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Motivation:

Rapid advancement in high throughput genome and transcriptome sequencing (HTS)
and mass spectrometry (MS) technologies has enabled the acquisition of the genomic,
transcriptomic and proteomic data from the same tissue sample. In this paper we in-
troduce a novel computational framework which can integratively analyze all three
types of omics data to obtain a complete molecular profile of a tissue sample, in
normal and disease conditions. Our framework includes MiStrVar, an algorithmic
method we developed to identify micro structural variants (microSVs) on genomic
HTS data. Coupled with deFuse, a popular gene fusion detection method we devel-
oped earlier, MiStrVar can provide an accurate profile of structurally aberrant tran-
scripts in cancer samples. Given the breakpoints obtained by MiStrVar and deFuse,
our framework can then identify all relevant peptides that span the breakpoint junc-
tions and match them with unique proteomic signatures in the respective proteomics
data sets. Our framework’s ability to observe structural aberrations at three levels
of omics data provides means of validating their presence.

*To whom correspondence should be addressed. fThe authors wish it to be known that the first three
authors should be regarded as joint first authors.
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Results:

We have applied our framework to all The Cancer Genome Atlas (TCGA) breast can-
cer Whole Genome Sequencing (WGS) and/or RNA-Seq data sets, spanning all four
major subtypes, for which proteomics data from Clinical Proteomic Tumor Analysis
Consortium (CPTAC) have been released. A recent study on this dataset focusing on
SNVs has reported many that lead to novel peptides [1]. Complementing and signifi-
cantly broadening this study, we detected 244 novel peptides from 432 candidate ge-
nomic or transcriptomic sequence aberrations. Many of the fusions and microSVs we
discovered have not been reported in the literature. Interestingly, the vast majority of
these translated aberrations (in particular, fusions) were private, demonstrating the
extensive inter-genomic heterogeneity present in breast cancer. Many of these aber-
rations also have matching out-of-frame downstream peptides, potentially indicat-
ing novel protein sequence and structure. Moreover, the most significantly enriched
genes involved in translated fusions are cancer-related. Furthermore a number of the
somatic, translated microSVs are observed in tumor suppressor genes.

Contact:

cenksahi @indiana.edu

1 Introduction

Rapid advances in high throughput sequencing (HTS) and mass spectrometry (MS) tech-
nologies has enabled the acquisition of the genomic, transcriptomic and proteomic data
from the same tissue sample. The availability of three types of fundamental omics data
provide complementary views on the global molecular profile of a tissue under normal and
disease conditions [2]. Recently developed computational methods have aimed to inte-
grate two or three of these data types to address important biological questions, such as (1)
correlating the abundances of transcription and translation products [3]; (ii) detecting pep-
tides associated with un-annotated genes or splice variants (in mouse [4]], C. elegans [5]],
zebrafish [6] and human samples [[7,8]]); (ii1) characterizing chimeric proteins by search-
ing unidentified tandem mass spectrometry(MS/MS) data through the use of conventional

peptide identification algorithms applied to a pre-assembled database of “known” chimeric
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transcripts from the literature [9].

In the past year or so, several studies have aimed to identify novel peptides matching
patient specific transcripts derived from RNA-Seq data. For example, Zhang et al. [[10]
focused on identifying novel peptides involving Single Amino Acid Variants (SAAVSs) in
colorectal cancer. A later study by Cesnik et al. [|11] also considered novel splice junctions
and (a limited set of user defined) Post-Translational Modifications (PTM) in a number of
cell lines. Because of the importance of phosphorylation in cellular activity and can-
cer treatment [12], this was further expanded to identify novel phosphorylation sites by
Mertins et al. [[1], on the CPTAC breast cancer data set, which is the subject of our paper.
However, none of these studies aimed to perform integrative analysis of transcribed and
translated genomic structural alterations such as fusions, inversions and duplications in

tumor tissues.

Genomic structural variants (SVs) alter the sequence composition of associated genomic
regions in a significant manner. Major SV types include (segmental) deletions, duplica-
tions (tandem or interspersed), inversions, translocations and transpositions. SVs observed
in exonic regions may lead to aberrant protein products. Many such SVs have been associ-
ated with disease conditions and especially cancer. Common SVs associated with cancer
include deletions in tumor suppressors such as BRCA1/2 [13] in breast cancer, duplica-
tions in FMS-like tyrosine kinase (FLT3) gene in acute myeloid leukemia (AML) [14]]

and an inversion causing cyclin D1 overexpression in parathyroid neoplasms [15].

A gene fusion occurs when exonic regions of two (or more) distinct genes are con-
catenated to form a new chimeric gene, as a result of a large scale SV. Gene fusions can dis-
rupt the normal function of one or both partners, for example by up-regulating an oncogene
(e.g. TMPRSS2-ERG) or generating a novel or truncated protein (e.g. BCR-ABLI [[16]]).
They have been demonstrated to play important roles in the development of haematologi-
cal disorders, childhood sarcomas and in a variety of solid tumors. For example, ETS gene
fusions are present in 80% of malignancies of the male genital organs, and as a result these
fusions alone are associated with 16% of all cancer morbidity [[17]. Others, including the
EMLA4-ALK fusion in non-small-cell lung cancer and the ETV6-NTRK3 fusion in human
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secretory breast carcinoma occur in much lower frequency [18}19]]. The discovery of such
low-recurrence gene fusions may be of significant clinical benefit since they have potential
to be used as diagnostic biomarkers or as therapeutic targets - if they encode novel proteins
affecting cancer pathways [20-22].

There are a number of available computational tools for detecting structural variants,
each based one or more of the following general strategies. (1) Detection of variants using
discordantly mapping paired end reads, more specifically read mappings that either invert
one or both of the read ends, or change the expected distance between the read ends. Tools
using this approach include Breakdancer [23|] and VariationHunter [24]. (2) Detection
of variants using split-read mappings - which partition a single end read into two and
map them independently to two distant loci - or soft-clipped read mappings - which map
only a prefix or suffix of a read. One example employing this approach is Socrates [25].
(3) Detection of variants using an assembly based approach. These tools map assembled
contigs for improved precision. Examples include Barnacle [26] and Dissect [27] (both
of which happen to be RNA-Seq analysis tools, but can also be used to analyze genomic
data). Additional tools employing a combination of these strategies include Pindel [28]],
Delly [29], GASVPro [30] and HYDRA [31].

Our focus in this paper is microSVs (micro structural variants), i.e. events involving
genomic sequences shorter than a few hundred bps, especially in exonic regions, since they
are more likely to result in a translated protein. Available tools for SV discovery typically
fail to capture microSVs, or do so while producing many false positives, thus the problem

of robustly discovering microSVs remain open.

In contrast to microSVs, gene fusions can be inferred at a large scale by detecting
chimeric transcripts in RNA-Seq data [[32]]. Currently, there are two general computational
approaches to detect gene fusions. (i) The mapping-based approach (e.g. deFuse [33]], Fu-
sionMap [34]], FusionSeq [35]], ShortFuse [36], SOAPfuse [37], and TopHat-Fusion [38]])
suggests to first map RNA-Seq reads to the reference genome, and then discover fusion
transcript candidates by analyzing discordant mappings. More involved methods in this
category include nFuse [39] and Comrad [40], which incorporate WGS (Whole Genome
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Sequencing ) data for more accurate predictions and handling complex fusion patterns that
involve three or more genes. (ii) The assembly-based approach such as Barnacle [26]] and
Dissect [27], on the other hand, suggests to first de novo assemble RNA-seq reads into
longer contigs by using available transcriptome assemblers (e.g., Trinity [41]), and only
then map the assembled contigs back to the reference genome, with the aim of reducing

the potential errors introduced by mapping short reads to the reference genome.

Our first contribution in this paper is a novel algorithmic tool named MiStrVar (Micro
Structural Variant caller), which identifies microSV breakpoints at single-nucleotide reso-
lution by (1) identifying each one-end-anchor (OEA), i.e. a paired-end read where one end
maps to the reference genome and the other end cannot be mapped, (2) clustering OEAs
based on (i) mapping loci similarity and (ii) the possibility of assembling the unmappable
ends into a single contig, and (3) aligning the contig formed by unmappable ends with the
reference genome - in the vicinity of the mapped ends - simultaneously detecting puta-
tive inversions, duplications, indels or single nucleotide variants (SNVs) through a unified

dynamic programming formulation.

MiStrVar approach has several advantages over existing SV discovery tools. Firstly,
MiStrVar analyzes many more reads than those considered by the tools using only split-
reads or soft clipped reads. Any mapped read which has a hamming distance to the refer-
ence greater than four (as a default parameter, which can be user modified) is considered
for assembly. This allows for the discovery of inversions or duplications as short as Sbp
and inversions with palindromic sequences, improving sensitivity. Secondly, this approach
is much less time consuming than assembly based methods, since only the subset of un-
mappable reads are assembled rather than the entire genome. Finally, MiStrVar uses a
unified dynamic programming formulation, superior to tools that identify each type of
variant individually, especially because these tools misinterpret certain variants, such as
inversions, as a combination of other variants. See Supplementary Figure |1 for a detailed

illustration.

Both fusions and microSVs may be independently observed in genomic, transcrip-
tomic, and proteomic data; however, the most impactful aberrations, especially in the
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context of cancer, are the ones that can be observed in all levels in the same tissue simul-
taneously. In such cases, integrative analysis of these three omics data types can provide
independent evidence for the presence and heritability of aberrations. For example, trans-
splicing events, which lead to chimeric transcripts, can only be observed in transcriptomic
(but not in genomic) data, and thus can be distinguished from fusion events with genomic
breakpoints through simultaneous analysis of genomic and transcriptomic data acquired

from the same sample.

The vast majority of large-scale studies of sequence aberrations are based on ge-
nomic and transcriptomic data. Most proteogenomics research mainly focuses on detect-
ing single amino acid variants and studying protein abundances affected by single nu-
cleotide variants [10,42]. No available large-scale study has been conducted on the detec-
tion and validation of aberrant proteins and their genomic and transcriptomic origins. As
mentioned earlier, expressed aberrant genome variants can have considerable functional
influence on proteins, and as such, they may affect molecular pathway activity or patho-
genesis in disease, especially in cancer. Detection of aberrant protein variants provides
new insights into diagnostic marker identification and drug development (recurrent pro-
tein aberrations can imply potential drug targets) and can help develop novel strategies for

therapeutic intervention.

Proteomic technologies have enabled high throughput, sensitive and deep protein
analysis for complex disease-associated samples, aiming at discovering potential disease
protein biomarkers [43-45], including low-abundant proteins or protein isoforms, or vari-
ants. Moreover, proteomic analyses can provide complementary information to transcrip-
tomic and genomic analysis, as proteomic analyses are carried out by completely different
technologies (i.e., mass spectrometry or MS) from DNA sequencing. Furthermore, ad-
vancement in MS instrumentation has enabled proteomic analysis to achieve sensitivity
on par with RNA-seq in detecting low abundant events of gene expression in complex
samples [10]. Therefore, integrating transcriptomic and proteomic data can improve both
the sensitivity and confidence in characterizing expressed aberrant variants in complex

samples such as tumor tissues.
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Our second contribution in this paper is ProTIE (ProTeogenomics Integration Engine),
the first computational framework that integrates high throughput genomic, transcriptomic
and proteomic data to identify translated structural aberrations, specifically gene fusions
and microSVs, in protein-coding genes. In particular, ProTIE takes sequence aberrations
from WGS and RNA-Seq data as its input and validates them on the mass-spectrometry
based proteomics data, while ensuring that each such proteomic signature is unique to
the matching sequence aberration. By integrating multiple data sources simultaneously,
ProTIE is able to provide a strongly supported set of candidate aberrations from the highly
sensitive results of MiStrVar and deFuse. This is particularly helpful for selecting target

events or genes for clinical studies.

Results. We ran our computational framework to detect all translated gene fusions in
RNA-Seq (low coverage 50bp paired-end) data in the complete set of 105 TCGA (The
Cancer Genome Atlas) breast cancer samples for which CPTAC (Clinical Proteomic Tu-
mor Analysis Consortium) mass spectrometry data have been released These 105 sam-
ples include all four of the most common intrinsic subtypes of breast cancer. Among them,
22 samples also have matching WGS data, on which we used our framework to identify
exonic microSVs. This resulted in 206,255 fusions and 69,876 microSVs across the 105
samples. 2,215 of these microSVs are also supported by transcriptomic (RNA-Seq) evi-

dence.

All breakpoints from the predicted fusions and microSVs were then analyzed for
identifying supporting peptides from mass spectrometry data. This yielded 244 aberrant
peptides from 432 possible aberrations. More specifically, 169 novel peptides originate
from 295 fusion candidates (many of the fusions are recurrent and thus produce the same
novel fusion peptide) and 75 peptides originate from 137 potential microSVs; this is of
particular note since many of the genomic microSVs are recurrent, yet the ones that are
translated are mostly private. Note that a sequence aberration may give rise to more than
one novel peptide in case it results in a frameshift. See Table for a summary of results. E]

The primary goal of CPTAC is to characterize protein level expression differences for SNVs/SAAVs. Our

focus here is complementary to the goals of CPTAC.
2One interesting observation is that among the microSVs discovered, only 4 (specifically 1 microinversions


https://doi.org/10.1101/168377

bioRxiv preprint doi: https://doi.org/10.1101/168377; this version posted July 25, 2017. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Mass
WGS RNA-Seq
Raw Data Speﬁﬁ;"vﬁetw (FASTQ) (FASTQ)
K__————""' ::\‘/ \
. . nFuse/
Analysis MS-GF+ MiStrVar Comrad deFuse
Report MicroSVs Fusions

oy
Inference Peptides ProTIE Contribution

T Tl Tools

‘ Peptide 0 ‘ ‘ Peptide 1 ‘ ‘ Peptide 2 ‘ ‘ MicroSVs ‘ ‘ Fusions ‘

~_

Three Reading Frames

-—
—_—
—_—

. 5
- Matc;'"g.d Match SV/Fusion Peptides " I Averration [[I11]]]
nown Peptide Six Aberrant Peptides 3
i per Event

-
'
-
'
S
'

Discard

Matching in
Wrong Patient Unique
: Aberrant
' Peptide

Discard

Figure 1: Overview of the computational pipeline for identifying translated sequence aberrations. Mass
spectrometry data is used to validate fusions detected in the RNA-Seq data and microSVs detected in the
WGS data. For tumor samples with matching RNA-Seq and WGS data, our pipeline provides the ability to
detect transcribed microSVs and fusions with genomic origins as well. The pipeline introduces MiStrVar, a
tool for detecting microSVs from WGS data. It also features our in house developed fusion discovery tool(s)
deFuse (as well as nFuse/Comrad), as well as the MS-GF+ mass spectroscopy search engine. The final step
is the ProTIE (Proteogenomics integration engine) for sequence and mass spectrometry data: After running
deFuse and MiStrVar to respectively identify fusions and microSVs, we generate each possible breakpoint
peptide from the 6 distinct reading frames associatedg’vith each of these aberrations. For mass spectra from
the same tumor sample, we discard those which can be matched to known proteins, and keep only spectra
matched to breakpoint peptides identified above. The resulting high quality peptide-spectra matches (PSM)
provide proteomics-level evidence for the predicted aberrations.
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Cancer Total # # Patients with # Fusion | # Inversion | # Duplication
Subtype Patients | Aberrant Peptides | Peptides Peptides Peptides
Basal-Like 25 22 50 57* 2
HER2-Enriched 18 17 41 3 3
Luminal A 29 26 49 0 2
Luminal B 33 31 78 8 3

Table 1: Distribution of 244 detected, high confidence, aberrant peptides over four breast cancer subtypes,
across 105 patients. # Patients with aberrant peptides indicate the number of patients with either detected
fusion peptides or microSV peptides in that subtype. As can be seen, all but one of the patients exhibit at
least one translated fusion or microSV. The next three columns respectively indicate the number of peptides
detected from fusions, microinversions and microduplications, within specific subtypes. *The high number
of microinversion peptides in Basal-Like breast cancer can be attributed to two patients, AOCM, A0J6, whose
genomes had gone through substantial reorganization.

2 Methods

Our computational framework (see Figure [I)), is comprised of a number of algorithmic
tools that we developed for detecting transcriptomic and genomic aberrations, and search-
ing for expressed protein variants resulting from these aberrant sequences. Given a set
of genomic (WGS), transcriptomic (RNA-seq) and proteomic (Mass Spectrometry) data,
each collected from the tumor tissue of a patient, our pipeline detects translated sequence

aberrations in three major steps.

1. Each whole genome sequencing dataset is analyzed with MiStrVar, the microSV
discovery tool we introduce in this paper, to identify microSVs occurring in protein-
coding genes. (Note that our computational framework provides the option of vali-
dating genomic microSVs at the transcriptomic level by identifying RNA-Seq reads

associated with each microSV breakpoint.)

and 3 tandem microduplications) have supporting evidence at all omics levels. This implies that the tran-
scriptomic support for the remaining translated microSVs are too low to be detected, partially due to low
abundance of RNA-Seq data made available by TCGA on the breast cancer samples we analyzed. This
also suggests that with deeper coverage RNA-Seq data, ProTIE is likely to detect additional translated gene
fusions.
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2. Each transcriptomic dataset is analyzed by our in-house fusion detection method
deFuse [33]], which reports potential fusion events between two protein coding genes,
and the fused transcript sequences spanning the fusion breakpoints. (Note that our
computational framework enables the use of our integrative fusion detection meth-
ods nFuse [39]/Comrad [40] for corroborating potential fusions observable in WGS
and RNA-Seq data.)

3. All omics data is finally integratively analyzed through ProTIE, our novel ProTeoge-
nomics Integration Engine as follows. Each mass spectrometry dataset is searched
against a protein sequence database consisting of all human proteins from Ensembl
human protein database GRCh37.70 [46], along with a database of proteins gener-
ated by fused transcripts and microSVs, by the use of MS-GF+ search engine [47].
Aberrant peptides identified by the procedure with high confidence (e.g., at 1% false
discovery rate estimated by using the target-decoy approach [48]]) are reported, pro-
vided they are also detected in the genomic/transcriptomic dataset from the same
tumor tissue sample. (For further validating aberrations identified at multiple omics
levels, our computational framework also provides the option of searching for re-

currences across multiple tumor samples, possibly representing the same tumor sub-

type.)

2.1 Detection of Fusions and microSVs in WGS and RNA-Seq Data

To detect fusions in RNA-Seq data, we applied deFuse [33]] which predicts fusion tran-
scripts based on analyzing discordantly mapped read-pairs and one-end anchors. To de-
tect microSVs in WGS data, we applied our novel micro-structural variant caller, MiStr-
Var, which works in three major steps (See Figure [2] in Supplementary materials for an

overview):

In step (A), MiStrVar identifies all one-end anchors (OEA) in the read data: an OEA is
a paired-end-read for which only one end maps to the reference genome within a user
defined error threshold. Once all reads are (multiply) mapped to a reference genome us-
ing mrsFAST-ultra [49,50], and all OEAs are extracted, the mapped ends of OEAs are

10
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clustered based on the mapping loci. MiStrVar provides the user two options for cluster
identification, each satisfying one of the following distinct goals. For applications where
sensitivity is of high priority, MiStrVar employs a sweeping algorithm for OEA mapping
loci (introduced for VariationHunter [24]). For applications where running time is of high

priority, MiStrVar employs an iterative greedy strategy.

In step (B), for each OEA cluster identified in step (A), MiStrVar assembles the unmapped
end of the reads to form contigs (of length <400bp in practice) by aiming to solve the NP-
hard [51] dominant superstring (DSS) problem. MiStrVar employs a greedy strategy
similar to that used to compute a constant factor approximation to the shortest superstring
problem [52]].

In step (C), each contig associated to an OEA cluster is aligned to a region (of length
several kilobases long) surrounding the OEA mapping loci, first through a simple local-
to-global sequence alignment algorithm, that does not consider any structural alteration.
(The reverse complement of the contig is also aligned to the same region.) The start and
end position of this first, crude alignment is used to determine the approximate locus and
length of the potential microSV implied by the contig. The exact microSV breakpoints are
obtained in the next step through a more sophisticated alignment that considers structural
alterations, which is applied to the portion of the reference genome restricted by the first
alignment. The dynamic programming formulation for this alignment is an extension of
the Schoniger-Waterman algorithm [53|] which was designed to capture inversions in the

alignment. Specifically, the extensions enable the user to

1. discover the single best optimal event, rather than an arbitrary number of events,
2. handle gaps extending over breakpoints (in cases of missing contig sequence), and,

3. simultaneously predict duplications, insertions, deletions and SNVs in addition to

inversions.

Further details on the methodology of deFuse and MiStrVar can be found in the

11
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supplementary text.

2.2 Identification of Translated and Transcribed Sequence Aberrations

ProTIE provides the ability to detect translated aberrations by searching mass spectra
against an aberrant peptide database. More specifically, given transcriptomic breakpoints
pointing to fusions or microSVs, ProTIE identifies respective aberrant peptides from pro-
teomic data by first generating a peptide database, and then identifying aberrant peptides
based on mass spectrometry search results provided by MS-GF+ [47]. ( See subsection[2.3|
in supplementary materials for details of database construction and parameters used in pro-

teomics search. )

Our pipeline also provides the user with the additional ability to jointly analyze
matching WGS and RNA-Seq data for identifying transcribed genomic (in fact genetic)
microSVs. Given a set of genomic microSVs, along with their breakpoints detected by
MiStrVar, our pipeline generates corresponding aberrant transcripts. It then maps RNA-
Seq reads to the collection of these aberrant transcripts. After filtering reads that can be
mapped to a known isoform or potential novel spliceform, the remaining mappings pro-
vide evidence for aberrations in transcribed regions. See subsection [2.4]in supplementary
materials for details about mappings and read filtration steps.

2.3 Availability

MiStrVar is available for download at https://bitbucket.org/compbio/mistr
var, and ProTIE is available at https://bitbucket.org/compbio/protiel

3 Experimental Results

CPTAC Breast Cancer Dataset. Clinical Proteomic Tumor Analysis Consortium (CP-
TAC, http://proteomics.cancer.gov ) [54,55] aims to provide proteogenomic

characterization of specific cancers based on joint analysis of proteomic, transcriptomic,

12
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and genomic data acquired from the same group of cancer patients. CPTAC currently fo-
cuses on the relationship between protein abundance, somatic mutations and copy number
alterations occurring in cancer-related genes [[10]. Information about aberrations hidden in
unidentified spectra and unmapped sequenced reads have not been revealed in the current

CPTAC analysis framework; this happens to be the main focus of our paper.

At the time of submission of this paper, proteomics data for tumor samples from
three cancer types had been released by CPTAC: colorectal cancer, breast cancer, and
ovarian cancer. In addition, The Cancer Genome Atlas (TCGA, http://cancergeno
me.nih.gov/) has released RNA-Seq and WGS data on both normal and tumor tissues
from the same group of patients through Cancer Genomics Hub (CGHub, https://cg
hub.ucsc.edu/). RNA-Seq data for breast and ovarian cancer patients are in the form
of paired-end reads, however, for most of colon and rectal cancer samples only single-
end reads were collected. Because we rely on paired-end mappings for detecting fusions
and microSVs and since the RNA-Seq data from normal tissues from the ovarian cancer
patients had not been released at the time of the submission, our focus in this paper is the
breast cancer dataset. Details about CPTAC samples used in our analysis can be found in
Supplementary Tables {4} [5|

Breast Cancer Cell Line. In addition to the CPTAC and TCGA datasets, we used the
HCC1143 ductal breast cancer cell line (triple negative breast cancer cell line from ATCC)
for which we obtained matching tumor/normal Illumina HiSeq WGS, RNA-Seq and mass
spectrometry data. The matching normal cell line, HCC1143-BL, is a B lymphoblastoid
cell line initiated from peripheral blood lymphocytes from the same patient as HCC1143
by transformation with Epstein-Barr virus (EBV). The WGS data was obtained from NCI
Genomic Data Commons (https://gdc.cancer.gov/), originally sequenced as part
of the Cancer Cell Line Encyclopedia Project [56]. We used this cell line as preliminary
validation for our approach before starting full scale analysis.

13
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3.1 Gene Fusion Detection by deFuse

Gene Fusions in the HCC1143 Breast Cancer Cell Line. We have run our fusion detection
method, deFuse to detect gene fusions on RNA-Seq data from HCC1143 cell line. There
are 81.73M paired end reads of 101bp length. Based on concordant mapping results, the
average fragment length and standard deviation were 264.2bp and 86.59 bp respectively.
deFuse predicts 1,325 fusions from this dataset, out of which 74 are considered high con-

fidence predictions based on the filtering criteria employed by deFuse [33].

Gene Fusions in Breast Cancer Patient RNA-Seq Data. Each RNA-Seq dataset from the
CPTAC breast cancer patient cohort was, on average, comprised of 76M paired-end Il-
lumina reads with length 50bp. Based on transcriptome mapping results, the average
fragment length and standard deviation were 190.3bp and 65.47bp respectively. In to-
tal deFuse detected 206,255 fusions; on average, this amounts to 1,964 predictions per
sample. However, many of these predictions had low deFuse scores, either due to low se-
quence similarity or limited read support, and thus were not good fusion candidates. Only
3,907 of these predictions (roughly 2% of all predictions) in total are considered to be high

confidence calls by deFuse.

3.2 MicroSV Detection by MiStrVar

MicroSV predictions were based on three WGS datasets. The first is a simulation dataset
based on the Venter genome developed with the goal of assessing sensitivity and precision
of our methods with respect to available tools for SV discovery. These results are summa-
rized in Table[2} more details can be found in supplementary materials. The second dataset
consists of WGS data from the HCC1143 cell line (both tumor and normal), which was
used to assess our methods’ accuracy on a homogeneous tumor sample. The third dataset
is comprised of 22 TCGA/CPTAC breast cancer WGS data, which were used for full scale

evaluation of our methods.
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Table 2: Comparison of precision, recall, false discovery rate (FDR) and false negative rate (FNR) of MiS-
trVar against other SV discovery tools. All tools were run with default parameters and the calls for each
microSV type (we only considered the calls made by each tool for that microSV) were called true or false
based on the metrics provided by the tools (quality, identity or support, if they exist). The threshold values
for each metric were chosen to maximize the F-score (Supplementary Table [I). Only inversions of length
<400bp were considered in the calculations. If a tool does not provide precise breakpoints, breakpoints
falling within a provided range are counted as true positives. Known insertion SNPs were filtered for all

duplication results.

5-100 bp 101-400 bp
SV Type Tool Precision | Recall FDR FNR Precision | Recall FDR FNR
Inversions MiStrVar 91.20% 92.68% | 8.80% 7.32% 93.10% 98.78% | 6.90% 1.22%
Breakdancer | 66.67% 1.63% 33.33% 98.37% 59.00% 95.00% | 41.35% | 4.88%
Delly 67.00% 1.63% 33.00% 98.37% 61.98% 91.46% | 38.02% | 8.54%
Pindel 82.64% 81.30% | 17.36% 18.70% 88.51% 93.90% | 11.49% | 6.10%
SoftSV 0.00% 0.00% 100.00% | 100.00% | 93.75% 18.29% | 6.25% 81.71%
All MiStrVar 30.85% 5391% | 69.15% 46.09% N/A N/A N/A N/A
Duplications | ITDetector 13.54% 40.87% | 86.46% 59.13% N/A N/A N/A N/A
Pindel 5.00% 15.65% | 95.00% 84.35% N/A N/A N/A N/A
SoftSV 16.24% 16.52% | 83.76% 83.48% N/A N/A N/A N/A
Tandem MiStrVar 100.00% 86.67% | 0.00% 13.33% N/A N/A N/A N/A
Duplications | ITDetector 3.17% 80.00% | 96.83% 20.00% N/A N/A N/A N/A
Pindel 0.00% 0.00% 100.00% | 100.00% | N/A N/A N/A N/A
SoftSV 6.67% 46.67% | 93.33% 53.33% N/A N/A N/A N/A
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3.3 MicroSVs in the HCC1143 Breast Cancer Cell Line

Before running MiStrVar on the TCGA/CPTAC breast cancer samples, we applied it to
the HCC1143 breast cancer cell line. We identified 116 microinversions and 197 microdu-
plications (Supplementary Table [3) on this sample. Among these, 11 inversions and 12
duplications have both high read coverage and low mapping multiplicity. We focus only

on these microSVs for the remainder of the discussion.

Details on the 11 inversion candidates can be found in Table (3| All 11 inversions ap-
pear in both normal and matching tumor samples indicating that they are germline events.

10 of them occur in intronic regions while one occurs in a 3° UTR.

We experimentally validated these inversions using Sanger sequencing. The primers
were constructed by using the inverted sequence flanked by 200-300 bp from the refer-
ence genome. Five of the predicted inversions show a clear sequence match between the
amplicon (from Sanger sequencing) and predicted inversion, validating these inversion
candidates. A representative example is given for the inversion in SLC3AT1 in Supplemen-
tary Table [/| and the complete set of chromatograms is included in the appendix. Four
of the remaining inversions had amplicons with some nucleotides matching the reverse
genomic strand and some matching the forward strand. This occurred in the amplicons
from all four normal samples and two of the tumor samples. To resolve this discrepancy,
the chromatogram corresponding to each amplicon was examined, first for the four normal
samples, for which each of the inversion locations had either one or two peaks. In locations
with two peaks, the bases always matched either the forward or reverse strand, exhibiting
a classical case of heterozygous inversion that only occurs on one allele. For the final
two inversion predictions, the amplicons for BOK and UBP1 corresponding to the tumor
sample, only matched the forward genomic strand, which indicates no inversion at these
locations. The amplicon corresponding to the normal sample of UBP1 contained many N
bases in the sequence. Not enough information could be drawn from the chromatogram to

conclusively say whether the amplicon supports an inversion.

We note here that all the high confidence microinversions, except for the one found
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in UBP1, have an associated multiple nucleotide polymorphism (MNP) entry in dbSNP.
This includes the microinversion in BOK, which was not validated by Sanger sequencing.

In addition to MiStrVar we ran all the SV callers we tested on the HCC1143 cell line
data. The parameters for all tools were identical to those used in the simulation. Out of
these tools, only Pindel was able to identify any of the inversions. However, Pindel missed
2 of the 9 PCR validated inversion calls (in PFKP and OSBP2), out of 11 tested. The two
calls made by MiStrVar that could not be validated were also called by Pindel, providing
further evidence that MiStrVar improves Pindel with respect to both precision and recall.

The 12 duplication candidates are summarized in Table[3}; all were exonic, i.e., fully
or partially overlapping with exons. All of these duplications produced amplicons except
for the one located in IRAK1BP1. Additionally, two amplicons from the normal sample
(on genes ADAMTS19 and CIDEA) yielded a weak signal in the chromatogram so it was
impossible to determine if they support the call or not; furthermore, the corresponding
amplicon from the tumor sample showed no evidence of the call. Three of the nine re-
maining calls, in FAM20C, GTPBP6 and KIAA1009, show a clear match in the tumor
sample but not in normal, indicating they are true somatic calls. Two calls, in BAIAP2L2
and RBMXL3, have a clear match in both tumor and normal samples, indicating they are
germline calls. The next three showed two peaks at the insertion site and immediately
downstream. One of the two peaks support the reference and the other the inserted se-
quence and the shifted reference, indicating that these calls are heterozygous. This was
observed in both normal and tumor samples for GPRIN2 and only in normal for PALM2-
AKAP?2 and PRSS48. The final amplicon for ADAMTS7 showed only reference sequence
at the insertion site, indicating that there is no duplication.

As per the microinversions, we ran all other computational tools mentioned earlier in
order to determine if they are able to predict the validated microduplications. None of the
tools were able to predict any of the microduplications. (Note that ITDetector was never

able to complete execution after more than a month of processing.)
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Table 3: Sanger sequencing validation of top 11 microinversion and top 12 exonic microduplication (tandem
or interspersed) candidates in the breast cancer cell line HCC1143. Entries marked “Yes” indicate a de-
tected amplicon exactly matching the predicted microSV. “1 allele” indicates that two peaks were observed
at each position in the chromatogram, only one matching the predicted microSV, and the other matching the
reference, implying heterozygosity. For each detected inversion exactly matching an “multiple nucleotide
polymorphism” and duplication exactly matching an “insertion” in dbSNP, we provide the dbSNP entry in
the last column. As can be seen, all but two of these microSVs have been misclassified as a multiple nu-
cleotide polymorphism or novel insertions in dbSNP. All microduplications are tandem, except for GTPBP6
which is interspersed. “RNA-seq support” denotes the number of reads support the structural variant. Since
only tumor RNA-seq data was available, those SVs predicted in the normal sample are marked as “N/A”.
The gene RBMXL3 is not expressed in this cell line therefore no supporting reads can be expected. Note
that all of the microinversions we detected (with minimum support) were intronic and thus had no matching
RNA-Seq reads. The duplication in PALM2-AKAP2 was likely missed by Sanger Sequencing in tumor
(marked with an asterisk). The breast cancer-related gene FAM20C is marked in green.

WGS Support Validated

Type |Chr.| Location |Len. |Pali. Gene Region | Identity | Tumor |Normal | Tumor Normal |RNA-Seq Support| dbSNP ID
Inv. | 2 | 44545739 | 27 | 6 SLC3Al 3’UTR [100.00% | 66 62 Yes Yes - rs71416108
Inv. | 3 |170821851| 26 | 3 TNIK Intron |100.00%| 96 76 Yes Yes - 15781523247
Inv. | 7 |117357036| 29 | 3 CTTNBP2 Intron |100.00%| 76 81 Yes Yes - 1s386717124
Inv. | 10 | 3173068 | 24 | 3 PFKP Intron | 98.82% | 62 51 Yes Yes - 15386740061
Inv. | 19 | 56389843 | 32 | 2 NLRP4 Intron | 98.03% | 80 103 Yes Yes - rs386811126
Inv. | 19 | 38062904 | 29 | 4 ZNF571/540 | Intron | 99.33% | 26 35 1 allele 1 allele - 13386809055
Inv. | 22 | 31291523 | 23 | 2 OSBP2 Intron | 100% 49 24 1 allele 1 allele - 67147751
Inv. | 1 | 68552108 | 18 | 6 GNG12-AS1 | Intron | 98.74% | 37 43 Yes 1 allele - 1s386632129
Inv. | 9 |[28014540| 29 | 3 LINGO2 Intron |100.00%| 18 41 Yes 1 allele - 1386733960
Inv. | 3 | 33449797 | 30 | 3 UBPI Intron [100.00%| 10 40 |Inconclusive | Inconclusive - -

Inv. | 2 |242500549| 12 | 4 BOK Intron | 98.60% | 77 117 No No - 13386657165
Dup.| X 229389 6 - GTPBP6 Exon | 100% 28 33 Yes No 0 -

Dup. | 7 286468 | 34 | - FAM20C Exon | 98.03% 12 22 Yes No 0 15774848096
Dup.| 6 | 84884494 | 45 - KIAA1009 Exon | 98.60% 34 0 Yes No 7 15539790644
Dup. | 22 | 38483155 | 9 - BAIAP2L2 Exon |100.00%| 48 33 Yes Yes 0 1s142739979
Dup.| X |[114425181| 27 - RBMXL3 Exon | 98.74% 37 41 Yes Yes No Expression | rs782097222
Dup. | 10 | 46999591 | 9 - GPRIN2 Exon |100.00%| 90 69 1 allele 1 allele 36 15112620425
Dup.| 9 [112900341| 6 - |PALM2-AKAP2| Exon | 99.33% 16 46 No* 1 allele 5 150402481
Dup.| 4 [152201018| 5 - PRSS48 Exon |100.00%| 0 47 No 1 allele N/A rs71901196
Dup.| 5 [128797315| 6 - ADAMTS19 Exon | 98.60% 0 29 No Inconclusive N/A 1142924298
Dup. | 18 | 12254562 | 16 | - CIDEA Exon |100.00%| 0 24 No Inconclusive N/A 71369912
Dup.| 6 | 79595167 | 5 - IRAK1BPI Exon | 98.82% | 79 65  |Inconclusive | Inconclusive 0 1146020132
Dup. | 15 | 79058183 | 7 - ADAMTS7 Exon |100.00%| 40 33 No No 0 1s781638345
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3.3.1 MicroSVs in the Complete Set of TCGA-CPTAC Breast Cancer Samples

We applied MiStrVar and ProTIE to the complete set of matched tumor/normal samples
from 22 TCGA breast cancer patients for which matching WGS, RNA-Seq and CPTAC
Mass Spectrometry data were all available (see supplementary file for details). Minimal
filtering was used on the calls since few calls uniquely matched proteomic signatures.
Note that we only focus on exonic microinversion and microduplication calls (either fully
or partially overlapping with exons) for further analysis. The number of calls for each
sample can be found in Supplementary Table [6| Although only exonic calls were used
for further analysis, the highest confidence calls within intronic and UTR regions, with
respective support of > 40 and > 10 (identity = 100%) were also collected (see Sup-
plementary Table [7). We also provide the highest confidence microduplications without
proteomic support (support > 40, identity = 100%) as well as somatic microduplications (
see Supplementary Table [g).

3.4 ProTIE Proteogenomics Analysis of CPTAC Breast Cancer Datasets

CPTAC has produced global proteome and phosphor-proteome data for 105 TCGA breast
cancer samples using iTRAQ protein quantification method. Samples were selected from
all four major breast cancer intrinsic subtypes (Luminal A, Luminal B, Basal-like/triple-
negative, HER2-enriched) [57]. Each iTRAQ experiment included three TCGA samples
and one common internal reference control sample. The internal reference is comprised
of a mixture of 40 TCGA samples (out of the 105 breast cancer samples) with equal rep-
resentation of the four breast cancer subtypes. Three of the TCGA samples were analyzed

in duplicates for quality control purposes.

Our data analysis indicates that a two-dimensional reversed-phase liquid chromatog-
raphytandem mass spectrometric (2D-LC/MS/MS) sample comprises of about 0.87 mil-
lion MS/MS spectra (per mixture). When we search them against Ensembl Human protein
database, about 0.38 million MS/MS spectra in a mixture are matched to at least one pep-
tide under 1% false discovery rate. These spectra lead to 59,387 proteins (42,840 known,
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6,250 novel, 10,026 putative) with some peptides being covered by at least one spectra.
The remaining 0.49 million spectra (= 56% of the whole set) do not match to any protein
in the Ensembl database.

ProTIE obtains the intersection between these (0.49 million) unidentified spectra and
the aforementioned set of fusions with missed cleaved polypeptides, to obtain 3,150,502
potential fusion peptides from 105 breast cancer patients [’| (see Figure . ProTIE uses
a similar workflow to identify potential microSV peptides; for this case 635,125 potential

microSV peptides were obtained from 22 patients.

Based on the database search strategy mentioned in supplementary subsection [2.3]
in each mixture, our first level analysis resulted in approximately 5,342 spectra (1% FDR)
matching to fusion peptide sequences, and about 620 spectra matching to microSV peptide
sequences. If a matched peptide is identical to a substring of any known protein in Ensembl
database, the corresponding spectra is discarded so as to ensure that the peptide is novel.
The remaining results thus consist of all mass spectra in a single mixture supporting novel
peptides originating from high confidence sequence aberrations. For a specific mixture,
we can extract all the genes and the corresponding patient(s) generating these translated

aberrations based on deFuse and MiStrVar calls.

It has been argued in the literature that stringent class-specific peptide-level FDR
estimates may be necessary for reporting novel peptides in proteogenomics studies [2]. In
order to address this issue, for any search result provided from MS-GF+, we first cluster all
peptide-spectra matches into known or novel categories based on their peptide sequences:
a PSM is assigned to the known class if the peptide is a known peptide or the decoy
sequence of a known peptide; otherwise it will be assigned to the novel class. We then
recalibrate FDR for records in the novel class using original E-value from MS-GF+: a

peptide p is assigned the best spectral E-value F(p) it can get from any records in the

3Each breakpoint is associated with six reading frames and thus can result in (one of) six distinct proteins,
and each such potential protein can lead to multiple potential peptides according to the number of K/R in

the sequence.
“Note that a reversed database was also appended here to control the false discovery rate.
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novel class. Given a PSM M with E-value s, we collect all PSMs in the novel class whose
E-value < s, and calculate the ratio of records containing decoy sequences as the new
peptide-level FDR for M. In tables [ 5| and [6] a checkmark in the last column (labeled
Str FDR) indicates that the corresponding PSMs pass this more stringent class-specific
peptide-level FDR under 1%.

3.4.1 ProTIE Inferred Fusion Peptides

Given the proteomics search results for a specific mixture, a peptide will be further eval-
uated only if the corresponding fusion is also observed in at least one patient within the
mixture. Among the remaining 5,579 spectra, 3,185 match to peptides coming from im-
munoglobulin heavy and light chain fusions. These peptides are not considered any further
since highly repeated regions shared between those genes can lead to false positives in both
fusion detection and proteomics search stages [58,59]. Among the peptides remaining, we
also discard those associated with a fusion for which no breakpoint crossing peptide is
observed (This is due to the difficulty of determining whether such a peptide is a result of
a fusion or because of a reading frame shift). At the end of these filtering steps ProTIE

returns 807 spectra matching to 169 potential fusion peptides.

Among fusions related to these potential fusion peptides, we summarize special
events with either high confidence RNA-Seq level evidence or proteomics support in Ta-
bled The first part of Table 4] shows events with better fusion quality based on reports of
deFuse (deFuse score > 0.1, cDNA percent identity < 0.1, EST and EST island percent
identity < 0.3, no evidence detected for read through). Since 3 of these predicted fusions
are between paralogs, specificially CRIP1 and CRIP2, IFITM2 and IFITM3, SRGAP2 and
SRGAP2B, they are ignored. Among the remaining fusions, two stand out with respect
to peptide-spectrum matching quality, respectively observed in patients AO8G and A15A.
The PSMs supporting these two fusions generated by pFind Studio [60,61] are shown in

supplementary materials.

We also provide a list of fusions with multiple translation peptides in the second part
of Table 4] More specifically, four of these fusions have matching peptides located on
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both at the breakpoint and further downstream. Note that although we only detect a single
peptide for some additional fusions, the peptide may be supported by multiple spectra as
can be seen in Table [5

3.4.2 ProTIE Inferred MicroSV Peptides

As per ProTIE’s translated fusion peptide inference approach, for each mixture, we only
consider previously unknown peptides that can be unique byproducts of microSVs de-
tected in at least one patient within the mixture. To ensure that these peptides support
microSV (duplication or inversion) calls and not SNVs/SNPs, we only consider potential
peptides from an interspersed duplication or inversion with a minimum of two amino acids
on each side of at least one of the two breakpoints associated with that microSV; for tan-
dem duplications we ensure that at least two amino acids are present in the peptide from
both sides of the single breakpoint.

Proteomics search of these peptides on 22 patients resulted in 115 spectra potentially
supporting microSVs. These spectra support a total of 75 peptides, due to the fact that
some of the peptides are supported by more than one spectra. Of these 75 peptides, 7
support microduplications and 68 support microinversions. Incorporating the RNA-Seq
results from section in supplementary file, we obtain 4 microSV calls with support
on all omics levels. The resulting peptides with the highest quality spectra support are
summarized in Table[6] Here the number of spectra supporting these peptides is indicated
in the “Spectra” column. Similarly, column “Breakpoint Support” indicates the number

and type of the breakpoints supported by spectra for each peptide.

4 Discussion
4.1 Genomic MicroSVs Detected with MiStrVar

Our simulations show that MiStrVar effectively and accurately identifies all microSVs,

specifically, insertions, tandem and interspersed duplications in WGS datasets. In particu-
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Table 4: The list of selected (interesting) fusion events with translated peptides. A check mark in the column

BP (BreakPoint) indicates that the peptide crosses the fusion breakpoint, and a check mark in the last column

indicates that the peptide satisfies our more stringent FDR criterion. (a) High confidence fusions: fusions

with high “deFuse Score” are colored purple (these satisfy stringent RNA-Seq level filtration conditions).

(b) Fusions with multiple supporting peptides: fusion events associated with multiple novel peptides with

proteomic support are colored cyan. (c) Among all fusions, one involves a cancer gene, TEAD]1, and is

colored green. (d) Only one fusion peptide is supported by multiple spectra: it is associated with the fusion

detected in patient A18U, and is colored yellow. Note that peptides with star sign (*) are Single Amino Acid
Variants (SAAVs) according to validated peptides in Ensembl GRCh38 protein database.

bioRxiv preprint doi: https://doi.org/10.1101/168377; this version posted July 25, 2017. The copyright holder for this preprint (which was not

Patient Cinical Gene 1 Gene 2 deFuse Breakpoint Peptide| # of Str
Information Score Location Sequence | Spectra FDR
Fusions satisfying RNA-Seq level filtration conditions
A08G  |Luminal B, ITA UBAP2 TEAD1 0.94 coding, coding AINILLEGNSDTDQTAK 1 V|V
AOAM |Luminal B, ITA Cl170rf85 ZMYNDI5 0.92 coding, downstream AQTPGDQETR 1 v
AI2E Luminal A, IIB C20orfl111 FITM2 0.93 utr5p, coding NVLNVVNR 1 v
Al42 Basal-like, IIB ACTG1 ACTB 0.53 coding, coding QDATLALGLVTNWDDMEK 1 V|V
Al159 Basal-like, ITA ACTL7B KLF9 0.54 coding, utr3p EAQLPLEALGEAIQLCFLSFLSVR 1 v
A15A  |Luminal B, IIIC HOOK3 CTA-392C11.1 0.43 coding, intron CHELDMQEK 1 V|V
YHMFSLISGAEQGEHMDTGR | 2 v
A18U Luminal B, I[IIA ZNF354A RP11-383H13.1 0.48 coding, intron DGSGVSSLGVTPESR 2 V| v
Additional Fusions with Multiple Supporting Peptides
AO04A  |Luminal A, IITA ACTG1 ACTB 0.03 coding, coding QKEALFQPSFLGMESCGIHETTENSIMK| 30 |v' | v
KEALFQPSFLGMESCGIHETTFNSIMK 1 V| v
AO6N  |Luminal B, IlIB KRT19 CTD-2165H16.1 0.01 coding, pseudogene DNPGVLKPGMVVTFAPVNVTTEVK 1 v
NPGVLKPGMVVTFAPVNVTTEVK| 13 |v | v
AOAS  |Luminal B, IITA ACTG1 ACTG1P2 0.39 coding, pseudogene (*)DLYTNTVLSGGTTMYPGIADR| 5 V| v
(*)LYTINTVLSGGTTMYPGIADR| 6 V| v
AOAS Luminal B, IITA ACTB KDM4C 0.01 coding, intron (*)FCCPEALFQPSFLGMESCGIHETTFENSIMK 1 v
(*)CCPEALFQPSFLGMESCGIHETTENSIMK 6 v
AOD1 HER2-enriched, ITA  |RPL8 CTD-2165H16.1 0.01 coding, pseudogene EAVPIVAAGVGEFEAGISK 1 v
AFVPISGWNGNNMLEPSANMPWFK | 2 v
KIGYNPDTVAFVPISGWNGNNMLEPSANMPW 1 v
KIGYNPDTVAFVPISGWNGNNMLEPSANMPWEF| 3 v
IGYNPDTVAFVPISGWNGNNMLEPSANMPWEK 16 v
KIGYNPDTVAFVPISGWNGNNMLEPSANMPWFK| 2 v
AOTT  |Luminal B, IIT ACTB ACTGl1 0.47 coding, coding AWSPEALFQPSFLGMESCGIHETTENSIMK | 13 V|V
WSPEALFQPSFLGMESCGIHETTENSIMK 1 V|V
Al12Z HER2-enriched, IT ACTB ENIP1 0.21 coding, intron MTQIMFETENTPAVYMAI| 2 V| v
MTQIMFETENTPAV YMAIQ 1 V| v
Al58 Basal-like, ITA EEF1A1P7 EEF1A1P29 0.03 pseudogene, pseudogene | KIGYNPNTVAFVPISGWNGDNMLEPSANMPWFK 1 V| Vv
DGNASGTILLEALDCILPPTRPTDK 5 v
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Table 5: Additional list of selected (interesting) fusion events with translated peptides. A check mark in the

BP (BasePair) column indicates that the peptide crosses the fusion breakpoint, and a check mark in the last

column indicates that the peptide satisfies our more stringent FDR criterion. (a) Fusions with multiple sup-

porting spectra: in addition to fusions in Table ] other fusions have multiple supporting spectra - although

all such spectra are associated with the same breakpoint-crossing peptide. These fusions are colored yellow.

(b) Fusions involving cancer genes: fusions involving cancer-specific genes are colored green. Note that

the peptide with a star sign (*) is a Single Amino Acid Variant (SAAV) according to validated peptides in

Ensembl GRCh38 protein database.
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. Cinical ‘ deFuse Breakpoint Peptide| # of Str
Patient . Gene 1 Gene 2 .
Information Score Location Sequence|Spectra FDR
Additional Fusions with Multiple Supporting Spectra
A06Z Luminal B, IIB RABI15 TMEMO98 0.01 coding, utrSp QIWDTAGQENR| 2 v
A0CI Luminal A, IITA RPL14 FAMI55A 0.02 coding, coding ASAAAAAAAAK 2 V| Vv
AOD2  |Basal-like, IIB ACTGI ACTB 0.52 coding, coding HHGIVINWDDMEK| 4 v
AOEO0 Basal-like, ITIC PEAIS CPEB2 0.05 coding, coding YPGTLLQDLTNNITLEDLEQLK 2 V|V
AOEX  |Luminal A, IIB RAB6B CFL1 0.02 utr3p, coding EAGVAVSDGVIK| 3 '
AOTR Luminal A, II ZNF587 TMEM163 0.12 utr3p, intron QSETLSQNKK 2 v
AI2D  |HER2-enriched, ITA  |RPL19 CALR 0.04 coding, coding PAGQGVFPASSPGMDGEWEPPVIQNPEYK| 5 V|V
A12D HER2-enriched, ITA SCGB2A2 EEF1AI1P5 0.05 coding, pseudogene | ATAFIDQMASSGGLARIY VSNDDNATTNAIDELK 2 v
AI2D  |HER2-enriched, ITA  |EIF4A1 ABL2 0.16 utr3p, intron SLNKCHFLR| 3 '
Al2U Luminal B, IB NME1 RP11-111A21.1 0.01 coding, downstream SVMLGETNPADSKPGTIR 2 V| Vv
AI2W  |Luminal B, IlIB CTNNA3 CEP120 0.007 intron, intron LALDIEIATYKT| 2 v
AI3F Luminal B, ITTA RPL14 S100A16 0.17 coding, utr3p SAAAAAAAAAK| 2 V|V
Al142 Basal-like, IIB HSP90AB1 AC096579.7 0.01 coding, ncRNA FEINPDHPIVETLR| 4 V|V
A150 Basal-like, ITA HSPA8 RP11-537H15.3 0.03 coding, intron (*)HVAMNPTNTVFDAK| 2 V|V
A159 Basal-like, ITA DLG4 VIM 0.36 intron, coding SYVTTSTRR| 2 v
AI5A  |Luminal B, ITIC WASH4P ABC7-42389800N19.1 {0.07 | coding, pseudogene PKSGSGGEGVMEPPR| 2 v
A18Q Basal-like, IIB MGP EEF1A1P5 0.01 | coding, pseudogene FFFFPQSHLVTFAPVNVTTEVK 5 V|V
AI8U  |Luminal B, IITA ZNF354A RP11-383H13.1 0.47 coding, intron DGSGVSSLGVTPESR| 2 V| Vv
A1AQ |Basal-like, IT CDKN2A LINC00486 0.01 coding, intron GGGGGGGGCCPR| 2 4
Additional Cancer-related Genes in Fusions
AOBZ Luminal B, IITA MDM2 ZC4H2 0.69 utr3p, downstream ISFFLEVLQALFGVDNTSATTK 1 v
AOC1 Luminal A, IITA USP42 CD44 0.19 intron, utr3p YEKENWSGFFFFFLK 1 '
AOEQ |HER2-enriched, TA | ANKRD30A BLOCISGNEDDY  |O% coding, utr3p ISGKLEELEK| 1 |v | v
0.76 coding, intron
) 0.08 intron/utr3p
A091 Luminal B, ITA YARS/ZNFX1 GRB7 . GQEFKTSLTNMAK 1
0.02 upstream/intron
A09I Luminal B, IIA ERBB2 NME2P1 0.01 |coding, pseudogene IQHYIDLK 1
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Table 6: The list of genes containing microSVs with high confidence mass spectra support based on joint
analysis of all 22 TCGA breast cancer patients with both tumor/normal WGS and tumor RNA-Seq data.
For inversions, associated peptides always span one or two breakpoints (indicated as 1/2 or 2/2), or the
inverted sequence between the breakpoints (indicated as “Between”). For duplications (which happen to
be all tandem), the associated peptide always spans the single breakpoint and the entire inserted sequence
”. Calls marked as “Low” in the RNA-seq
column are those from genes with low sequence coverage; similarly calls marked as “N/A” indicate the lack

(1/1). Breakpoints in the peptide sequences are marked with “

of RNA-seq data for this sample. Note that the microduplication in HSPBP1 is annotated as an insertion, and
the microinversion in PLIN4 is annotated as two independent SNPs in dbSNP. Genes colored in green are
known to be cancer related, and records colored in yellow have peptides with multiple supporting spectra.

. Cancer AJCC| WGS SV SV Breakpoint . dbSNP Str
Patient Subtype Stage | Source Gene Length | Type RNA-Seq Sup;:)rt Spectra Peptide D FDR
AODG Luminal A A BOTH |FAMI134A 6 DUP v 171 1 QALDS|EE|EEEEEDVAAK v
AOJM | Luminal B 1B BOTH | HSPBPI 9 DUP| Low 11 2 LPLALPPASQGCSSGGGGG|GG|GGSSAGGSGNSRPPR | 153040014 | v
A18U | Luminal B A BOTH | HSPBPI 9 DUP| Low 11 1 LPLALPPASQGCSSGGGGG|GG|GGSSAGGSGNSRPPR v
AI8R |HER2-enriched| IB BOTH | NUPL2 12 |[pup| v 1/1 1 QQP|RQQP|QQQPSGNNR [rs200880793
Al12Q | Luminal B mc BOTH RPL14 9 DUP v 1/1 4 GT|AAA|AAAAAAAAAAK |1s369485042| v
AODG Basal-like I BOTH RPL14 9 DUP v 1/1 3 GT|AAA|AAAAAAAAAAK v
AOYG Luminal A VN BOTH RPL14 15 DUP v 171 3 GT|AAAAA|AAAAAAAAAAK |1s369485042| v
AOIM Luminal A 1B BOTH RPL14 15 DUP v 1/1 6 GT|AAAAA|AAAAAAAAAAK v
AOCE Basal-like ITA |NORMAL| RPL14 15 |DUP v 1/1 9 GT|AAAAA|AAAAAAAAAAK v
AI8R | Luminal B IIB |[NORMAL| RPL14 15 |DUP v 1/1 4 GT|AAAAA|AAAAAAAAAAK v
A18U Luminal B A BOTH RPL14 27 DUP v 1/1 3 GT|AAAAAAAAA|AAAAAAAAAAK v
AOD2 Basal-like 1B [NORMAL| PLIN4 6 INV N/A 2/2 2 DTVCSGVT|SA|MNVAK | 1312327614, | v
1$56366613
AOAV Basal-like 1nc BOTH PLIN4 6 INV v 212 4 DTVCSGVT|SA|MNVAK | rs75031432, | v
1579662071 | v
AOYG | Luminal A ITA |NORMAL| CHDS5 939 |[INV N/A 172 1 KQVNYNDASQEDQ|GSER v
A0J6 |HER2-enriched| IIA | TUMOR | C4orf21 73 INV Between 1 KMTYVVNR v
AOEY | Luminal B IIB |[NORMAL| PTPN4 794 |INV N/A Between 1 FINNYIIK
A0J6 Basal-like ITA | TUMOR | ZNF415 497 | INV Low Between 1 QRAEILEK
AlI8R |HER2-enriched| IB | TUMOR | ACSM2A | 528 |INV Low Between 1 VSQGNIK
AOCM Basal-like ITA | TUMOR | CC2D2A 886 |INV Low Between 1 MEHMIQASVT
AOCM | Basal-like A | TUMOR | ZNF257 | 732 |INV Low Between 1 FSHLIAGK
AOCM | Basal-like IIA | TUMOR | RBBP8 405 |[INV Between 1 VEGQGGGK
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lar, MiStrVar has high sensitivity, as well as high precision - especially for inversions, For
duplications, even though its precision may not look as impressive, MiStrVar still outper-
forms all available alternatives. In addition, the precision values for duplications are likely
to have been underestimated, since many of calls labelled as “false positives” could, in
fact, be true germline differences between the Venter genome and the reference genome.
On a very high coverage dataset (120x) from the Venter genome, with no simulated mi-
croSVs, duplications detected by MiStrVar have a large overlap with those it detects in
the simulation dataset. Elimination of these calls from the simulation dataset increases

MiStrVar’s precision to 71% without any additional filtering.

MiStrVar is also very accurate in identifying the exact breakpoint loci of the mi-
croSVs. This is particularly important for our proteogenomics analysis where we only
consider exact peptide matches. If a breakpoint were off even by only one nucleotide there
is a high likelihood the predicted peptide would not match. With the exception of Pindel
for inversions, which correctly identified 10% fewer exact breakpoints, no tool was even
close to correctly identifying as many single-nucleotide resolution microSV breakpoints as
MiStrVar. For inversions, the calls where MiStrVar can not identify the exact breakpoints
are often due to the presence of palindromic sequences, resulting in co-optimal breakpoint
predictions. More importantly, these cases yield identical peptides and therefore do not
affect further analysis results. For duplications, the errors are usually observed in cases
where the insertion is into a low complexity region. Again, in many of these cases the
resulting peptides would be identical (e.g. consider a duplication that occurs in a polynu-
cleotide tract). Furthermore, even in the worst case, MiStrVar predictions are within 30bp
from the real breakpoints, still much better than the available alternatives. It should also be
noted here that unlike other tools, MiStrVar provides not only the duplication breakpoint
coordinates but also the precise coordinates of the “source” sequence (i.e. the region of the
genome that is duplicated). Through this feature it becomes easier for the user to interpret

interspersed as well as tandem duplications.
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4.2 Translated Aberrations Detected with ProTIE

The use of a proteogenomic approach, as described in this study, enables two novel capa-
bilities that are highly relevant to cancer biology and precision medicine. 1) The ability to
hone in on potential clinically actionable mutations that are expressed at the protein level.
The vast majority of clinical cancer testing focuses only on DNA-level mutations. A gene
mutation-drug association is predicated on the assumption that a mutation will translate to
the protein level, however, this is often not the case, as genes that contain a mutation may
not be expressed in RNA. Moving further to the transcriptome the same paradigm exists,
i.e., RNA expression does not always directly translate to protein expression, secondary to
a variety of translational control mechanisms. Thus, having protein level evidence to con-
firm genomic aberrations provides assurance of the functional presence of a mutation. This
has wide ranging implications for clinical cancer genomic testing, as well as the develop-
ment of companion diagnostics for cancer targeted therapies. 2) The ability to observe the
presence of protein spectra from fusion transcripts that are predicted to be out-of-frame.
The vast majority of fusion annotation pipelines filter out fusions that are not in-frame
secondary to a widely-held reasoning that these protein products would be misfolded and
degraded or subject to non-sense mediated decay. Surprisingly, in this study, high qual-
ity spectra were observed from out-of-frame fusion spectra. While additional studies will
need to be performed, these data suggest these out-of-frame fusion products are stable
enough and at a relative abundance to be detected by Mass Spectrometry. Whether these
products are stable by chance or confer a gain-of-function capability is yet to be seen, but
these data at minimum suggest that out-of-frame fusions should not be eliminated from

consideration (as is commonly done), when searching for oncogenic candidates.

4.2.1 Translated Gene Fusions

To better understand the properties of genes with translation evidence for fusions, we
analyzed these genes through Ingenuity Pathway Analysis (https://www.ingenuity
.com). Note that we used all fusion genes detected by deFuse as the background genes in
the analysis. The top 3 categories for gene function enrichment are: Cancer (137 genes),

Organismal Injury and Abnormalities (150 genes), and Respiratory Disease (39 genes).
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All 3 sets of genes come with adjusted p-value around 0.0035 (via Benjamini-Hochberg
procedure). Given that fusions are a somatic cancer-specific event, enrichment of cancer

related genes provides a validation of our approach.

Many of the fused genes with detected novel peptides (each typically observed in a
single patient) are associated with breast cancer. A selection of these fusions are listed in
Table [ and [5 where cancer-related genes are highlighed. Among them, a fusion of the
Ubiquitin Associated Protein (UBAP2) and the transcriptional enhancing factor (TEAD]1)
is found in the patient AO8G and meets our stringent FDR criterion. This fusion retains the
DNA binding domain of TEADI. Interestingly, high TEADI expression is associated with
poor survival and this fusion may cause hyper-activation of TEAD1 in this patient [62,63]].
Note that the same fusion has also been detected with high confidence in TCGA Fusion
gene Data Portal [64].

The remaining fusions associated with highlighted genes in Table [5| appear to be
novel as they do not appear in the TCGA fusion database. Some of these fusions involve
tumor suppressor genes. For example, even though the fusion detected in patient AOBZ
does not meet our more stringent FDR criterion, it is interesting that it involves MDM2,
a key regulator of the TP53 tumor suppressor pathway [65]]. (TP53 is mutated in a large
proportion of triple-negative breast cancers.) Another fusion that does not meet our more
stringent FDR criteria but still is noteworthy is in patient A1AQ and involves CDKN2A
gene, a tumor suppressor that inhibits the cell cycle and is deleted in many cancer sam-
ples [66]. The fact that it is fused to a long noncoding RNA, may be a novel mechanism
to inactivate CDKN2A, as an alternative to deletion.

In addition to fused tumor suppressors, we also detected peptide evidence for fused
oncogenes. The discovered fused oncogenes are: ANKRD30A, also known as NY-BR-
1, a breast differentiation antigen observed in many breast cancer cells [67]; GRB7, a
breast cancer driver gene which participates in Development ERBB-family signaling path-
way [68,69]; ERBB2, a well known breast cancer oncogene and biomarker [[70] as well
as the coexpressed gene Ribosomal protein L19 (RPL19); CALR, a gene highly expressed
in approximately 5% of breast cancer cells and associated with metastasis [71]; and fi-

28


https://doi.org/10.1101/168377

bioRxiv preprint doi: https://doi.org/10.1101/168377; this version posted July 25, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

nally VIM, a protein involved in the epithelial to mesenchymal transition which drives
metastasis [/2]. The fusions involving ANKRD30A, RPL19 and CALR meet our strin-
gent FDR criteria, while the others do not. In a number of cases, we can not pinpoint
its fusion partners based on RNA-Seq data alone. The proteogenomics results help to in-
crease our confidence of these fusions, and reduce the number of fusion partner candidates
in the corresponding patients. The ERBB2 fusion is particularly interesting since ERBB2
is amplified in 15% of breast cancers and targeted with a variety of FDA approved drugs,
making it a possible target for clinical analysis.

In the final list of 295 candidate fusions, 107 of the involved genes are also reported
to be involved in a fusion according to TCGA Fusion gene Data Portal ﬂ 58 of these genes
have records in breast cancer (BRCA), and among them 19 genes are reported in the breast

cancer database alone.

Among the ten cancer-related fusion genes in Table 4] and [5] nine are also found in
TCGA Fusion gene Data Portal, with the exception of the ANKRD30A fusion. Seven of
them (excluding VIM and CALR), are involved in fusions specifically in breast cancer
patients. As mentioned earlier, UBAP2 is fused with TEADI1 in patient AO8G, which
matches the Fusion gene Data Portal entry exactly. The remaining six of these genes have
different fusion partners in different patients.

4.2.2 Translated MicroSVs

Most of the microinversions with proteomics support are in the 400bp to 1kb length range.
Microinversions shorter than 100bp are much less common in exonic regions. However in
intronic and UTR regions, microinversions with the best genomic support (in terms of both
read coverage and sequence similarity - after the inversion is accounted) are predominately
of length less than 100bp; See Supplementary Table[7] for a summary of intronic and UTR

microinversions. We also observed that shorter microinversions tend to be germline events

Note that results in this database are based on 10431 calls from 2961 TCGA patients, which contains much
broader scope than 105 breast cancer patients selected by CPTAC.
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while longer events tend to be somatic.

All of the microduplication calls with proteomic support (all of these -with the ex-
ception of the one in NUPL2- satisfy our more stringent FDR criterion) were predicted to
be germline events. Indeed nearly all of these events have corresponding dbSNP entries.
The call in FAM134A appears to be a novel germline event. The longest duplication in
RPL14 also appears to be novel (rs369485042 includes variants with up to 5 alanines).
Deletions, translocations and allele loss at the genomic loci containing this gene has been
observed in variety of cancers [73]], including breast cancer [74]. This may be the case
within patients AOCE, A18R (deletion) and AOJM (LOH). The unusually long case in
patient A18U may lead to protein instability, causing the same phenotype as a deletion.
Polyalanine tract lengths have been shown to be associated with cancer risk in other genes,

such as androgen receptor in prostate cancer [75].

Since we observed relatively few translated microduplications, it is unlikely that this
type of microSV plays a major role in breast cancer through translation to aberrant pro-
teins. However we predicted many high confidence microduplications in exonic regions,
some with RNA-Seq support, in addition to many in UTRs and introns (Supplementary
Table[8). It is possible that such exonic duplications lead to truncated or rapidly degraded
proteins and the duplications in UTRs and intronic regions may affect gene expression and
splicing.

From our list of high confidence microSV calls (Table @, four were found in genes
known to be related to cancer (CHDS, RPL14, PTPN4 and RBBPS) and one in drug
metabolism (CYP4F11). Among them, CHDS is a particularly well studied tumor sup-
pressor in neuroblastomas. It is also a known tumor suppressor in breast cancer [76], as
well as colon, lung, ovary and prostate cancers [7/7]. The protein it codes, Chromodomain
Helicase DNA binding protein 5, has functions in chromatin remodeling and gene tran-
scription. CHDS is frequently deleted in breast cancer and in one case a mutation resulted
in a truncated, non-functional protein [76]. The microinversion we detected produces a
stop codon shortly after the breakpoint which may also lead to the production of a trun-
cated protein. Note that this microinversion satisfies our more stringent FDR criterion.
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Another interesting example, RBBPS is a tumor suppressor specifically related to breast
cancer. We have observed through inspecting geneMania [78] that RBBPS is associated
with the recombinational repair pathway (p < 1.27 x 10~%) (Supplementary Figure [11).
RBBPS is also known to modulate the important tumor suppressor BRCA1 [79] and act as
a tumor suppressor itself through binding with the MRE11-RADS50-NBS1 (MRN) com-
plex [80] or replication protein A (RPA) [81]F_’]

Our analysis resulted in 4 microSV calls with support on all omics levels. This
includes 3 microduplications (within genes FAM134A, NUPL2 and RPL14) and 1 mi-
croinversions (within PLIN4). The microduplications in FAM134A and RPL14 (that with
27bp) appear to be novel events. Additionally, there are several events with both genomic
and proteomic support, which possibly lack RNA-Seq support due to low expression of
the associated gene or the lack of RNA-Seq data for the sample.

5 Conclusion

Integration of genomic, transcriptomic, and proteomic data provides a comprehensive view
of the patient’s molecular profile. TCGA/CPTAC now offers matching genomic, transcrip-
tomic and proteomic data across several cancer types, with a focus on the impact of Single
Amino Acid Variants (SAAVs) and SNVs on protein abundances. In order to complement
TCGA/CPTAC study and better establish the relationship between genomic, transcrip-
tomic and proteomic aberrations and the cancer phenotype, we introduce MiStrVar, the
first tool to capture multiple types of microSVs in WGS datasets. MiStrVar, and deFuse,
a fusion detection tool we developed earlier, form key components of ProTIE, a computa-
tional framework we introduce here to automatically and jointly identify translated fusions
and microSVs in matching omics datasets. Concurrently, ProTIE also incorporates RNA-
Seq evidence to validate expressed microSVs. Based on both simulation and cell line data,

we demonstrate that MiStrVar significantly outperforms available tools for SV detection.

Binding of MRN and RPA occur through a domain at the N-terminus of the RBBPS protein, which overlaps
with the predicted microinversion. We hypothesize that the microinversion in this gene leads to the pro-
duction of an aberrant peptide which is unable to bind to MRN or RPA, disrupting double stranded break
repair and contributing to the cancer.
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Our results on the TCGA/CPTAC breast cancer data sets also suggest the possibility of
automatic calibration for some entries in dbSNP, which we believe are misannotated. It is
interesting to note that the majority of the translated microSVs and fusions we observed in
the breast cancer samples were private events; this prompts a larger and more detailed in-
tegrated study of all three omics data types through the use of ProTIE for a comprehensive

molecular profiling of breast cancer subtypes.
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