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Abstract

We demonstrate a general method to analyze the sensitivity of attack rate in
a network model of infectious disease epidemiology to the structure of the net-
work. We use Moore and Shannon’s “network reliability” statistic to measure
the epidemic potential of a network. A number of networks are generated us-
ing exponential random graph models based on the properties of the contact
network structure of one of the Add Health surveys. The expected number
of infections on the original Add Health network is significantly different from
that on any of the models derived from it. Because individual-level transmis-
sibility and network structure are not separately identifiable parameters given
population-level attack rate data it is possible to re-calibrate the transmissi-
bility to fix this difference. However, the temporal behavior of the outbreak
remains significantly different. Hence any estimates of the effectiveness of time
dependent interventions on one network are unlikely to generalize to the other.
Moreover, we show that in one case even a small perturbation to the network
spoils the re-calibration. Unfortunately, the set of sufficient statistics for spec-
ifying a contact network model is not yet known. Until it is, estimates of the
outcome of a dynamical process on a particular network obtained from simula-
tions on a different network are not reliable.
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1. Introduction

The role of complex networks has become increasingly important in diverse
fields of study, ranging from biology to social sciences to engineering. In the field
of social sciences, networks often model contacts among a population. The nodes
represent the individuals in the population and edges represent the contacts5

or interactions between them. Applied to infectious disease epidemiology, each
edge is associated with a probability of transmitting infection. Simulations draw
an instance from the joint probability of infecting any set of people, providing
insights into the spread of the disease through the population. Historically, the
focus of mathematical epidemiology has been on properties such as the period10

of incubation, the duration of illness and the mortality rate, and less on the
structure of the contact network. Hence simple compartmental approaches that
assume a more or less homogeneous mixing have been adequate [1, 2, 3, 4, 5, 6].
However, especially in the context of evaluating targeted control efforts for
sexually transmitted diseases, there has been increased emphasis on contact15

networks.
The transmission of an infectious disease through a contact network can be

modeled as a diffusive process on a graph [7, 8, 9]. The size and overwhelming
complexity of modern epidemiological problems calls for new approaches and
tools like stochastic processes, random walks or Markov Chain Monte Carlo20

methods. With the aid of computers, agent based models on realistic social
networks [9, 10, 11] can bridge from the individual level to population-level.
Such models have provided useful insights into the implications of interaction
patterns for the spread of disease. These simulations provide a platform to
test and understand the spread of diseases and the effects of any intervention25

measures targeted at specific sub-population [10, 12, 13]. Generalizing results
from one region to another requires studying variations in the network and the
sensitivity of results to those variations. Because it is difficult to measure large
contact networks, these studies rely on drawing sample networks from a network
model.30

It is known that the structure of the contact network significantly affects
the spread of diseases. Even though the behavior of real world systems can
sometimes be predicted by random graphs with constraints on structural prop-
erties such as degree distribution, discrepancies between theory and simulation,
suggest the presence of different social structures which are not captured by35

these constraints [14]. The effective degree approach [15, 16], edge-based com-
partmental models [17, 18], modifications to simple compartmental models [19]
are a few of the ways researchers have tried to incorporate both the duration of
the contacts in the network and the heterogeneities in numbers of partners. In
particular, it has been suggested that mathematical models which incorporate40

such heterogeneities along with the clustering can be used to model the epidemic
dynamics on networks [20, 21].

The spread of infectious disease is an example of the classical bond perco-
lation process and it depends on the network structure. For networks whose
structure is tree-like, a large class of epidemic models can be solved exactly to45
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provide analytic expressions for the sizes of both epidemic and non-epidemic
outbreaks and for the position of the epidemic threshold [22]. For an arbi-
trary network, the epidemic threshold condition is closely related to the largest
eigenvalue of the adjacency matrix, under reasonable approximations [23]. Fur-
ther, it is shown that the time taken for the epidemic to die out depends on50

the difference of the two largest eigenvalues of the adjacency matrix [24]. The
fluctuations in the connectivity of the network also influence the overall behav-
ior of epidemic spreading by strongly enhancing the incidence of infection [25].
The effects of the k-core structure and clustering of the connections on phase
transitions have been shown in [26]. Methods like onion decomposition [27] pro-55

vide insights about the topology around each node allowing the identification of
important local structure. The work presented here investigates whether a class
of networks with similar local structure exhibits similar dynamics, in particular,
the spread of diseases.

A variety of mathematical models are used in the literature to create net-60

works that can imitate the patterns of the links in real networks. Some are
random in nature with few parameters fixed whereas others are more struc-
tured and take into account more network properties. Methods such as prefer-
ential attachment [28] can generate networks with a certain degree distribution
while small world models reproduce the clustering in observed networks [29].65

Exponential random graphs [30, 31] create a network model with maximum en-
tropy consistent with matching user-specified properties. Networks drawn from
this model have values of these statistics that are closely fitted to those of an
observed network, but otherwise random [31]. Recent studies have used the
exponential random graph models (ERGMs) to model friendship networks [32].70

For example, the spread of sexually transmitted disease has been studied exten-
sively [33, 34, 35, 36, 37, 38] using data available from Wave I of the National
Longitudinal Study of Adolescent to Adult Health (Add Health). Add Health is
a longitudinal study of a nationally representative sample of more than 90,000
adolescents in grades 7 through 12 in the United States, obtained from the data75

collected between 1994 and 1995 through a stratified sample of 80 schools. This
survey data combines the different demographic factors with the social interac-
tions of these school students. They have been analyzed by Resnick et. al. [39]
and Udry and Bearman [40], for example, to identify the characteristics associ-
ated with health and risky behaviors among the adolescents. ERGMs generate80

networks efficiently when the constraints are placed only on local statistics like
degree distribution (number of people connected to a certain individual), clus-
tering or number of triangles. But the spread of a disease depends on global
properties of the network, which are more difficult to match with an ERGM.

It is imperative to understand how the choice of properties to constrain85

affects the simulated spread of disease. This paper applies the concept of
network reliability, introduced by Moore and Shannon [41] to characterize the
effects of the network model. The network reliability R(x;α) takes into account
the structural properties (i.e., topology) as well as the dynamics of contagion
on the network. It gives the probability of observing an infection attack rate90

of at least α for an SIR (susceptible-infected-recovered) process with transmis-
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sion probability x on a particular network. This is a measure of the “epidemic
potential” introduced by Hamilton [42]. Since ERGMs are thought to capture
the structural features of social networks [30, 32, 43, 44], the network reliability
of an ensemble of ERGMs intended to represent a specific network in the Add95

Health survey is evaluated. It is observed that even though these models are a
good representation of local structure in the network, they lead to significantly
different dynamics for the propagation of an epidemic. However, because the
transmission probability and the network structure are not separately iden-
tifiable, there is a simple transformation of the transmission probability that100

can erase these differences. This suggests supplementing the ERGM model with
a description of this transformation to arrive at an ensemble of social network
plus the probability of transmission for simulating the spread of disease. The
effect of an intervention measure like vaccination (represented as node removal)
is briefly discussed for the networks. The transformation method works well105

for estimating the overall attack rate even for the networks where the nodes are
removed. Unfortunately, a model calibrated to reproduce the overall attack rate
does not necessarily reproduce the full time dependence of the epidemic curve,
and thus is not well suited for estimating the effects of time-dependent control
measures.110

2. Methods

One of the Add Health friendship networks is chosen as the “observed” net-
work for this study. The results on this population-based survey are compared to
those obtained from networks created using the ERGM [45] model based on the
observed network. One of the ERGM models yields the well-known Faux Mag-115

nolia dataset [45, 46, 47]. The Faux Magnolia network matches the Add Health
data in degree distribution, clustering, number of triangles and other centrality
measures, indicating that the ERGM is a good candidate model for a social
network. The population-based data used for this study is obtained from Wave
I of the Add Health study (http://www.cpc.unc.edu/projects/addhealth).120

One of the friendship networks, school 86 (based on the schools 086 and 186,
a junior and a senior high school) is used as the original dataset. A network
containing the mutual friends is considered for this study. The ERGMs are used
to model the underlying structure of the friendship network. There are different
ERGMs available in the statnet package [45] depending on the property to be125

constrained. Four distinct ERGMs are used to generate four sets of networks,
each containing an ensemble of 100 networks. Each of these four sets match
the features of the original network, e.g., the total number of edges, node at-
tributes and different values of the GWESP (geometrically weighted edgewise
shared partner) statistic [45], a parameter that combines the clustering and the130

number of triangles in the networks [30, 44]. The details of these models are
mentioned in the Section 2.1.

The Faux Magnolia network extracted from the statnet package [45, 46, 47]
is an ERGM fit based on this Add Health data. Model 1 constrains the total
number of edges of the original dataset; model 2 constrains the node attributes;135
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model 3 constrains the total number of edges and the number of triangles; model
4 constrains the total number of edges, the node attributes and an additional
statistic called GWESP [30, 44, 45], which is related to the number of triangles
and clustering in a network. The networks in the last two sets are generated
using this model, with two different values of the GWESP statistic, 0.25 and 0.5.140

These models are named to be consistent with the statnet naming convention.

2.1. Network Generation

The exponential random graph model (ERGM) is used to generate networks
with characteristics similar to a friendship network from the Add Health sur-
vey. The original network is one that has been built from the survey data of145

school 86 containing only the mutual interactions. The different ERGM models
used for this study are available in the statnet package[45, 48]. Four sets of
ERGM networks, each set containing an ensemble of 100 networks are gener-
ated using the three models. Model 1, referred to here as “edges”, takes the
total number of edges of the original data as the constraint. Model 2, referred150

to here as “node attributes”, uses the node attributes like race, sex and grade
along with the total number of edges of the original network to generate the
ERGM fits. Model 3, which constrains the number of edges and the number of
triangles, failed to converge in the trials [45, 48], so it is not reported here. The
last model is further constrained and is used for the remaining two sets. The155

networks generated using this model use two different values of the GWESP
(geometrically weighted edgewise shared partner) statistic [30, 44, 45, 48], 0.25
for model 4.1, referred to here as “GWESP = 0.25”, and 0.5 for model 4.2,
referred to here as “GWESP = 0.5”. GWESP is a parameter that affects the
clustering and the number of triangles in the networks. The following steps are160

used to build these networks. Here, sch is a R network object that contains
the mutual edges from the junior and senior high schools, school 086 and school
186.

model1 = ergm(sch∼edges)
165

model2 = ergm(sch∼edges + nodematch("grade")

+ nodematch("race") + nodematch("sex"))

model3 = ergm(sch∼edges + triangles, verbose=TRUE, maxit = 25,

control = control.ergm(steplength = 0.2))

model4 1 = ergm(sch∼edges + absdiff("grade")170

+ nodematch("grade") + nodematch("race")

+ nodematch("sex") + gwesp(0.25, fixed=TRUE),

burnin = 1e+4, interval = 1000,

MCMCsamplesize = 2500, maxit = 25,

control = control.ergm(steplength = 0.25))175

model4.1 = simulate(model4 1, burnin = 1e+8, constraints=∼edges)

model4 2 = ergm(sch∼edges + nodematch("grade")

+ nodematch("race") + nodematch("sex")
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+ gwesp(0.5, fixed = TRUE), MCMCsamplesize = 1e+5,180

maxit = 15, verbose=TRUE,

control = control.ergm(steplength = 0.25))

model4.2 = simulate(model4 2, burnin = 1e+6, verbose=TRUE)

The Faux Magnolia network is extracted from the statnet package [45]. “The
Faux Magnolia data set represents a simulation of an in-school friendship net-185

work. It is based upon the schools 086 and 186 from the Add Health Wave I
dataset.” [48] Table 1 summarizes model constraints.

statnet Model Constraints Used Labels Used

model 1 Total number of edges edges
model 2 Edges + Node attributes node attributes
model 3 Edges + Triangles
model 4.1 Edges + Node attributes + GWESP = 0.25 GWESP = 0.25
model 4.2 Edges + Node attributes + GWESP = 0.5 GWESP = 0.5

Table 1: Summary of constraints used in [45, 48] for constructing the ERGM models.

2.2. Statistics on Networks

Typical measures of network structure like degree distribution, number of tri-
angles, clustering coefficients and centrality measures - closeness and between-190

ness centrality are calculated for all the networks generated by the different
models as well as the Faux Magnolia and the school 86 networks (Supplemen-
tary Notes). Comparison of these measurements demonstrates that the final
model, “GWESP = 0.5”, and the Faux Magnolia network are best calibrated
while all the models meet the constraints to the other statistics as well.195

2.3. Epidemic Threshold for the Networks

The epidemic threshold condition for networks which have tree-like structure
locally given by Newman’s formula [22] can be written in terms of the mean 〈k〉
and the variance Var[k] of the degree distribution [15, 16]. This quantity, called
xc in this paper, is given by the Equation 1.200

xc =
1

〈k〉 − 1 + Var[k]
〈k〉

(1)

For an arbitrary graph, xc is inversely related to the largest eigenvalue of the
adjacency matrix [23]. The values of the largest eigenvalues for these networks
are similar, λ86 = 5.05 and λFM = 4.98. The Figures 1a and 1b show that
xc for the school 86 network and the Faux Magnolia are similar compared to
the other network models. (Plots for the largest eigenvalues and the difference205

of the two leading eigenvalues are in the Supplementary Notes.) The box-
plots indicate that Faux Magnolia matches the xc values much better than the
others. It is to be noted that the networks obtained using model “edges” and
model “node attributes” have a higher threshold value in contrast to the models
“GWESP = 0.25” and “GWESP = 0.5”.210
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Figure 1: (Color online) Boxplots showing the values of the epidemic threshold, xc for the
networks. The threshold is calculated using Newman’s formula in (a) and using the largest
eigenvalue of the adjacency matrix in (b). The labels on the horizontal axis correspond to the
models used.

The mean epicurves obtained after 104 SIR simulations for all the 100 net-
works for each model with those for school 86 and Faux Magnolia are shown in
Figure 2. The plots in Figure 3a use one randomly chosen network from all the
models for the simulation. The error bars represent the probable errors for the
estimated mean value. It can be concluded that the epicurve for Faux Magnolia215

is the best match for school 86 network. However, despite the similarity in the
shape of the epicurves of the two networks in Figure 3b, there is a systematic
difference between them. The curve corresponding to Faux Magnolia overesti-
mates the length of an outbreak and the height of the peaks for a particular
value of the transmission probability. Further, the average attack rate - defined220

as the average of the total number of the people infected when a randomly
chosen individual is infected with the given values of x - is ∼ 0.0651 for Faux
Magnolia and ∼ 0.0402 for school 86 when x = 0.85. The attack rates for net-
works obtained from the models “edges”, “node attributes”, “GWESP = 0.25”
and “GWESP = 0.5” are ∼ 0.1308, 0.2212, 0.2634 and 0.2425 respectively.225

2.4. R(x;α) - Epidemic Potential (Network Reliability)

R(x;α), the probability of observing an attack rate of at least α for an SIR
process with transmission probability x on a particular network is estimated [49].
For example, R(x;α = 0.3) gives the probability that the overall attack rate for
an SIR process is at least 30% when the probability of transmission of infection230

is x. This measure depends on both the network structure and x. Thus, it
specifically reflects the behavior of SIR dynamics on a particular network. It
is evaluated for all the networks for three different values of α, 0.02, 0.05 and
0.08. This is identical to calculating the probability that at least 2%, 5% or 8%
of the population is infected. Simulations are used to verify that the method235
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Figure 2: (Color online) Summary of epicurves for all the networks for the probability of
infection = 0.85.

based on the reliability statistic estimates the correct value of the probability
of a disease outbreak. Few values of the transmission probability obtained by
the transformation are used as the infection rate to calculate the overall average
attack rate in these two networks. The table in the Supplementary Notes shows
the results of SIR simulations on the Faux Magnolia network and the school 86240

network for different values of x.
It is observed that different networks have the same value of R(x;α) for

different values of x (Figure 5). Taking advantage of this confounding, one
model can be calibrated to another, so that the epidemic potential [42], R(x;α)
is the same for both. A low order polynomial transformation provides a good fit245

for the calibration curve. For this analysis, the Faux Magnolia network, school
86 network and one of the networks from model “node attributes”, named net1
in the paper are used. Further, to validate the results obtained, SIR simulations
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Figure 3: (Color online) Mean epicurves for the networks for a probability of transmission, x
= 0.85. The error bars are the probable errors for the estimated mean value. (a) This figure
shows the mean epicurves for one of the networks from each of the models along with the
Faux Magnolia and school 86 networks. (b) This detail from (a) shows the epicurves for the
Faux Magnolia and school 86 networks.

are run on these networks for different values of x and the values of the average
attack rates are compared.250

Figure 4a shows the values of R(x;α) for the Faux Magnolia and the school
86 networks for the three values of α mentioned above. The scatter plot in
Figure 4b shows the variation of the overall attack rates for both the networks
as a function of the attack rate for school 86 for all values of probability of
transmission x. Figure 6 shows the values of R(x;α) for the different networks255

over a range of all the possible values of x for α = 0.05. Each shaded region with
a curve showing the median value represents each ensemble, and the shaded area
lies between the 5th and the 95th quantile curves. (Results for other values of
α are in the Supplementary Notes.)

From Figure 6, it is evident that different values of the transmission proba-260

bility, x correspond to the same value of R(x;α). Figure 5 shows a schematic of
how R(x;α) for two different networks, G1 and G2 are the same for the x and
xeff . This property can be used to generate a re-calibration curve. Empirically,
it turns out that the two values of x are related to each other by a quadratic
(details in the Supplementary Notes). The transformed x values of the Faux265

Magnolia network relative to those for the school 86 network are estimated using
a quadratic fit, i.e.,

xFM = a0 + a1x86 + a2x
2
86 (2)

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 22, 2017. ; https://doi.org/10.1101/168047doi: bioRxiv preprint 

https://doi.org/10.1101/168047


0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

(a)

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150
attack rates86

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

a
tt
a
ck

ra
te

F
M
/a
tt
a
ck

ra
te

s8
6

faux magnolia

school 86

(b)

Figure 4: (Color online) (a) R(x;α) for school 86 and Faux Magnolia networks for three
values of the attack rates. (b) The overall attack rate for school 86 and Faux Magnolia as a
function of the attack rate for school 86. The error bars (which are of the size of the points)
represent the mean probable error in estimating the attack rate after 1000 simulations.
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Figure 6: (Color online) R(x;α) values for all networks for a range of values of x. Each shaded
region represents one of the four models with the crossed lines representing the medians for
each set and the solid lines denoting the 5th and the 95th quantile curves. The lines with the
circles display the values for Faux Magnolia and school 86 networks.

The x values re-calibrated according to Equation 2 reproduce the epidemic
potential for the networks. The plot in Figure 7 shows these estimated values of
R(x;α) obtained using the quadratic polynomial fit from the transformed values270

of x for the case when α = 0.05. (The plots for α = 0.02 and 0.08 are in the
Supplementary Notes.) It is to be noted that the estimated values calculated
using this technique are as good as those calculated numerically for these two
networks.

Figure 8 shows the time evolution of the overall fraction of infected people275

for the two networks - Faux Magnolia and school 86 - for two values of the
probability of transmission, x = 0.85 and 0.92. These are the mean epicurves
obtained from 104 SIR simulations on these networks. The error bars represent
the probable error for the estimate of the mean value from the simulations. The
epicurves for each run of the simulations and their mean curve are presented in280

the Supplementary Notes. These two networks are further compared with net1
(the network obtained from the model “node attributes”). The mean epicurves
for all three networks are plotted in Figures 8a and 8c for the above values of x.
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Figure 7: (Color online) Plot showing that the estimated values of R(x;α) for the Faux
Magnolia network calculated using the quadratic polynomial fit from the values obtained
from the school 86 network agree with those obtained from the numerical analysis on the
Faux Magnolia network.

The re-calibration is done to obtain an overall attack rate of ∼ 0.06 for all
three networks. Plots 8e and 8f show the mean epicurves for different values285

of x chosen so that the average attack rate is similar. Figures in the right
panel, i.e, 8b, 8d and 8f allow a detailed comparison between school 86 and
Faux Magnolia. The overall attack rate of ∼ 0.06 is obtained in the school 86
network for x = 0.92 whereas in the Faux Magnolia network it is obtained when
x = 0.85 (also shown in the table in the Supplementary Notes). For the random290

network (net1), a lower value, x = 0.73 gives the same attack rate.
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Figure 8: (Color online) The mean epicurves for school 86 and Faux Magnolia networks for
two values of the probability of transmission, x. (a) and (b) when x = 0.85 and (c) and (d)
when x = 0.92. (a) and (c) show the epicurves for these networks along with net1. (e) and
(f) The mean epicurves for the networks for three values of transmission, x = 0.73 for net1,
x = 0.85 for Faux Magnolia and x = 0.92 for school 86, to obtain the same average attack
rate (∼ 0.06). The error bars are the probable errors for the estimated mean value.
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2.5. Effects of Intervention Measures

To investigate the response to intervention measures some nodes are removed
at random from each of the original networks to capture the effects of vaccina-
tion. Two new networks are generated from each of school 86, Faux Magnolia295

and net1 networks by removing 10 and 100 nodes at random. Figures 9 and
10 compare the mean epicurves obtained after 104 SIR simulations on the new
networks for two values of transmissibility, x = 0.85 and 0.92. The error bars
represent the probable error in estimating the mean curves. In both the figures,
the plots in the right panel allow a detailed comparison between school 86 and300

Faux Magnolia.
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Figure 9: (Color online) The mean epicurves for school 86, Faux Magnolia and net1
networks for two values of the probability of transmission, x. (a) and (b) when x = 0.85 and
(c) and (d) when x = 0.92. (b) and (d) show the detailed epicurves for school 86 and Faux
Magnolia. The error bars are the probable errors for the estimated mean value. The starred
curves represent the original networks; the dotted curves, networks with 10 nodes removed.
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Figure 10: (Color online) The mean epicurves for school 86, Faux Magnolia and net1
networks for two values of the probability of transmission, x. (a) and (b) when x = 0.85 and
(c) and (d) when x = 0.92. (b) and (d) show the detailed epicurves for school 86 and Faux
Magnolia networks. The error bars are the probable errors for the estimated mean value.
The starred curves represent the original networks; the dotted curves, networks with 100
nodes removed.

The R(x;α) curves for the networks with 10 nodes removed are shown in
Figure 11. Figure 12 shows the transformation of the probability of transmission
given for the original networks as well as the one obtained by node removal for
α = 0.08. The x values for the networks before and after the removal of the305

nodes are plotted by the red and the green curves respectively. The plots for
α = 0.02 and 0.05 are in the Supplementary Notes.
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Figure 11: (Color online) R(x;α) for school 86 and Faux Magnolia networks when 10 nodes
have been removed from them at random. The x-axis is expanded to provide a better view of
the ‘interesting’ region.
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Figure 12: (Color online) Plots showing the x-values for Faux Magnolia obtained from the
school 86 for α = 0.08. The red line represent the transformation for the original networks,
the green line with 10 nodes removed.

Figures 13 exhibit that the transformation when nodes are removed from
the networks. The epicurves for the three networks when 10 nodes are removed
are plotted in Figure 13a and 13b and those when 100 nodes are removed are310

plotted in 13c and 13d. Table 2 summarizes these values for each network. To
get a detailed contrast between school 86 and Faux Magnolia networks, their
results are presented in the plots in the right panel.
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Figure 13: (Color online) The mean epicurves for school 86, Faux Magnolia and net1 for
different values of x when nodes are removed from the orginial networks. (a) and (b) 10
nodes removed, (c) and (d) 100 nodes removed. The error bars are the probable errors for
the estimated mean value. The starred curves represent the original networks; dotted curves,
networks with nodes removed.
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Intervention Network x Attack Rate |ARs86−AR|
ARs86

None
School 86 0.92 0.0658 (± 0.0002) 0.0

Faux Magnolia 0.85 0.0623 (± 0.0003) 0.0532
net1 0.73 0.0583 (± 0.0028) 0.1140

10 nodes removed
School 86 0.92 0.0623 (± 0.0001) 0.0

Fuax Magnolia 0.85 0.0587 (± 0.0002) 0.0578
net1 0.73 0.0533 (± 0.0023) 0.1444

100 nodes removed
School 86 0.92 0.0191 (± 0.0004) 0.0

Faux Magnolia 0.85 0.0215 (± 0.0007) 0.1256
net1 0.73 0.0138 (± 0.0011) 0.2775

Table 2: Attack rates obtained for different values of probability of transmission, x, for three
networks.

3. Discussion

For epidemiological purposes, it is essential to explore the effects of the net-315

work structure on the dynamical process of an infectious disease epidemic. The
boxplots in Figure 1 indicate that although the ERGM succeeds in generat-
ing random graphs with similar degree distribution and clustering, uncontrolled
variation in other structural properties creates significant change in the value
of the epidemic threshold, xc. The difference in the threshold values in the320

plots 1a and 1b could be because of the approximation of the tree-like structure
in the Newman’s formula [22]. Even though this is an important measure to
study the spread of an infectious disease, it does not capture all of the dynamics.
The epicurves (Figure 3) provide a better understanding of the whole process.
The similarity of epicurves obtained from the SIR simulations implies that the325

additional constraints used to generate the Faux Magnolia help predict the time
evolution of a disease on the school 86 network.

Instead of determining how the system behaves for a particular value of the
probability of transmission, a measure that estimates the size of an epidemic
outbreak for all its possible values, R(x;α) is suggested [49]. Comparing R(x;α)330

among different instances of ERGMs shows that, although the Faux Magnolia
network model matches the desired statistics of the school 86 network better
than the others, the behavior of the disease outbreak is significantly different.
Figure 4a shows that the original network is significantly more resistant to dis-
ease spread than Faux Magnolia, even though they have similar local statistics.335

Figure 6 suggests that the school network is more resistant to an epidemic than
ERGMs derived from it, i.e., a higher transmission probability is required for
widespread disease in the school 86 compared to other networks. In particular,
the probability that an outbreak seeded in a single randomly selected individual
will spread to at least 5% of the population is biased in this model.340

There is a consistency in the values of the epidemic threshold (Figure 1a)
and the R(x;α) values for the ensemble of networks generated using the ERGMs
(Figure 6). The model “edges” and model “node attributes” networks have
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higher threshold values than those of model “GWESP = 0.25” and model
“GWESP = 0.5”. The R(x;α) plots also point to the same result. It can be345

seen that the propagation of infection on most model networks is significantly
different from that on the original network.

The R(x;α) curves in Figure 6 are also consistent with the epicurves in Fig-
ures 2 and 3a. This means that the networks obtained from models “GWESP = 0.25”
and “GWESP = 0.5” have a much higher probability of producing an attack350

rate of at least 5% than school 86 or the others. Figure 4b shows that the over-
all attack rates for Faux Magnolia are different from those obtained for school
86. The attack rates are calculated for all values of probability of transmission,
0 ≤ x ≤ 1. This plot shows that for lower values of x, both the networks have
similar attack rates, but as x increases, they differ. This again agrees with355

the R(x;α) curves in Figure 4a. The estimated R(x;α) curves for the two net-
works calculated using the transformed x values obtained from the re-calibration
method are plotted in Figure 7.

From Figure 8, it can be concluded that the difference in outbreak size on the
three networks, Faux Magnolia, school 86 and net1, is not a simple function of360

time. Figures 8a and 8c show that the epicurves for net1 are very different from
the other two. Therefore, for a fixed value of x, Faux Magnolia performs much
better than net1 in predicting an outbreak on the original school network. Faux
Magnolia and school 86 networks produces similar outbreaks in many respects,
but there are systematic differences in the duration of the epidemic and the365

height of the peak values, as shown in Figures 8b and 8d. These differences
remain even when the attack rates are matched using the re-calibrated values
of x as displayed in Figure 8f. Figure 8e leads to a surprising result: for a
re-calibrated value of x, the less constrained random graph (net1) performs as
well as, and sometimes better than, the Faux Magnolia network in estimating370

the outbreak.
The effects of intervention measures like vaccination are explored by remov-

ing nodes at random from the networks. The epicurves before and after the
removal of 10 and 100 nodes from the three networks - school 86, Faux Magno-
lia and net1 are shown in Figures 9 and 10 respectively. As expected, the overall375

attack rate decreases as more nodes are removed for both values of transmission
probability, x = 0.85 and 0.92. However, Figures 9b, 9d, 10b, 10d and Table 2
show that the magnitude of this effect is different for school 86 and Faux Mag-
nolia. Figure 11, showing the R(x;α) curves for the networks with 10 nodes
removed, is consistent with this result.380

To verify whether the same re-calibration is valid for the networks with
the nodes removed, the transformed value of x for Faux Magnolia network is
plotted as a function of the x for school 86 in Figure 12 for α = 0.08. The
solid curves show how the effective x for Faux Magnolia varies with x for school
86. The red curves represent the original networks and the green ones, when385

10 nodes are removed. This figure suggests that when the nodes are removed,
a different re-calibrated value of x would be required to obtain similar attack
rates. This is not unexpected. There is no reason to presume a priori that the
same re-calibrated x value would work when the network is changed. Although,
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it is observed that the same re-calibrated value gives similar results, it is purely390

coincidental. From Figure 12, it can be concluded for 0.93 ≤ x ≤ 1, the original
re-calibration is changed very little. For any other values of x, there is a high
probability that the same re-calibration won’t work so well.

4. Conclusions

The transmission of infectious diseases can be investigated as a diffusive395

process on networks. The topology of the network affects the course of the
propagation of the infection through the population. Even on networks with
the same degree distribution, number of triangles, clustering coefficients or cen-
trality measures, the course of a disease through a population may vary. Here,
the epidemic potential measured by R(x;α) is used to measure dynamically400

important structural differences between networks. This measure depends on
both the global structural aspects of the contact network and the dynamics on
the network.

Exponential random graph models are used to generate a number of different
networks that match local statistics of one of the friendship networks from the405

first wave of the Add Health study. The Faux Magnolia network is one such net-
work well known in the literature. Network measures like the epidemic threshold
for these two networks are similar, suggesting that Faux Magnolia is a better
model for the high school friendship data than others. However, it is observed
that there are significant systematic differences in the spread of diseases on the410

two networks. This implies that the model generating Faux Magnolia does not
constrain a set of statistics that is sufficient to reproduce epidemic dynamics.

The epidemic potential R(x;α) for all these networks shows that the school
86 network is more resistant to large outbreaks than any of the others. Treat-
ing the transmission probability, x as a free parameter, these models can be415

calibrated so that they all have the same epidemic potential. But the resulting
epidemic curves exhibit systematic biases in the peak height and the outbreak
duration. Indeed, it turns out that a calibrated, but less constrained, system
performs better than Faux Magnolia, suggesting that network re-wiring involved
in matching local statistics has introduced spurious global structure.420

Moreover, as suspected, different networks do exhibit different responses
to interventions. The re-calibration suggested by recognizing the network and
the transmission probability are not separately identifiable parameters can be
applied to almost any two networks to obtain similar attack rates. There is no a
priori reason to expect the same re-calibration to be valid after an intervention425

changes the network structure, even though, as in the networks studied here,
the re-calibration may be similar, coincidentally.

It can be concluded that attack rate depends on a mixture of network statis-
tics that goes beyond degree distribution and clustering and is sensitive to some
global topological features. The question of what that mixture is requires fur-430

ther investigation.
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