1). 

 

FFAs and TGs levels in WAT. Subcutaneous adipose tissue and visceral adipose tissue 

were dissected, weighed, and stored at −80°C. Lipids from subcutaneous adipose 

tissue were extracted by the Folch method as previously described (Breil, Abert Vian 

et al. 2017), and the levels of FFAs and TGs were measured with the use of 

enzyme-linked immunoassays (Shanghai Tongwei reagent biological technology Co., 

Ltd., China) and the kit catalogue numbers were TWp002083 and TWp003393. The 

concentrations of FFAs and TGs were calculated based on a standard curve, which is 

made standard concentration (μmol/L) as abscissas and optical density (OD) value (lg 

(1/trans)) as ordinate.  

 

Adipocyte size measurement. Adipose tissue was stained with hematoxylin-eosin 

(H&E), and cells were counted and measured under the light microscope (×200 X, 

scale bar=50μm).  

 

Quantitative real-time polymerase chain reaction (qRT-PCR). Total RNA was 

extracted from adipose tissue, which was isolated using an RNeasy Lipid Tissue Mini 

kit (Qiagen GmbH, Hilden, Germany) and stored at -80°C.The purity, concentration, 

and integrity of the RNA were analyzed by micro-ultraviolet spectrophotometry 

(Thermo Scientific NanoDrop 2000/2000c, USA) and agarose gel electrophoresis. 

Total RNA was reverse-transcribed with the ReverTra Ace qPCRRT kit (TOYOBO 

life science Co., Ltd., Japan) to obtain total cDNA. qRT-PCR was performed with 
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SYBR® Green qPCR Master Mix (Shanghai TOYOBO biological technology 

Co.,Ltd., China) in a LightCycler® 480 system (Roche Group, Switzerland). The 

expression level of each mRNA was normalized to β-actin. SYBR Green fluorescence 

quantification method was used and thermocycling was 40 Ct. The primer sequences 

and cycling conditions used are listed in Table I. 

Statistical analyses. We used SPSS 22.0 software to analyze the data. Results are 

expressed as medians (P25, P75) or means ± SD according to normality test, which 

correspondingly used two independent-sample nonparametric tests or t-test to 

compare the medians or means between the two groups. Correlational analyses were 

calculated and are shown with correlation coefficient. A P-value <0.05 was 

considered statistically significant.  

 

Results 

 

Changes in lipid metabolism induced by high-fat diet. The body fat mass (from neck 

to tail) was determined using DEXA scanners (Fig. 1). The fat mass of the model 

group was higher than that of the control group (Table II; P=0.009). The H&E-stained 

adipocytes were measured under the light microscope (magnification, x200; Fig. 2 

and Table II), and the number of adipocytes in the WAT samples was counted per unit 

area. Under a magnified visual field (x200) of the light microscope, an average 

number of 236 adipocytes were counted in the control group and 200 in the model 

group. The adipocyte count was lower in the model group than in the control group 

(Table II; P=0.012). The FFA and TG levels in the WAT are presented in Table II. The 

concentrations of FFA (Table II; P<0.05) and TG (Table II; P<0.05) were higher in the 

model group than in the control group.   

 

Changes in the expression levels of miR-199a, aP2, C/EBPα, PPARγ2, and SREBP-1c. 

The miR-199a expression level in WAT was measured using RT-qPCR (Table III). 

The miR-199a expression level was upregulated in the model group and was higher 
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when compared with the control group (Table III; P=0.037).   

To further confirm the role of miR-199a in obesity, the expression levels of four key 

adipogenic transcription factors, including PPARγ2, C/EBPα, aP2, and SREBP-1c 

were evaluated. The expression levels of aP2, C/EBPα, PPARγ2 and SREBP-1c were 

higher in the model group than in the control group. Aside from the expression level 

of C/EBPα (Table III; P=0.246), the increased expression levels of the three other 

indicators were statistically significant (Table III; P=0.021, 0.013 and 0.035).    

   

Correlation between miR-199a and aP2, C/EBPα, PPARγ2, and SREBP-1c. The 

correlation (r) between miR-199a and the four key adipogenic transcription factors is 

presented in Table IV. SREBP-1c expression levels were correlated with the miR-199a 

expression level (P=0.002). No statistically significant correlation was observed 

between miR-199a and aP2, C/EBPα, or PPARγ2 expression levels (P >0.05). The 

functional link between these molecules was analyzed using the Miranda program. It 

was found that the 3'-UTR of SREBP-1c mRNA has a theoretical binding site for 

miR-199a. The miR-199a processing and recognition of the mRNA target sites are 

presented in Fig. 3.   

 

Discussion 

 

The results of our study showed increased expression level of miR-199a in the WAT 

of the model group. The expression levels of key transcriptional regulation factors 

related to adipocyte differentiation and fat accumulation, including aP2, PPARγ2, and 

SREBP-1c, were up-regulated in the WAT of the model group. Among them, 

SREBP-1c was correlated with the miR-199a expression level.   

Obesity is an energy balance disorder that is characterized by increased lipid 

storage in adipocytes (hypertrophy) as well as an increased number of adipocytes 

(hyperplasia) (Wang, Tao et al. 2013). Adipocyte hypertrophy is the main reason of 

adult obesity. Generally speaking, it is not only caused by increased fatty acid 

synthesis from carbohydrates and fat intake by organs and low energy expenditure, 
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but also by a malfunction of fat tissue. The typical diameter of an adipocytes is 

0.3-0.9μm, but it can be about 20-fold larger in hypertrophic adipose tissue (Kim, Huh 

et al. 2015; Parlee, Lentz et al. 2014). In our study, a high-fat diet was used to create 

an obesity model. The adipocyte counts in the model group were lower than in the 

control group, but the fat mass was higher in the model group.  

The function of WAT is to store excess energy in the form of TGs and to convert 

them into FFAs and glycerol to provide energy upon demand. When the excess 

calories overwhelm the storage capacity of adipocytes, excess fat is stored in the liver, 

leading to fat deposition and insulin resistance (Kershaw and Flier 2004). As an 

endocrine organ, WAT plays a crucial role in controlling whole body metabolism by 

secreting adipokines and storing FFAs(Choe, Huh et al. 2016), and increased WAT 

mass via hyperplasia and hypertrophy results in adipocyte dysfunction (Roberts, 

Hodson et al. 2009). In our study, the FFA and TG levels of the model group were 

higher than those of the control group. This finding implies a disorder in lipid 

metabolism in the hypertrophic adipose tissue.  

MiRNAs, as transcription factors in the adipocyte differentiation process, were 

previously demonstrated to regulate adipogenesis and fat storage (Seton-Rogers 2012). 

A better understanding of the regulation of adipogenesis is crucial to the development 

of novel therapeutic strategies for obesity and its associated metabolic syndromes. 

Existing data demonstrated that miR-33 reduces the oxidation of fatty acids and 

inhibits the production of high-density lipoprotein (HDL), and it appears to be 

up-regulated in the individuals with obesity (Su, Zhang et al. 2017). In addition, the 

miR-222 expression level was found to be up-regulated in the serum of obese subjects, 

whereas miR-221 was down-regulated (Ortega, Mercader et al. 2013). The expression 

levels of both types of miRNAs are related to body mass index (BMI), waist 

circumference measurement, fat distribution, and HDL concentration (Ortega, 

Mercader et al. 2013). Many studies have also shown that miRNAs can be used as 

targets in the treatment of obesity and obesity-related chronic diseases (Alexander, 

Lodish et al. 2011; Kolfschoten, Roggli et al. 2009; Peng, Yu et al. 2014).  

As shown in Figure 3, pre-miR-199a has a hairpin structure. This hairpin structure is 
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processed into a miR-199a duplex by the RNase Dicer through cleavage at several 

sites in the hairpin. The miRNA is then unwound into two strands: miR-199a-3p (right) 

and miR-199a-5p (left). A previous study showed that miR-199a was highly 

expressed in 3T3-L1 preadipocytes (Kajimoto, Naraba et al. 2006), and another study 

demonstrated that the subcutaneous adipose tissue from piglets had a higher level of 

miR-199a(Shi, Li et al. 2014). Other several researches have shown that miR-199a 

participates in the regulation of adipogenesis (Gu, You et al. 2016; Song, Gao et al. 

2014), suggesting that miR-199a may play an important regulatory role in obesity. 

However, the potential role of miR-199a in adipogenesis and hypertrophy of WAT 

has not yet been demonstrated in animal models or in human subjects. In our study, 

the result showed an increased expression level of miR-199a in the WAT of the model 

group. Based on these results, we hypothesized that the increased miR-199a 

expression was associated with lipid accumulation. We then conducted the 

experiments to test this hypothesis. 

We also measured the expression levels of key transcriptional regulation factors 

that are related to adipocyte differentiation and fat storage. PPARγ, which is 

specifically expressed in WAT, is involved in lipid formation in mature adipocytes 

(White and Stephens 2010). C/EBPα also stimulates adipogenesis and works together 

with PPARγ in the process of adipocyte differentiation (Zuo, Qiang et al. 2006). In 

addition, other transcription factors, including aP2 and SREBP-1c are related with to 

fatty acid metabolism and glucose metabolism (Kolehmainen, Vidal et al. 2001; 

Kralisch and Fasshauer 2013; Wang, Kouri et al. 2005). Our results showed that the 

expression levels of aP2, PPARγ2, and SREBP-1c were up-regulated in the WAT of 

the model group. The results were consistent with previous reports (White and 

Stephens 2010). Moreover, SREBP-1c expression was consistent with the miR-199a 

expression level (Table IV), implying a potential mechanism between obesity and the 

miR-199a. In the control group, SREBP-1c expression level was low. When induced 

by a high-fat diet, the expression increased significantly in line with miR-199a 

expression. It showed that miR-199a may be relevant to obesity induced by a high-fat 

diet and the potential mechanism might be associated with SREBP-1c. We analyzed 
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the functional link of these molecules by Miranda programs 

(http://www.microrna.org/microrna/home.do) and found that the 3'-UTR of 

SREBP-1c mRNA has a theoretical binding site for miR-199a. And the miR-199a 

processing and recognition of the mRNA target sites was showed in figure 3C. Based 

on our findings, we speculate that miR-199a may exert its action by binding to its 

target mRNA and cooperate with SREBP-1c to induce obesity. As reported in the 

literature, miRNAs function is by partially pairing to sequences located in the 3’UTR 

of target mRNA (Abelson, Kwan et al. 2005). If the predicted binding site for 

miR-199a in the 3’UTR of SREBP-1c is confirmed in further research, therapeutic 

strategies affecting the function of miR-199a may be possible (e.g., chemically 

modified complementary inhibitors). However, future research would first need to 

verify the direct role of miR-199a by using gene silencing or knockout technology 

specifically in WAT. 

In conclusion, the present study showed that miR-199a expression is increased 

by a high-fat diet, and a higher level of miR-199a is correlated with increased 

expression of SREBP-1c. We analyzed the functional link of these molecules and 

found that the 3'-UTR of SREBP-1c mRNA has a theoretical binding site for 

miR-199a. Further research is needed to confirm our speculation. If the predicted 

binding site is confirmed in future research, potential therapeutic strategies affecting 

the function of miR-199a may be proposed for obesity and related-diseases. 

 

 

List of abbreviations 

 

White adipose tissue (WAT) 

Peroxisome proliferator activated receptor gamma2 (PPARγ2) 

CCAAT/ enhancer binding proteins alpha (C/EBPα) 

Adipocyte fatty acid-binding protein (aP2) 

Sterol regulatory element binding protein-1c (SREBP-1c) 

High-fat diet (HFD) 
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Figure 1. Body fat mass (from neck to tail) were scanned and tested by using digital 

DEXA scanners to process for morphometric studies. The fat mass of model group is 

higher than that of control group.  

 

Figure 2. Adipocytes were stained with hematoxylin and eosin, and counted under the 

light microscope (magnification, x200; scale bar=50 μm). An average number of 236 

and 200 adipocytes were counted in the control and model groups, respectively (Table 

II). 

 

Figure 3. miR-199a processing and recognition of the mRNA target sites. (A) The 

hairpin structure of a pre-miRNA is processed into an miRNA duplex using the RNase 

Dicer via cleavage at various sites in the hairpin (indicated by the arrows). (B) The 

miRNA is unwound into two strands: miR-199a-3p (right) and miR-199a-5p (left). (C) 

The theoretical binding site (highlighted, vertical lines) is presented. The dotted lines 

mark interactions that influence and strengthen target recognition. miR, microRNA; 

UTR, untranslated region. 
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Figure 3. MiR-199a processing and recognition of the mRNA target sites. (A) The hairpin structure 

of a pre-miRNA is processed into an miRNA duplex using the RNase Dicer via cleavage at various 

sites in the hairpin (indicated by the arrows). (B) The miRNA is unwound into two strands: miR-

199a-3p (right) and miR-199a-5p (left). (C) The theoretical binding site (highlighted, vertical lines) 

is presented. The dotted lines mark interactions that influence and strengthen target recognition. 

miR, microRNA; UTR, untranslated region. 
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