Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome

View ORCID ProfileMehran Karimzadeh, View ORCID ProfileMichael M. Hoffman
doi: https://doi.org/10.1101/168419
Mehran Karimzadeh
1Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
2Princess Margaret Cancer Centre, Toronto, ON, Canada
3Vector Institute, Toronto, ON, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mehran Karimzadeh
Michael M. Hoffman
1Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
2Princess Margaret Cancer Centre, Toronto, ON, Canada
3Vector Institute, Toronto, ON, Canada
4Department of Computer Science, University of Toronto, Toronto, ON, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael M. Hoffman
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Motivation Identifying transcription factor binding sites is the first step in pinpointing non-coding mutations that disrupt the regulatory function of transcription factors and promote disease. ChIP-seq is the most common method for identifying binding sites, but performing it on patient samples is hampered by the amount of available biological material and the cost of the experiment. Existing methods for computational prediction of regulatory elements primarily predict binding in genomic regions with sequence similarity to known transcription factor sequence preferences. This has limited efficacy since most binding sites do not resemble known transcription factor sequence motifs, and many transcription factors are not even sequence-specific.

Results We developed Virtual ChIP-seq, which predicts binding of individual transcription factors in new cell types using an artificial neural network that integrates ChIP-seq results from other cell types and chromatin accessibility data in the new cell type. Virtual ChIP-seq also uses learned associations between gene expression and transcription factor binding at specific genomic regions. This approach outperforms methods that predict TF binding solely based on sequence preference, pre-dicting binding for 36 transcription factors (Matthews correlation coefficient > 0.3).

Availability The datasets we used for training and validation are available at https://virchip.hoffmanlab.org. We have deposited in Zenodo the current version of our software (http://doi.org/10.5281/zenodo.1066928), datasets (http://doi.org/10.5281/zenodo.823297), predictions for 36 transcription factors on Roadmap Epigenomics cell types (http://doi.org/10.5281/zenodo.1455759), and predictions in Cistrome as well as ENCODE-DREAM in vivo TF Binding Site Prediction Challenge (http://doi.org/10.5281/zenodo.1209308).

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted February 13, 2019.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome
Mehran Karimzadeh, Michael M. Hoffman
bioRxiv 168419; doi: https://doi.org/10.1101/168419
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome
Mehran Karimzadeh, Michael M. Hoffman
bioRxiv 168419; doi: https://doi.org/10.1101/168419

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4235)
  • Biochemistry (9135)
  • Bioengineering (6784)
  • Bioinformatics (23999)
  • Biophysics (12129)
  • Cancer Biology (9534)
  • Cell Biology (13778)
  • Clinical Trials (138)
  • Developmental Biology (7635)
  • Ecology (11701)
  • Epidemiology (2066)
  • Evolutionary Biology (15513)
  • Genetics (10644)
  • Genomics (14325)
  • Immunology (9482)
  • Microbiology (22839)
  • Molecular Biology (9090)
  • Neuroscience (48989)
  • Paleontology (355)
  • Pathology (1482)
  • Pharmacology and Toxicology (2570)
  • Physiology (3846)
  • Plant Biology (8331)
  • Scientific Communication and Education (1471)
  • Synthetic Biology (2296)
  • Systems Biology (6192)
  • Zoology (1301)