
FaStore – a space-saving solution for raw sequencing data

Łukasz Roguski1,2 Idoia Ochoa3 Mikel Hernaez4 Sebastian Deorowicz5

July 24, 2017

Abstract

The affordability of DNA sequencing has led to the generation of unprecedented volumes of raw

sequencing data. These data must be stored, processed, and transmitted, which poses significant chal-

lenges. To facilitate this effort, we introduce FaStore, a specialized compressor for FASTQ files. The

proposed algorithm does not use any reference sequences for compression, and permits the user to

choose from several lossy modes to improve the overall compression ratio, depending on the specific

needs. We demonstrate through extensive simulations that FaStore achieves a significant improvement

in compression ratio with respect to previously proposed algorithms for this task. In addition, we per-

form an analysis on the effect that the different lossy modes have on variant calling, the most widely

used application for clinical decision making, especially important in the era of precision medicine.

We show that lossy compression can offer significant compression gains, while preserving the essential

genomic information and without affecting the variant calling performance.

[Supplementary material is available for this article.]

1CNAG-CRG, Centro Nacional de Análisis Genómico (CNAG) - Centre for Genomic Regulation (CRG), Barcelona Institute of

Science and Technology (BIST), Barcelona, Spain
2Universitat Pompeu Fabra (UPF), Barcelona, Spain
3Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA.
4Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL, USA.
5Institute of Informatics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology,

Gliwice, Poland.

Correspondence should be addressed to mhernaez@illinois.edu,sebastian.deorowicz@polsl.pl

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 2

Introduction

The growing interest in applications of genome sequencing, together with the dropping costs and contin-

uous improvements in sequencing technologies, has led to the generation of unprecedented volumes of

increasingly large and ubiquitous raw genomic data sets (Stephens et al. 2015). These data are character-

ized by highly-distributed acquisition, massive storage requirements, and large distribution bandwidth.

For example, the 1000 Genomes Project (Clark et al. 2012) required 260 Terabytes of storage space (for raw,

aligned, and variant calling data). Moreover, the 100,000 Genomes Project (2017) has already exceeded 21

Petabytes in size. Such flood of data hampers the efficiency of data analysis protocols, limits efficient data

sharing, and generates vast costs for data storage and IT infrastructure (Schadt et al. 2010). This situation

calls for state-of-the-art, efficient compressed representations of the raw genomic data, that can not only

alleviate the storage requirements, but also facilitate the exchange and dissemination of these data.

The raw high-throughput sequencing data are primarily stored in FASTQ files (Cock et al. 2010), which

are usually considered as the input for the genomic data processing and analysis pipelines. A FASTQ file

can be perceived as a collection of “reads”, each containing a sequence of nucleotides (generally referred

to as the read), the quality score sequence that indicates the reliability of each base in a read, and the

identifier, which usually contains the information about the sequencing instrument, flow cell coordinates,

etc. Millions of such reads are produced in a single sequencing run. As a result, storing raw whole-genome

sequencing data of a single human can easily exceed 200 GB in uncompressed form.

Most of the analyses pertaining to DNA sequencing (e.g., in the context of precision medicine) rely

on assessing the variants of the sequenced genome against a known reference genome. In order to assess

these variants, the raw reads present in the FASTQ file are first aligned to a reference sequence. This process

generates aligned reads in SAM format (Li et al. 2009), which contains the same information as the FASTQ

file (i.e., the read identifier, the raw sequence of nucleotides and the quality scores), together with the

alignment information for each read, and possible additional information provided by the mapper. After

a number of post-processing steps over the aligned reads, variant calling against the reference genome

is performed. The called variants, following a number of additional data cleaning and validation steps,

is normally used as an entry point for further clinical analyses. The size of the resulting file is orders of

magnitude smaller than the input raw reads stored in FASTQ format. For example, as humans share about

99.5% of the same genetic code (Wheeler et al. 2008), the variants of interest will account for less than 1%

of all the base pairs.

Although the data contained in the FASTQ file could potentially be recovered from the correspond-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 3

ing SAM file (or its compressed version), there are cases in which this may be impossible. For example:

(i) the SAM file may not contain the reads that failed to align to the reference genome or those marked

as duplicates, (ii) some reads in the SAM file can be truncated (hard-clipped), (iii) the reference genome

used for compression may no longer be accessible during decompression, or (iv) there may not be a refer-

ence genome at all to generate the corresponding SAM file (e.g., in metagenomics, the different organisms

present in the sequenced sample are generally unknown prior to the analysis).

Therefore, we focus on the compression of the information stored in FASTQ format, that is, the raw

data containing the nucleotide sequences, the read identifiers, and the quality scores, since they represent

a minimal subset of the data required for future reproduction of the analyses performed on the sequenced

data. The existing specialized solutions for FASTQ files compression, extensively examined in (Numanagić

et al. 2016), obtain significant compression gains over general compression tools such as gzip. However, in

practice, gzip is still the de facto choice, mainly due to its popularity and stability. It seems that the commu-

nity has not decided yet that the assets of specialized FASTQ compressors are worth some complications

that may appear when moving to a different format of storage. Also, the fact that currently a number of

good dedicated compressors are available does not make the right choice simple.

In this paper we propose FaStore, a new compressor for FASTQ files that, among others, can be used

for long-term archival of raw genomic information and efficient sharing, especially with limited internet

bandwidth. FaStore inherits the assets of our previous attempts in the field, especially DSRC (Deorowicz

and Grabowski 2011; Roguski and Deorowicz 2014), ORCOM (Grabowski et al. 2015), and QVZ (Malysa et

al. 2015; Hernaez et al. 2016). The proposed compressor offers both lossless and lossy compression modes

(the latter only for the quality scores and the identifiers), and does not use any external reference sequences.

We show that FaStore significantly outperforms the existing compressors in the lossless mode. We,

however, advocate for the lossy option when suitable, which, as presented, gives much better shrinkage of

the input files with negligible differences in variant calling. Although we emphasized the variant calling as

the most common use-case for precision medicine, the analyses performed using FASTQ files are not only

limited to variant calling, but also used for, e.g., gene expression analysis, assembly, or metagenomics.

Results

Lossless and lossy compression of sequencing data

FaStore is a compressor optimized for handling FASTQ files produced by next-generation sequencing plat-

forms, which are characterized by generating massive amounts of short reads with a relatively low se-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 4

quencing error rate. FaStore exploits the redundancy present in the reads to boost the compression ratio. In

addition, it includes several compression modes to account for the different needs that the users may have.

In particular, parts of the data, namely, quality scores and read identifiers, can be optionally discarded

or quantized for additional file size reduction. On the other hand, the sequences of nucleotides (DNA

sequences) are always lossless compressed. Due to the different nature of components of reads (DNA

sequences, quality scores, and identifiers), FaStore uses different specialized compression techniques for

each of them (see Supplementary Methods for details). Moreover, as the sequencing data can be gener-

ated from a library in a single- or paired-end configuration, FaStore provides different techniques to handle

both cases, guaranteeing that the pairing information between the reads is preserved when available. In

the following, when clear from the context, the DNA sequences may be also referred to as reads.

Compression of the DNA sequences is done without the use of any external reference sequences. Re-

lying on a reference sequence for compression requires the availability of the same reference at the time of

decompression, which may no longer be accessible, thus making the compressed DNA sequences unrecov-

erable. Hence, this design choice guarantees perfect reconstruction of the sequences.

The reads produced using next-generation sequencing protocols can be thought of as being randomly

sampled from across the genome (Firtina et al. 2016) (the input molecule), and thus their initial ordering in

the output file carries no information.

With this in mind, FaStore reorders the reads to exploit the existing high similarity among the DNA

sequences. In particular, the reads are clustered in a manner such that reads coming from neighboring

positions in the sequenced genome are likely to belong to the same cluster. When possible, within each

cluster, the reads are assembled into contigs and stored relatively to a consensus sequence. Alternatively, a

read can also be stored relatively to other reads belonging to the same cluster, or “as it is”, depending on

the degree of similarity with the other reads in the cluster.

As a trade-off between the computation time to cluster the reads and the attained compression ratio,

FaStore offers two modes of operation, denoted by C0 (fast) and C1 (default). The clustering process in C1

mode is more involved, leading to better compression ratios. The decompression speed is similar for both

modes.

While the DNA sequences can be efficiently compressed due to the redundancy present in the data, the

quality scores have proven more difficult to compress (Bonfield and Mahoney 2013). Part of the reason is

that they are inherently noisy and thus characterized by a high entropy. In addition, preserving precise

quality scores is often unnecessary (i.e., some distortion is generally acceptable), in that no cost is incurred

on the subsequent analyses performed on the data (Ochoa et al. 2016; Yu et al. 2015). Hence, FaStore offers,

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 5

in addition to lossless compression, various types of lossy compression modes for the quality scores. In

particular, FaStore includes Illumina 8-level binning (Illumina 2014), a custom binary thresholding, and an

adaptive scheme based on QVZ (Malysa et al. 2015; Hernaez et al. 2016).

Illumina binning mimics the binning of quality scores performed by the latest Illumina sequencing ma-

chines by mapping the resolution of quality scores to 8 distinct bins. The binary thresholding quantizes

the quality scores according to a user-provided threshold, i.e., it sets the quality values below the thresh-

old to qmin, and those above to qmax. Finally, QVZ quantizes the quality scores so as to minimize the rate

allocation (number of bits per quality score) while satisfying a distortion constraint. To design the appro-

priate quantizers, QVZ relies on computing the statistics of the quality scores prior to compression. FaStore

gathers these statistics while clustering the reads, and thus there is almost no added computational cost.

The quantizers are generated after clustering the reads, and one global codebook per dataset is used. For

lossless compression, FaStore uses QVZ in lossless mode.

The read identifiers are initially tokenized to make use of the fact that some appearing tokens are con-

stant, some are from a small dictionary, etc. Moreover, since the complete identifiers are usually unneces-

sary in practice, FaStore also offers a lossy mode for storing them, either by removing the comments (as

mappers do by default) or by completely skipping them.

Regarding storing of the pairing information between the reads (when these were generated from a

paired-end library), the FASTQ format does not clearly define how the pairing information should be repre-

sented. Currently there are two main ways to convey this information: (i) it is carried in the read identifiers

(i.e., a pair of reads share the same identifier), or (ii) it is encoded at the file-level (i.e., the reads reside on the

same lines in two FASTQ files or are stored interleaved in a single file). FaStore preserves this information

with the sequences, allowing the identifiers to be removed and generating unique ones per pair of reads

when decompressing.

Compression factors

For evaluation of the proposed compressor FaStore, we use a subset of data sets already benchmarked in

(Numanagić et al. 2016; Grabowski et al. 2015; Benoit et al. 2015; Deorowicz and Grabowski 2013), alongside

new ones characterized by a high coverage. The details of the employed datasets are summarized in Table 1

(see Supplementary Methods for the download links). The collection consists of 7 large sets of pair-end

FASTQ files (top 7 rows) and one vast pair-end data set (bottom row), and it includes sequencing data

from the H.sapiens, G.gallus, and C.elegans species. We compared the performance of FaStore with that of

gzip (the de facto current standard in storage of sequencing data) and the top FASTQ compressors according

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 6

Table 1: Datasets used in the experiments. WGS is for Whole Genome Sequencing. WES is for Whole Exome Se-

quencing.

Data set Species Experiment type Sequencer FASTQ size [GB] Read len. [bp] No. reads [M] Coverage

CE C.elegans WGS Illumina GA II 17.6 100 67.6 66

GG G.gallus WGS Illumina GA II 115.9 100 347.3 32

HS2 H.sapiens WGS Illumina GA II 336.9 100 1339.7 43

HSX H.sapiens WGS Illumina HiSeq X 292.1 151 819.1 39

WEX H.sapiens WES Illumina HiSeq 2500 44.7 126 150.4 ∼220

WGS-14 H.sapiens WGS Illumina HiSeq 2000 115.6 101 447.1 14

WGS-42 H.sapiens WGS Illumina HiSeq 2000 337.3 101 1304.5 42

WGS-235 H.sapiens WGS Illumina HiSeq 2000 1888.4 101 7363.7 235

to (Numanagić et al. 2016): DSRC 2 (Roguski and Deorowicz 2014), Fqzcomp (Bonfield and Mahoney 2013),

Leon (Benoit et al. 2015), Quip (Jones et al. 2012), and Scalce (Hach et al. 2012). We also tested the top DNA-

only compressors according to (Numanagić et al. 2016): ORCOM (Grabowski et al. 2015), Mince (Patro and

Kingsford 2015), and BEETL (Cox et al. 2012). However, since these algorithms fail to compress the whole

FASTQ file, we relegate their results to the Supplementary Worksheet W1. Unfortunately, for several data

sets, Mince run out of available memory (128 GB) and BEETL failed to process some of them in 48 hours

time, so they are not included in our analysis.

Figures 1a–d show the average compression factor and compression/decompression speeds for the

complete collection. All the tested compressors were run using 8 processing threads, when applicable,

and in maximum compression mode. Due to space constraints and ease of exposition, we provide results

for the main lossy settings of FaStore (denoted by reduced, lossy, and max), and refer the reader to the

Supplementary Worksheet W1 for an extensive evaluation of the whole range of lossy modes provided by

FaStore.

As shown in Figure 1a-d, FaStore in the lossless mode (preserving all the input data) achieves signifi-

cantly better compression factors than the competitors. In particular, the compression gains with respect to

the results achieved by the best competitor (i.e., Fqzcomp for all datasets except for dataset HSX where Leon

outperforms Fqzcomp), range from 7.6% to 20.3%. For example, for H.sapiens datasets HS2 and WGS-42,

this corresponds to more than 10 GB of savings in both cases.

Although the lossless mode is used by default in FaStore, we strongly recommend considering some of

the provided lossy modes. By discarding parts of the read identifiers and reducing the resolution of the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 7

a

0 5 10 15 20 25 30

FaStore-lossless
Fastore-reduced

FaStore-lossy
FaStore-max

Leon
Fqzcomp

DSRC 2
Quip

Scalce
pigz

Average compression factor [%]

All data sets

b

0 5 10 15 20

FaStore-lossless
Fastore-reduced

FaStore-lossy

FaStore-max

Leon

Fqzcomp
DSRC 2

Quip
Scalce

Average fraction of input file [%]

All data sets

DNA Quality ID

c

0 20 40 60 80 100 120 140

Average compression speed [MB/s]

All data sets

d

0 50 100 150 200 250 300

Average decompression speed [MB/s]

All data sets

Figure 1: Compression results. (a) Average compression factors in % (compressed size divided by original size) for all examined

datasets. (b) Average compression factors in % (compressed size divided by original size) for all examined datasets, divided

by the different components: DNA bases, quality values, and IDs. (c) Average compression speeds for all examined datasets.

(d) Average decompression speeds for all examined datasets. The sub-figures (a), (c), and (d) share the same legend. pigz is

multithreaded variant of gzip (same compression ratios, but faster processing).

quality scores, one can achieve significant savings in storage space. For example, in the reduced mode, the

compressed size is about 60% of that of the lossless mode. The improvement is possible thanks to Illumina

8-level binning (Illumina 2014) and removal of the comments from the identifiers (which, in some cases,

leads to storing only a library name and a read number). As the identifiers are usually truncated in this

way by mappers when producing SAM files and the 8-level binning becomes a default option in modern

sequencers (although the actual mapping of the values can depend on the internal configuration of the

sequencing machine), this setting seems to be a reasonable choice.

Even better results (approximately half the size of the lossless mode) is possible when QVZ with distor-

tion level 2 is applied (lossy mode). Nevertheless, the best compression factor (about a quarter of what was

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 8

obtained in the lossless mode) is achievable when the identifiers are removed (only the pairing information

between the reads is preserved) and the binary thresholding for the quality values is applied (max mode).

Figure 1b shows fractions of archives consumed by various components: DNA sequences, quality val-

ues, and read identifiers. There is no result for gzip as, due to the design of this compressor, it is impossible

to measure the exact fraction of each component. The results show that FaStore uses much less space to

store the DNA sequences than the competitors. Since in the lossy modes there is no loss incurred in the

DNA sequences, the amounts of space necessary for storing them are almost identical across the different

lossy modes. However, one needs to note that in the lossless mode FaStore needs more space for storing

identifiers than the other competitors (except for Scalce, which also reorders the reads present in the FASTQ

files to aid compression). The reason is that after reordering the reads it is much harder to compress their

identifiers, as the neighboring ones differ more than in the original ordering. Nevertheless, the compression

gain from the sequences of DNA overshadows the compression loss from the identifiers stream.

As outlined above, the most difficult to compress are, however, the quality scores. For most compres-

sors, when the quality scores are losslessly compressed, they require more space than the DNA sequences

and read identifiers together. Thus, applying the lossy schemes for the quality values has a remarkable

impact on the total compression factor. For example, to losslessly compress H.sapiens dataset HS2, FaStore

requires 46.3 GB of space. From those, 32.7 GB correspond to the quality scores, which can be further re-

duced to 9.3 GB (Illumina binning, reduced mode), 8.4 GB (QVZ with distortion level 2, lossy mode), or even

1.1 GB (binary thresholding, max mode). Note that in all the cases the overall size of the lossless compressed

FASTQ file is reduced by more than 50% when lossy compression of quality values is applied. In particular,

a reduction from 46.3GB to as little as 14.7 GB is achieved when binary thresholding is used. Furthermore,

this reduction in total size is computed without considering lossy compression of the identifiers, which

would provide even more storage savings. Below we demonstrate that such reductions in size are possible

with little effect on variant calling.

Finally, Figures 1c–d show the compression and decompression speeds for the different methods ana-

lyzed in this paper. The compression speed is some drawback of our solution, as it is somewhat smaller

than 10 MB/s (in the default C1 mode). Nevertheless, the decompression speed is comparable to the fastest

algorithms, i.e., DSRC 2 and gzip. For use cases where compression speed is of uttermost importance,

FaStore provides a fast mode, namely, the C0 mode. This mode trades the compression ratio of DNA se-

quences for compression speed, while still achieving better compression ratios than the competitors (see

Supplementary Worksheet W1).

As reported in Table 2, when losslessly compressing FASTQ data, on average, the compression speed

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 9

Table 2: Trade-off between modes C0 (fast) and C1 (default).

Compression factor of DNA stream Compression speed

Data set C0 [%] C1 [%] Ratio C0/C1 C0 [MB/s] C1 [MB/s] Ratio C0/C1

CE 6.96 6.35 1.09 35.5 3.4 10.56

GG 8.96 8.41 1.07 39.2 6.2 6.30

HS2 5.88 5.34 1.10 11.9 6.6 1.82

HSX 8.91 8.03 1.11 32.2 9.1 3.52

WEX 5.60 5.38 1.04 35.1 5.2 6.74

WGS-14 10.82 10.28 1.05 32.5 5.1 6.39

WGS-42 7.14 6.47 1.10 29.7 8.5 3.50

offered by C0 mode is greater by a factor of 5 as compared to C1 mode at a cost of increasing the size needed

to store the DNA bases by a factor of 1.09. Note that switching between C0 and C1 has no significant effect

on compression of quality scores and read identifiers, and the speed of decompressing files created in either

of these modes is almost identical.

Impact of lossy compression of quality scores on variant calling

Next, we assess the effect that the different lossy quality score compression modes provided by FaStore,

namely, Illumina binning, binary thresholding, and QVZ, have on variant calling. Since QVZ optimizes the

quantization for an average mean square error distortion level (specified as an input parameter), for the

analysis, we considered distortion levels 1, 2, 4, 8, and 16.

For the evaluation, we selected the two datasets coming from whole-genome sequencing of H.sapiens in-

dividual, sequenced at coverage 14x (WGS-14) and 42x (WGS-42) (see Table 1). These datasets pertain to the

same individual, namely NA12878, and were sequenced as part of the Illumina Platinum Genomes (Eberle

et al. 2017). The reason for this choice is that the National Institute for Standards and Technology (NIST) has

released a high-confidence set of variants for that individual as part of the Genome In a Bottle (GIAB) (Zook

et al. 2014) initiative. This allows us to consider this set as the “ground truth” and use it to benchmark the

different lossy modes supported by FaStore. For calling the variants we followed the Genome Analysis

Toolkit (GATK) (McKenna et al. 2010) Best Practice pipeline (Auwera et al. 2013), utilizing BWA-MEM (Li

and Durbin 2009) to map the reads to the human genome reference, followed by GATK HaplotypeCaller to

call variants. We refer the reader to the Supplementary Methods for a detailed description of the pipeline

used for the analysis.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 10

a

0.974 0.976 0.978 0.980 0.982
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Recall

P
re
ci
si
o
n

SNPs WGS-14

Lossless [12 GB]

Illumina8 (reduced) [5.4 GB]

QVZ-D1 [5.3 GB]

QVZ-D2 (lossy) [3.8 GB]

QVZ-D4 [2.5 GB]

QVZ-D8 [1.5 GB]

QVZ-D16 [0.7 GB]

Thr20 (max) [0.6 GB]

Discarded [0 GB]

b

0.9975 0.9976 0.9977 0.9978 0.9979 0.9980
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Recall

P
re
ci
si
o
n

SNPs WGS-42

[34 GB] [15 GB]

[15 GB] [10 GB]

[6.9 GB] [3.9 GB]

[1.7 GB] [1.5 GB]

[0 GB]

Figure 2: Compression results and variant calling analyses. (a) Results of variant calling for WGS-14 dataset. (b) Results of

variant calling for WGS-42 dataset.

In what follows we will report the results on Single Nucleotide Polymorphisms (SNPs), since SNPs

are easier to detect and more curated in the high-confidence reference set. Nevertheless, for completeness,

results for short insertions and deletions (INDELs) are provided in the Supplementary Worksheet W2. The

GATK Best Practices proposes to apply VQSR for semi-automatic filtering of variants, however, the use of

this machine-learning-based filter is still not widely adopted and should be used with caution for single-

sample analyses. Hence, here we focus on the results obtained by applying hard filtering on the called set

of SNPs, and refer the reader to the Supplementary Worksheet W2 for the complete set of results achieved

by applying both modes of filtering.

The results of the analysis are presented in Figures 2a–b. We focus on the recall vs precision results

obtained when using the considered lossy modes for the WGS-14 and WGS-42 datasets, respectively. It is

worth noticing that the precision is similar for both datasets (above 0.99 for most points), whereas the recall

is much higher for WGS-42. The majority of points have a recall value around 0.981 for WGS-14 compared

to 0.9978 for WGS-42. These results suggest that the sequence coverage plays a key role in variant calling

as it improves with increasing coverage.

The most interesting aspects are, however, the results achieved using the various lossy modes. As ex-

pected, increasing significantly the distortion level of QVZ reduces both the recall and the precision. The

variant calling performance applying QVZ with distortion level 1 (QVZ-D1) is comparable to that of Il-

lumina binning, with slightly better results (in recall and in precision for WGS-42x) in favor of Illumina

binning. Moreover, both modes, QVZ-D1 and Illumina binning, offer a similar compression factor, re-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 11

ducing the size of the quality scores by more than 44% when compared to lossless (with slightly better

compression achieved by QVZ). In addition, the variant calling performance is almost indistinguishable

from that achieved with the original data. Hence, the original size of the WGS-42 dataset could be reduced

by an order of magnitude (a 12× reduction), and almost a half of the space required to store it losslessly

compressed, by reducing the footprint of quality scores and removing the comments from the read iden-

tifiers, all while preserving the variant calling accuracy. As a side note, applying lossy compression to the

read identifiers (as done in the reduced and lossy schemes) has no effect on variant calling, as the mappers

usually strip the present comments, and can further reduce the compressed size.

In order to further boost the compression gains, more aggressive lossy modes need to be considered at

the cost of possibly losing some variant calling accuracy. In that regard, QVZ applied with distortion level 2

(QVZ-D2) seems to be a good trade-off between variant calling performance and compression factor. It

offers comparable performance to that obtained with the original data while reducing the size of the quality

scores by more than 66%. Distortion levels above 2, although offer significant compression gains, show a

degradation on variant calling. For example, with the maximum distortion considered (D16), the precision

drops from above 0.99 (with the original data) to 0.98 (WGS-14) and 0.97 (WGS-42). The differences in recall

are less pronounced.

Quite surprisingly, for WGS-42 the results for the max mode are almost as good as for the lossless mode

(for WGS-14 the recall decreased by about 0.002), with a vast difference on the size of the compressed

quality data (0.6 GB vs. 12 GB and 1.5 GB vs. 34 GB, for WGS-14 and WGS-42, respectively). These results

suggest that for data sets with increasing coverage, storing only the information of whether the called base

is “good” or “bad” is sufficient for obtaining reliable results on variant calling, while significantly boosting

the compression ratio.

For comparison, we also experimented with completely removing the quality data, but the results (se-

ries denoted as discarded) show a significant drop in both recall and precision. This indicates that some

information about the base quality is necessary for reliable variant calling results (at least in the examined

range of coverages).

Impact of read reordering on variant calling

As mentioned above, the reads produced using next-generation sequencing protocols are randomly sam-

pled from across the genome, and thus the original order of the reads carries no meaningful information.

Due to the large size nature of the produced data, several commonly used computational methods that

operate on these files rely on heuristics to be able to run in a reasonable time (even when executed in

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 12

multi-threaded mode). For this reason, the reordering of reads, even if theoretically not relevant, may have

some effect on variant calling. For example, authors in (Firtina et al. 2016) showed that, for some mappers,

randomly shuffling the input FASTQ reads can lead to different alignment results, especially for reads

originating from highly repetitive genomic regions.

Since FaStore permutes the input collection of reads, in this section we briefly examine the impact that

various read reorderings can have on variant calling. The goal is thus to analyze how the FaStore-specific

shuffling of the reads may affect variant calling. To that end, we compare it against a random shuffling

of the reads in the file and against the original order. In addition, we included into the comparison the

results from different computational environments (differing mainly by the number of computing threads

employed). The framework for the evaluation is identical to the one employed in the previous section,

that is, GATK pipeline is used as specified by the Best Practices using the data from H. sapiens NA12878

individual (see Supplementary Methods for a detailed description).

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.98141

0.98142

0.98143

0.98144

0.98145

0.98146

0.98147

0.98148

0.9943

0.99435

0.9944

0.99445

0.9945

0.9977

0.99775

0.9978

0.99785

0.9979

Figure 3: Precision and Recall obtained for various reorderings of dataset WGS-14, with and without VQSR filtering.

Points without label correspond to random shuffling. The red point represents the mean, the red line is the 95%

confidence on the mean, and the blue line is the standard deviation. The y-axis represents precision or recall, based

on what it is specified in the x-axis.

Figure 3 summarizes the findings of our study for dataset WGS-14. In particular, we compare the Preci-

sion and Recall (for the SNPs) with and without applying VQSR filtering, obtained with the original order,

the FaStore order, and four random shuffles. For the original and FaStore orders, we run the experiments

in two different computational environments (hence the two points with identical labels). There are several

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 13

things to notice from this plot. First, the difference in precision / recall obtained by the various orderings is

negligible. More interestingly, this difference is comparable to that of running the experiments in different

computational environments, suggesting that the order has no more effect than the used computational

environment. For example, when VQSR is not applied, the change in precision is less than 0.00006, and

the change in recall is less than 0.002. On the other hand, applying VQSR increases the change in precision

to 0.02, while maintaining the same variability in recall. More importantly, the choice of applying or not

the VQSR filtering has significantly more effect (specially in Precision) than the ordering of the reads. The

precision drops from 0.98 when no VQSR is applied to 0.91 when applied. This is several orders of mag-

nitude larger than the change due to reordering of the reads. All this put together indicates that the gains

in compression obtained by reordering the reads are worth pursuing, as there seems to be little – if none –

effect on variant calling.

Influence of coverage

Finally, we analyzed the compression ratio just for the DNA symbols (Figure 4) using whole-genome se-

quencing data of H.sapiens (WGS-235 dataset) sampled at various coverages. As can be noted, for some

algorithms (Scalce, Leon, Fqzcomp, FaStore) the increasing coverage leads to significant improvements in

compression ratio. In the case of FaStore, the advantage is more than 2-fold over the competitors. When

testing read-reordering algorithms (FaStore and Scalce), we also added a series of values in which the

reads were compressed as single-end (i.e., the pairing information was lost). For FaStore this led to further

savings in storage space, obtaining about 2.6 times better compression ratios.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 14

0 50 100 150 200 250
0

1

2

3

Coverage

R
a
ti
o
[b
it
s
p
er

b
a
se
]

WGS-235 subsets

FaStore FaStoreSE Scalce

ScalceSE Leon Fqzcomp

Quip DSRC 2 gzip

Figure 4: Compression ratio for storing only DNA symbols (bits used to encode a single base) for H.sapiens sampled

at various coverages (WGS-235 subsets). Superscript SE stands for Single-End.

Discussion

The efficient storage and transfer of huge files containing raw sequencing data has become a real challenge.

The popular general-purpose compressor gzip is still being used as a de facto standard solution to compress

FASTQ files, being able to reduce file sizes by about 3 times, with significant gains in cost of storage and

speed of transfer. However, as has been already pointed by multiple researchers (Numanagić et al. 2016;

Roguski and Ribeca 2016), even just by splitting the content of FASTQ file into separate information streams

of homogeneous data type (i.e., DNA sequences, read identifiers, and quality scores) and compressing each

separately using gzip, one can achieve gains in compression more than 15% than by using gzip alone. Un-

fortunately, this clearly demonstrates that the current de facto standard approach for storing raw sequencing

data is not the best choice and in modern times much higher savings in storage are possible and necessary.

Therefore, our proposed compressor, FaStore, is designed to achieve excellent compression factors, i.e.,

about 3 times better than gzip and significantly better than the existing specialized FASTQ compressors.

In addition, FaStore offers several lossy compression modes for the quality scores and the read identifiers,

which result in significant compression gains. Moreover, since the methods to compress DNA sequences,

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 15

quality scores and read identifiers are modular, they can be possibly implemented in other solutions to

store sequencing data in a more compact form. For example, the DNA sequences compression methods

can be used in solutions working with SAM alignments to improve the compression of unaligned reads.

The methods to compress quality scores can also be applied when compressing alignments in SAM format.

Finally, all the methods can be used in different genomic data processing and compression frameworks,

e.g., implemented as codecs in CARGO (Roguski and Ribeca 2016) or Goby framework (Campagne et al.

2013).

In parallel, we strongly suggest the community to consider resignation from storage of all the raw

sequenced data or, at least, considering the raw data to be stored in one of the lossy forms. As we presented,

together with the increasing sequencing throughput and the dropping costs of sequencing reflected in

higher coverages for the smaller prices, the high resolution of quality values seems to be unnecessary.

An important stage in this direction was made by Illumina, which has already introduced the possibility

of reducing the resolution of the available quality scores to 8 values in some of their newest sequencers

(e.g., HiSeq X), and it is considering a more aggressive 4-level binning scheme for their latest NovaSeq

system. We show that similar variant calling results could be obtained when even more reduction of the

quality stream is applied. For sufficiently large coverage it seems to be enough to provide just a binary

information about each base telling whether it is “good” or “bad”.

To imagine the possible gains in reduction of cost thanks to the lossy approaches let us say that the

FASTQ files for H.sapiens sequenced at 42-fold coverage in the paired-end mode could consume as little

as 10 Gigabytes (FaStore-max), which can be compared to 110 Gigabytes of gzipped FASTQ files. For both

datasets the quality of variant calling results should be almost identical.

Methods

Compression workflow

In FaStore, the compression workflow has been designed as a multi-step process to exploit the high se-

quence redundancy present in the sequencing data. It consists of: (1) reads clustering, (2) optional reads

re-clustering, and (3) reads compression stages. Each stage is further divided into multiple smaller steps.

In this section we provide a general overview of the compression workflow. A detailed description of the

methods used to cluster the reads and to compress the DNA sequences, quality scores, and read identifiers

can be found in the Supplementary Methods. The workflow is depicted in Figure 5 and can be briefly

described as follows.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 16

Figure 5: General compression workflow of FaStore. (A) Raw FASTQ reads are (B) distributed into bins. (C) Within

each bin, the reads are matched, giving as a result a reads similarity graph. Optionally, the reads follow further re-

distribution and matching. (D) With the final similarity graph, the reads are assembled into contigs. (E) The reads

are encoded either in contigs or differentially, depending on the matching result.

The read clustering stage is a 2-step process, consisting of a read binning step (see Figure 5B) and a

read matching step (see Figure 5C). During binning, for each read from the input FASTQ file(s) (Figure 5A),

FaStore seeks the sequence signature, i.e., the lexicographically smallest k-mer, with some restrictions. The

signature is used as an identifier of the bin in which the read is placed into. During this step, some statistics

are gathered related to the observed DNA sequences, quality scores, and read identifiers. At the end of the

binning stage, these statistics are used to compute the quantizers for the quality scores, which are stored

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 17

in a global codebook. This process is performed only when compressing quality scores in QVZ mode.

In addition, a token dictionary is built for the read identifiers. These data will be used during the final

compression stage.

After binning all the reads, FaStore performs the matching process, independently per each bin. The

goal is to find for each read, a referential one, which has the lowest “encoding cost”. This cost corresponds

to the number of operations required to transform one sequence into another under some user-specified

constraints. In order to do so, FaStore first reorders the reads, so that reads with DNA sequences possibly

originating from the same genomic region, are likely placed close to each other. Then, we iterate over the

reordered reads and, for each sequence, we search in a window of m previous ones for the best match.

A read can be matched as a normal match, an exact match (an identical sequence was found), or as a hard

read (when no satisfactory reference was found). The result of reads matching is represented as a similarity

graph, where each node represents a read (DNA sequence) and the edge represents the type of match. More

specifically, the result is a collection of trees, where each hard read represents a tree root (a tree can also

consist of only a root node). With such graph we can already proceed to the compression stage (as in C0

mode).

In order to improve the clustering between the sequences, a number of optional reads re-clustering

steps can be performed (C1 mode). The goal is to create larger clusters of highly similar (groups of) reads

to possibly bring the reads from the same genomic regions close to each other, by re-distributing the reads.

To do so, we first define a new subset of signatures, which will be used as a filter, to select the bins into

which the reads can be moved. Then, for each tree, we select a new root node, which has a new signature

residing at the beginning or at the end of its sequence. The connections between nodes are updated and

the trees are moved into bins (similarly as in Figure 5B) denoted by their root signatures, where each tree

is represented in the new bin as a single read (its root). This allows to improve the clustering between the

reads, by performing an additional matching of them (as in Figure 5C) and, as a result, building larger trees

of similar reads. In the C1 mode three re-distribution step(s) are performed.

The compression stage is a two-step process, consisting of assembling the reads sequences (Figure 5D)

into contigs and encoding the reads (Figure 5E), using the previously built reads similarity graph. First,

we traverse each tree and try to assemble the reads into possibly large contigs. The goal is to encode the

reads with respect to the built consensus sequences, encoding only the variants (if present) in the contigs.

While assembling a contig, for each read, we try to anchor it into the consensus sequence using the position

of its signature (which resides at the “center” of the consensus). To add the read to the contig, we assess

whether it does not introduce too many variants into the current consensus sequences, as they will need

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 18

to be encoded by the other reads already present in the contig. When no more reads can be added to the

contig, its final consensus sequence is determined by majority voting. As a result, in the graph some of the

nodes are replaced with the contig nodes, updating the connections between nodes accordingly.

Finally, we proceed to encode the reads data (Figure 5E), storing the result in a number of streams, sep-

arately for DNA sequences, quality scores, and read identifiers. The read sequences are encoded either in

contigs (encoding differentially versus consensus sequences) or differentially versus each other, depending

on the matching result. To encode the quality scores using QVZ we use the quantizers from the previ-

ously created codebook. Alternatively, when using Illumina 8-level binning or binary thresholding, we en-

code the transformed quality values. In parallel, we encode the read identifiers using the previously built

dictionary. Finally, the streams are compressed using a custom arithmetic coder or the general-purpose

compressor PPMd.

Variant calling

To investigate the possible side effects of applying lossy compression for base quality scores, we first pre-

pared a set of test FASTQ files, WGS-14 and WGS-42, which come from deep sequencing of the NA12878

H.sapiens individual. These files included, in addition to the original input files: (a) original input files

(lossless), (b) original input files with lossy compressed quality scores, (c) FaStore-shuffled reads with

lossy compressed quality scores. Moreover, using WGS-14 dataset we tested the effect of reordering the

reads using an additional set of test FASTQ files (but without applying any compression). These included:

(d) original input files with randomly shuffled reads, (e) FaStore-shuffled reads. A detailed description of

the FASTQ files preparation steps can be found in Supplementary Methods.

With such prepared input FASTQ files, we followed the GATK (McKenna et al. 2010) Best Practices

recommendations (Auwera et al. 2013) to assess the variants. We used BWA-MEM (Li and Durbin 2009; Li

2013) to map the reads to the human genome assembly GRCh37. Following a number of post-processing

steps, we called the variants using GATK HaplotypeCaller (GATK-HC). For assessing the variant calling

performance, we used as a “gold standard” the variants for NA12878 provided by the GIAB (Zook et

al. 2014), and benchmarked our results using the Illumina Haplotype comparison tools pipeline (https:

//github.com/Illumina/hap.py). This pipeline is also recommended by the Global Alliance for Genomics and

Health (GA4GH) as one of the benchmarking standards. In the manuscript we reported precision and recall

results for the obtained SNPs. For completeness, we also filtered the variants using GATK Variant Quality

Scores Recalibration (VQSR). Both the SNPs and INDELs calling results, with and without VQSR filtering,

are available in Supplementary Worksheet W2.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 19

Software availability

FaStore can be downloaded from https://github.com/refresh-bio/FaStore.

Acknowledgments

We would like to thank Ivo Gut for supporting the project and Marcos Fernández-Callejo for helpful dis-

cussions and technical insights.

This work was supported by: National Science Centre, Poland [under project DEC-2016/21/B/ST6/02153

to S.D.]; European Unions Seventh Framework Programme (FP7/2007-2013) [under grant agreement No.

305444 (RD-Connect) to Ł.R.]. The infrastructure was supported by “PL-LAB2020” project, contract POIG.02.03.01-

00-104/13-00.

Competing financial interests

The authors declare no competing financial interests.

References

Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, et al.

2013. From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Current protocols in

bioinformatics. doi:10.1002/0471250953.bi1110s43.

Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, Rizk G. 2015. Reference-free compression of high throughput

sequencing data with a probabilistic de Bruijn graph. BMC Bioinformatics 16: 288.

Bonfield JK and Mahoney MV. 2013. Compression of FASTQ and SAM format sequencing data. PLOS ONE 8.

doi:10.1371/journal.pone.0059190.

Campagne F, Dorff KC, Chambwe N, Robinson JT, Mesirov JP. 2013. Compression of structured high-throughput sequencing data.

PLoS One 8. doi:10.1371/journal.pone.0079871.

Clarke L, Zheng-Bradley X, Smith R, Kulesha E, Xiao C, Toneva I, Vaughan B, Preuss D, Leinonen R, Shumway M, et al. 2012. The

1000 Genomes Project: data management and community access. Nat. Methods 9: 459–462.

Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. 2010. The Sanger FASTQ file format for sequences with quality scores, and the

Solexa/Illumina FASTQ variants. Nucleic acids research 38: 1767–1771.

Cox AJ, Bauer MJ, Jakobi T, Rosone G. 2012. Large-scale compression of genomic sequence databases with the Burrows–Wheeler

transform. Bioinformatics 28: 1415–1419.

Deorowicz S and Grabowski Sz. 2011. Compression of DNA sequence reads in FASTQ format. Bioinformatics 27: 860–862

Deorowicz S and Grabowski Sz. 2013. Data compression for sequencing data. Algorithms for Molecular Biology 8: 25.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 20

Eberle MA, Fritzilas E, Krusche P, Källberg M, Moore BL, Bekritsky MA, Iqbal Z, Chuang H, Humphray SJ, Halpern AL, et al. 2017.

A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation

17-member pedigree. Genome Research 27: 157–164.

Firtina C, Alkan C. 2016. On genomic repeats and reproducibility. Bioinformatics 32: 22432247.

Grabowski Sz, Deorowicz S, Roguski Ł. 2015. Disk-based compression of data from genome sequencing. Bioinformatics 31: 1389–

1395.

Hach F, Numanagić I, Alkan C, Sahinalp SC. 2012. SCALCE: boosting sequence compression algorithms using locally consistent

encoding. Bioinformatics 28: 3051–3057.

Hernaez M, Ochoa I, Weissman T. 2016. A cluster-based approach to compression of quality scores. In Proc. of Data Compression

Conference, pp. 261–270.

Illumina. 2014. Reducing Whole-Genome Data Storage Footprint. https://www.illumina.com/documents/products/whitepapers/

whitepaper datacompression.pdf.

Jones DC, Ruzzo WL, Peng X, Katze MG. 2012. Compression of next-generation sequencing reads aided by highly efficient de

novo assembly. Nucleic Acids Res. 40: e171.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint. arXiv:1303.3997.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, et al. 2009. The sequence align-

ment/map format and SAMtools. Bioinformatics 25: 2078–2079.

Li H and Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754–1760.

Malysa G, Hernaez M, Ochoa I. Rao M, Ganesan K, Weissman T. 2005. QVZ: lossy compression of quality scores. Bioinformatics 31:

3122–3129.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. 2010.

The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research

20: 1297–1303.

Numanagić I, Bonfield JK, Hach F, Voges J, Ostermann J, Alberti C, Mattavelli M, Sahinalp SC. 2016. Comparison of high-

throughput sequencing data compression tools. Nat. Methods 13: 1005–1008.

Ochoa I, Hernaez M, Goldfeder R, Weissman T, Ashley E. 2016. Effect of lossy compression of quality scores on variant calling.

Brief. Bioinform. 18: 183–194.

Patro R and Kingsford C. 2015. Data-dependent bucketing improves reference-free compression of sequencing reads. Bioinformatics

31: 2770–2777.

Roguski Łand Deorowicz S. 2014. DSRC 2 – Industry-oriented compression of FASTQ files. Bioinformatics 30: 2213–2215.

Roguski Ł and Ribeca P. 2016. CARGO: effective format-free compressed storage of genomic information. Nucleic acids research 44.

doi:10.1093/nar/gkw318.

Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP. 2010. Computational solutions to large-scale data management and

analysis. Nature Reviews Genetics 11: 647–657.

Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE. 2015. Big Data: Astro-

nomical or Genomical. PLOS Biol. 13. doi:10.1371/journal.pbio.1002195.

The 100,000 Genomes Project. 2017. https://www.genomicsengland.co.uk/the-100000-genomes-project-by-numbers/.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 21

Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen Y, Makhijani V, Roth GT, et al. 2008. The complete

genome of an individual by massively parallel DNA sequencing. Nature 452: 872–876.

Yu YW, Yorukoglu D, Peng J, Berger B. 2015. Quality score compression improves genotyping accuracy. Nature Methods 33: 240–243.

Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, Salit M. 2014. Integrating human sequence data sets provides a

resource of benchmark SNP and indel genotype calls. Nature biotechnology 32: 246–251.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/168096doi: bioRxiv preprint 

https://doi.org/10.1101/168096
http://creativecommons.org/licenses/by-nc-nd/4.0/

