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Abstract

Transforming data from genome-scale assays into knowledge of affected molecular functions and
pathways is a key challenge in biomedical research. Using vocabularies of functional terms and
databases annotating genes with these terms, pathway enrichment methods can identify terms
enriched in a gene list. With data that can refer to intergenic regions, however, one must first
connect the regions to the terms, which are usually annotated only to genes. To make these
connections, existing pathway enrichment approaches apply unwarranted assumptions such as
annotating non-coding regions with the terms from adjacent genes. We developed a computational
method that instead links genomic regions to annotations using data on long-range chromatin
interactions. Our method, Biological Enrichment of Hidden Sequence Targets (BEHST), finds Gene
Ontology (GO) terms enriched in genomic regions more precisely and accurately than existing
methods. We demonstrate BEHST’s ability to retrieve more pertinent and less ambiguous GO
terms associated with results of in vivo mouse enhancer screens or enhancer RNA assays for
multiple tissue types. BEHST will accelerate the discovery of affected pathways mediated through
long-range interactions that explain non-coding hits in genome-wide association study (GWAS)
or genome editing screens. BEHST is free software with a command-line interface for Linux or
macOS and a web interface (http://behst.hoffmanlab.org/).
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Introduction
High-throughput sequencing enables classes of experiments that produce results in the form of
genomic regions. Each experiment identifies particular regions like enhancers, binding sites, open
chromatin, or transcripts. We often want to summarize the results of these experiments not as regions,
but in understandable terms such as especially affected biological processes or molecular functions.
When these regions map neatly to individual genes we can use many of the existing gene set
enrichment analysis (GSEA) or pathway enrichment analysis methods [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].
Most of these methods take a gene list from the experiment, tally functional terms (such as Gene
Ontology (GO) [12] terms) previously annotated to the genes, and statistically analyze terms with
significant enrichment.

Far fewer tools perform pathway enrichment analysis on arbitrary genomic regions without
requiring a gene list. The key problem is that, while genes have comprehensive functional term
annotations, other genomic regions generally do not. This necessitates somehow connecting non-
genic regions to the annotations on genes. GREAT [13] approaches this problem by defining a
regulatory domain for each gene that stretches up to either its nearest neighbors on either side or
1 Mbp, whichever is closest. This assumes inherently that non-coding regions relate most strongly
to the nearest genes in one dimension. This assumption may prove reasonable for short distances.
As the distance from a non-coding region increases, however, it becomes less likely that it interacts
directly with the nearest gene. ChIP-Enrich [14] instead uses ENCODE ChIP-seq peak data
sets [15] to link genomic regions to a regulated gene, and then uses a logistic regression approach
to estimate the probability of each genomic region to be associated to a particular gene set [14].
TAD Pathways [16] selects genome-wide association study (GWAS) signals for a specific human
trait or disease, then finds their topologically associating domains (TADs), and finally selects the
genes associated to the boundaries of these TADs.

Several assays directly measure which regions of the genome interact, not just along a chromo-
some, but in three dimensions. These assays include chromosome conformation capture (3C) [17]
and Hi-C [18, 19]. Multiple studies show how long-range chromatin interactions between non-coding
regions and distal genes prove critical for understanding the phenotypic effects of genetic variants
in these regions [20]. For example, non-coding single nucleotide polymorphisms (SNPs) at the
FTO locus drive obesity through interactions with the distal gene IRX3 [21, 22]. As another
example, an enhancer at the mouse Lmbr1 locus drives expression of Shh necessary for normal
limb development [23]. Mutations in this enhancer can result in preaxial polydactyly, a congenital
limb malformation [23, 24]. Additionally, a SNP at the HERC2 locus causes changes in human
pigmentation through a long-range chromatin loop with the pigment gene OCA2 [25]. Long-range
interactions with the PLCB4 promoter identify it as a potential driver of prostate cancer [26].

We introduce a new method, Biological Enrichment of Hidden Sequence Targets (BEHST),
to use long-range chromatin interaction information for better genomic set enrichment analysis.
BEHST incorporates experimental evidence of these interactions from Hi-C datasets [27]. These
datasets include chromatin loops that bring linearly distal regions up to hundreds of kilobases
away within spatial proximity.

Results
BEHST takes advantage of chromatin loops to precisely associate genes to genomic regions, and
then generates an enriched list of functional annotations related to those genes. More precisely,
BEHST reads a query dataset of genomic regions, and intersects them with chromatin interactions.
BEHST identifies gene cis-regulatory regions on the other side of the chromatin loop. BEHST
then uses g:Profiler [7] to identify enriched functional annotations on these genes. These serve as
enriched functional annotations for the initial genomic regions linked to these genes via long-range
interactions (Methods, Figure 1, Figure 2).

2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 15, 2019. ; https://doi.org/10.1101/168427doi: bioRxiv preprint 

https://doi.org/10.1101/168427


G2

G1 query

target genes
and annotation terms

enriched
terms

+eQ

–eQ

–eT

+eT

Legend

query

transcription start site

annotation terms

query extension

G3 G4 G5

G4
G3

target extension

Figure 1: BEHST associates genomic regions with functional annotations on chromatin-
loop–linked genes. BEHST takes a query region (purple), extends the region (red), and intersects it
with long-range chromatin interactions (thin black line). On the other side of the interaction, BEHST
extends the region (blue), and identifies the gene cis-regulatory regions (green arrows) within that
extension. Finally, BEHST finds enriched annotations (green symbols) from among the identified genes.
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Figure 2: Data flow through BEHST. (a) Blue box: input query regions. (b, e, f) Reference
datasets shared by multiple BEHST analyses. (c, d, g–l) Intermediate data processing steps (Methods).
(m) Green box: final resulting enriched GO terms.
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Functional annotations associated with distal enhancers
To examine BEHST’s effectiveness, we used it to identify enriched functional annotations in
published enhancers. Both VISTA [28] and FANTOM5 [29] identify sets of enhancers active in
particular cell or tissue types. Below, we review how well BEHST enrichment on these datasets
recapitulated annotations that one would expect to find for those tissue types.

BEHST identifies expected annotations better in VISTA enhancers than in shuffled
controls

We applied BEHST to sets of enhancers characterized through transgenic mouse enhancer assays [30],
available in the VISTA Enhancer Browser [28]. Each of these 7 datasets included enhancers active
in a particular tissue type.

We also compared these VISTA enhancers to two shuffled negative controls. First, we randomly
shuffled the enhancers across the whole genome, creating a control input with the same distribution
of enhancer size but uncorrelated location. Second, to eliminate effects from moving enhancers
between gene-rich and gene-poor regions, we shuffled in a way that preserved distance to the
nearest transcription start site (TSS). We did this by identifying the offset between each enhancer
and the nearest gene, randomly picking another gene, and moving the enhancer to have the same
offset from the new gene (Methods).

BEHST employs two key parameters which control the distance it searches for a chromatin loop
from other key regions (Figure 1). The query extension eQ, defines the distance allowed between a
query input region and the nearest chromatin loop. The target extension eT, defines the distance
allowed between the other side of a chromatin loop and the nearest cis-regulatory region, where a
regulatory region is set as a 6 kbp window (5 kbp upstream and 1 kbp downstream, consistent with
GREAT [13]) around the gene’s transcription start site (Methods).

To optimize BEHST’s query and target extension parameters, we performed a grid search. We
ran BEHST on each of the 7 VISTA enhancer datasets with 10 different values for each parameter.
This entailed running BEHST on 100 different parameter couples for each dataset, or 700 BEHST
executions overall. In each of these 700 cases, we recorded the GO term with the most significant
q-value.

In general, we expected to observe more significant enrichment from the unaltered data than
from either of the shuffled controls. BEHST identified more significant annotation enrichment for
the unmodified VISTA enhancers than shuffled controls in 6 of 7 tissue types (Table 1 and Figure 3).
Heart was the only tissue for which the shuffled controls had more significant enrichment than the
experimental enhancers. The heart enhancers led BEHST to retrieve several GO terms related to
blood, but we expected this association: since many of annotations in the Gene Ontology relate to
blood, they are often present in functional enrichment analyses, even after genomic region shuffles.

We used these results to optimize the key extension parameters (Methods). This resulted in
optimized values of query extension eQ = 24,100 bp, and target extension eT = 9400 bp.
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original total genomic TSS distance number of
dataset random shuffle preserving shuffling regions

eye –36.68 –17.35 –20.10 63
forebrain –51.18 –28.33 –12.15 396

heart –08.33 –14.47 –06.40 96
hindbrain –53.01 –16.78 –18.09 297

limb –74.02 –58.64 –12.26 246
midbrain –57.15 –23.81 –19.58 327

nose –47.56 –15.26 –17.90 78

Table 1: Mean log10 (q-value) of the most significant GO term retrieved by BEHST for
various datasets over the whole grid search. The datasets include the published VISTA enhancers
(original dataset) and two kinds of shuffled controls (total genomic random shuffle and TSS distance
preserving shuffling). Bold values: most significant q-value between an enhancer set and its shuffled
controls.
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nose original nose TSS shufflingnose total shuffling

midbrain original midbrain TSS shufflingmidbrain total shuffling

limb original limb TSS shufflinglimb total shuffling

hindbrain original hindbrain TSS shufflinghindbrain total shuffling

heart original heart TSS shufflingheart total shuffling

forebrain original forebrain TSS shufflingforebrain total shuffling

eye original eye TSS shufflingeye total shuffling
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Figure 3: Most significant GO term retrieved by BEHST in a grid search across parameter
values. Each cell represents the log10 (q-value) of the most significant GO term found by BEHST for a
dataset for a particular parameter couple. Rows within each panel: query extension eQ, which defines the
area around the query region to search for chromatin loops. Columns within each panel: target extension
eT, which defines the area around the distal side of a chromatin loop to search for cis-regulatory regions.
Green squares highlight the cell containing the optimized parameters (eQ = 24,100 bp and eT = 9400 bp).
Rows of panels: tissue type. Columns of panels: shuffle status: (a) Experimental unshuffled VISTA
enhancers, (b) Control shuffle of the enhancers across the whole genome, (c) Control shuffle of the
enhancers relative to the nearest transcription start site (TSS).
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BEHST can retrieve more specific and more relevant GO terms for VISTA enhancers
than existing methods

To examine the enriched GO terms found by BEHST, we focused further on the VISTA limb
enhancer and nose enhancer datasets. To aid our evaluation, we manually labeled GO terms
with independent association with a particular tissue type. We deemed GO terms with biological
relevance to the tissue type as expected function (EF), which we analogize to a true positive.
We deemed GO terms with biological relevance only to some different tissue type as unexpected
function (UF), which we analogize to a false positive. Other GO terms, such as those associated
with housekeeping functions and many cell types, we do not deem either as expected or unexpected
function. Many of these refer to non-specific nucleic acid metabolism processes associated with
numerous gene regulation pathways.

Limb enhancers. BEHST retrieved multiple expected function terms associated with limb
enhancers (Table 2). The most significant term found was “skeletal system development”. BEHST
also identified the terms “embryonic limb morphogenesis” and “limb development”. All 81 GO
terms found by BEHST (q < 0.05) are related to limb, skeleton, embryonic development, or gene
regulation.

Unlike in BEHST, limb-related terms did not place highly on GREAT’s most significant terms
list. GREAT ranks terms related to limb or skeleton in the lowest positions within the significant
GO terms retrieved, such as “embryonic limb morphogenesis” (Table 3, green rows). GREAT
missed the limb-associated term “skeletal system development” found by BEHST. Additionally,
GREAT found several unexpected function GO terms unrelated to limb: “cardiovascular system
development”, “heart development”, and “heart morphogenesis” (Table 3, red rows).

To examine why GREAT found enriched heart-related terms in a limb enhancer dataset and
BEHST did not, we compared the gene lists generated by BEHST and GREAT. ChIP-Enrich does
not provide a gene list, so we could not examine its results in the same way. BEHST found 184
genes, while GREAT identified 348 genes. The two sets share 45 genes (Figure 4a–c; p = 2.2×10−46;
Fisher’s exact test). BEHST retrieves fewer genes than GREAT because it uses more stringent
gene selection criteria. Consequently, the GO terms found by BEHST contain fewer unexpected
functions.

To further investigate why GREAT, but not BEHST, found enrichment for heart-related terms,
we examined how each method performed on individual terms. First, we intersected the GREAT
and BEHST limb enhancer gene sets with the set of all genes annotated with “heart morphogenesis”
(Figure 4a). The three sets share one common gene, GJA1 BEHST associates 1 other gene, TH,
with “heart morphogenesis”, but GREAT associates 8. BEHST’s additional stringency explains
why it did not identify an incorrect association with “heart morphogenesis”. We found a similar
situation with “heart development”, where BEHST identified 6 genes annotated with this term
and GREAT identified 24.

We also intersected the GREAT and BEHST limb enhancer gene sets with the set of all genes
annotated with “cardiovascular system development” (Figure 4c). The three sets share one common
gene, FOXB1, and neither BEHST nor GREAT identify any of the other 23 genes annotated with
“cardiovascular system development”.

We also compared BEHST against ChIP-Enrich (Table 4). Like BEHST, ChIP-Enrich identified
several expected function GO terms using a conventional approach (Table 4, green rows). Unlike
BEHST, it also identified many unexpected function GO terms, clearly unrelated to limb, such as
“midbrain-hindbrain boundary development” and “brain development” (Table 4, red rows).

Nose enhancers. As an additional test case, we applied BEHST to the VISTA nose enhancer
dataset. As with limb enhancers, BEHST associated nose enhancers with multiple expected function
GO terms such as “skeletal system development”, “embryonic skeletal system development”,
and “embryonic skeletal system morphogenesis” (Table 5, green rows). By contrast, GREAT
found only one relevant term “cerebral cortex neuron differentiation” at a p < 0.05 significance
threshold (Table 6). BEHST’s retrieved 59 genes for this dataset, while GREAT retrieved 120
genes. Of these genes, BEHST and GREAT share 16, a significant proportion of annotated genes
(p = 9.6 × 10−24; Fisher’s exact test). The genes GREAT retrieved with the “cerebral cortex
differentiation” term included ID4 and ASCL1, a developmental transcription factor involved in
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q sub-ontology term ID EF/UF term name

6.79× 10−08 BP GO:0001501 EF skeletal system development
2.06× 10−07 BP GO:0048598 embryonic morphogenesis
2.72× 10−06 MF GO:0043565 sequence-specific DNA binding
6.27× 10−06 BP GO:0009790 embryo development
1.94× 10−05 BP GO:0007389 pattern specification process
3.26× 10−05 BP GO:0003002 regionalization
3.60× 10−05 BP GO:0048562 embryonic organ morphogenesis
1.02× 10−04 BP GO:0048568 embryonic organ development
2.03× 10−04 BP GO:0035108 EF limb morphogenesis
2.03× 10−04 BP GO:0035107 EF appendage morphogenesis
2.81× 10−04 BP GO:0009059 macromolecule biosynthetic process
3.15× 10−04 BP GO:0031326 regulation of cellular biosynthetic process
3.45× 10−04 BP GO:0019438 aromatic compound biosynthetic process
3.64× 10−04 BP GO:1903506 regulation of nucleic acid-templated

transcription
4.29× 10−04 BP GO:2001141 regulation of RNA biosynthetic process
4.32× 10−04 BP GO:1901576 organic substance biosynthetic process
4.44× 10−04 BP GO:0009952 anterior/posterior pattern specification
4.54× 10−04 BP GO:0048706 EF embryonic skeletal system development
4.78× 10−04 BP GO:0009889 regulation of biosynthetic process
4.88× 10−04 BP GO:0010556 regulation of macromolecule biosynthetic

process
5.11× 10−04 BP GO:0034654 nucleobase-containing compound biosynthetic

process
5.36× 10−04 BP GO:0097659 nucleic acid-templated transcription
5.74× 10−04 BP GO:0032774 RNA biosynthetic process
6.43× 10−04 BP GO:0035113 embryonic appendage morphogenesis
6.43× 10−04 BP GO:0030326 EF embryonic limb morphogenesis
6.52× 10−04 BP GO:0009653 anatomical structure morphogenesis
7.54× 10−04 BP GO:0048736 appendage development
7.54× 10−04 BP GO:0060173 EF limb development
7.85× 10−04 BP GO:0009058 biosynthetic process
8.14× 10−04 BP GO:0006355 regulation of transcription, DNA-templated
8.76× 10−04 BP GO:0018130 heterocycle biosynthetic process
9.39× 10−04 BP GO:1901362 organic cyclic compound biosynthetic process
9.74× 10−04 BP GO:0009887 animal organ morphogenesis

Table 2: BEHST: VISTA limb. Most significant 35 GO terms found by BEHST for VISTA limb
enhancers. Green rows: terms that refer to limb or skeleton (expected function, EF). Purple rows: terms
that refer generally to embryonic development. White rows: terms not specifically related to any tissue.
GO: Gene Ontology. BP: biological process. MF: molecular function. q: g:Profiler g:SCS q-value [7].

human cerebral cortex neuron differentiation [31].
ChIP-Enrich did find the expected function term “nose development” (Table 7, green row).

BEHST did not identify any genes with the “nose development” term. Finding this term came at
the cost of ChIP-Enrich retrieving many unexpected GO terms (Table 7, red rows) and therefore a
loss of specificity.

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 15, 2019. ; https://doi.org/10.1101/168427doi: bioRxiv preprint 

https://doi.org/10.1101/168427


p sub-ontology term ID EF/UF term name

8.21× 10−14 MF GO:0003700 sequence-specific DNA binding transcription
factor activity

1.04× 10−13 MF GO:0001071 nucleic acid binding transcription factor
activity

2.47× 10−09 BP GO:0072358 UF cardiovascular system development
3.00× 10−09 BP GO:0007507 UF heart development
1.06× 10−08 BP GO:0035108 EF limb morphogenesis
1.07× 10−08 BP GO:0060173 EF limb development
1.21× 10−08 BP GO:0045892 negative regulation of transcription,

DNA-dependent
1.27× 10−08 BP GO:0009887 organ morphogenesis
1.33× 10−08 BP GO:1901191 negative regulation of cellular macromolecule

biosynthetic process
2.88× 10−08 BP GO:0051253 negative regulation of RNA metabolic process
3.31× 10−08 BP GO:0035295 tube development
3.36× 10−08 BP GO:0010629 negative regulation of gene expression
3.82× 10−08 BP GO:0010558 negative regulation of macromolecule

biosynthetic process
7.97× 10−08 BP GO:0003241 UF heart morphogenesis
9.81× 10−08 BP GO:0048562 embryonic organ morphogenesis
1.42× 10−07 BP GO:0030326 EF embryonic limb morphogenesis
1.80× 10−07 BP GO:0060562 epithelial tube morphogenesis
2.19× 10−07 BP GO:0035239 tube morphogenesis
2.31× 10−07 MF GO:0043565 sequence-specific DNA binding
2.32× 10−07 BP GO:0060429 epithelium development
4.26× 10−07 MF GO:0000981 sequence-specific DNA binding RNA

polymerase II transcription factor activity
2.64× 10−07 BP GO:0048643 EF regulation of skeletal muscle tissue

development
4.44× 10−07 BP GO:0035115 EF forelimb morphogenesis
5.40× 10−07 BP GO:0048706 EF embryonic skeletal system development

Table 3: GREAT: VISTA limb. The 24 GO terms found by GREAT for VISTA limb enhancers
with p < 0.05. Green rows: terms that refer to limb or skeleton (expected function, EF). Purple rows:
terms that refer generally to embryonic development. White rows: terms not specifically related to any
tissue. Red rows: terms apparently unrelated to limb (unexpected function, UF). GO: Gene Ontology.
BP: biological process. MF: molecular function. p: binomial rank p-value.
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Figure 4: Intersection between gene sets from BEHST, from GREAT, and annotated with
particular GO terms. BEHST and GREAT gene sets for VISTA limb enhancers, intersected with
genes annotated with the GO terms (a) “heart morphogenesis”, (b) “heart development”, and (c)
“cardiovascular system development”. The BEHST limb set (left red circle) contains 184 genes, and the
GREAT limb set contains 348 genes. (d) BEHST and GREAT gene sets for VISTA nose enhancers,
intersected with genes annotated with the GO term “cerebral cortex neural differentiation”. The BEHST
nose set (left red circle) contains 59 genes, and the GREAT nose set (bottom green circle) contains 124
genes.
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p sub-ontology term ID EF/UF term name

5.73× 10−08 MF GO:0003700 sequence-specific DNA binding transcription
factor activity

7.51× 10−08 MF GO:0001071 nucleic acid binding transcription factor
activity

2.97× 10−07 BP GO:2000272 negative regulation of receptor activity
1.72× 10−06 BP GO:0035136 EF forelimb morphogenesis
2.03× 10−06 BP GO:0021532 EF neural tube patterning
3.09× 10−06 BP GO:0035107 EF appendage morphogenesis
4.64× 10−06 BP GO:0048538 thymus development
1.34× 10−05 BP GO:0061099 negative regulation of protein tyrosine kinase

activity
1.73× 10−05 BP GO:0030857 EF negative regulation of epithelial cell

differentiation
1.73× 10−05 BP GO:0030917 UF midbrain-hindbrain boundary development
1.77× 10−05 BP GO:0030326 EF embryonic limb morphogenesis
1.83× 10−05 BP GO:0006366 transcription from RNA polymerase II

promoter
2.34× 10−05 BP GO:0050732 negative regulation of peptidyl-tyrosine

phosphorylation
2.48× 10−05 BP GO:0048736 EF appendage development
2.81× 10−05 BP GO:0021903 EF rostrocaudal neural tube patterning
2.96× 10−05 BP GO:0009887 organ morphogenesis
4.09× 10−05 BP GO:0003279 UF cardiac septum development
5.04× 10−05 BP GO:0060429 EF epithelium development
5.20× 10−05 BP GO:0050678 EF regulation of epithelial cell proliferation
6.16× 10−05 BP GO:0050673 EF epithelial cell proliferation
9.25× 10−05 BP GO:0007420 UF brain development
1.18× 10−04 BP GO:0006357 regulation of transcription from RNA

polymerase II promoter
1.73× 10−04 CC GO:0000315 organellar large ribosomal subunit
1.82× 10−04 BP GO:0003205 UF cardiac chamber development
1.85× 10−04 BP GO:0030855 EF epithelial cell differentiation
2.18× 10−04 BP GO:0035137 EF hindlimb morphogenesis
2.57× 10−04 BP GO:0060443 UF mammary gland morphogenesis
3.14× 10−04 BP GO:0072358 UF cardiovascular system development
3.18× 10−04 BP GO:0015813 L-glutamate transport
3.20× 10−04 BP GO:0048863 stem cell differentiation
3.48× 10−04 MF GO:0043565 sequence-specific DNA binding
3.70× 10−04 BP GO:0021915 EF neural tube development
3.74× 10−04 BP GO:0050679 EF positive regulation of epithelial cell

proliferation
3.95× 10−04 BP GO:0000122 negative regulation of transcription from RNA

polymerase II promoter
3.96× 10−04 BP GO:0042733 embryonic digit morphogenesis

Table 4: ChIP-Enrich: VISTA limb. Most significant 35 GO terms found by ChIP-Enrich for VISTA
limb enhancers. Green rows: terms that refer to limb or skeleton (expected function, EF). Purple rows:
terms that refer generally to embryonic development. White rows: terms not specifically related to any
tissue. Red rows: terms apparently unrelated to limb (unexpected function, UF). GO: Gene Ontology.
BP: biological process. MF: molecular function. CC: cellular component. p: binomial rank p-value.
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q sub-ontology term ID EF/UF term name

6.32× 10−05 MF GO:0043565 sequence-specific DNA binding
2.38× 10−03 BP GO:0001501 EF skeletal system development
2.81× 10−03 BP GO:0048706 EF embryonic skeletal system development
3.04× 10−03 BP GO:1903506 regulation of nucleic acid-templated

transcription
3.35× 10−03 BP GO:0032774 RNA biosynthetic process
3.35× 10−03 BP GO:2001141 regulation of RNA biosynthetic process
6.18× 10−03 BP GO:0051252 regulation of RNA metabolic process
6.91× 10−03 BP GO:0007389 pattern specification process
6.94× 10−03 BP GO:0097659 nucleic acid-templated transcription
9.39× 10−03 BP GO:0019219 regulation of nucleobase-containing compound

metabolic process
9.67× 10−03 BP GO:0010556 regulation of macromolecule biosynthetic

process
1.03× 10−02 BP GO:0003002 regionalization
1.06× 10−02 BP GO:0006355 regulation of transcription, DNA-templated
1.39× 10−02 BP GO:0048704 EF embryonic skeletal system morphogenesis
2.26× 10−02 BP GO:0031326 regulation of cellular biosynthetic process
2.37× 10−02 BP GO:0006351 transcription, DNA-templated
2.79× 10−02 BP GO:0010468 regulation of gene expression
2.84× 10−02 BP GO:0009889 regulation of biosynthetic process
2.94× 10−02 BP GO:0034654 nucleobase-containing compound biosynthetic

process
3.81× 10−02 BP GO:0051171 regulation of nitrogen compound metabolic

process
3.95× 10−02 BP GO:0018130 heterocycle biosynthetic process
4.00× 10−02 BP GO:0019438 aromatic compound biosynthetic process

Table 5: BEHST: VISTA nose. The 22 GO terms found by BEHST for VISTA nose enhancers with
q < 0.05. Green rows: terms that refer to limb or skeleton (expected function, EF). Purple rows: terms
that refer generally to embryonic development. White rows: terms not specifically related to any tissue.
GO: Gene Ontology. BP: biological process. MF: molecular function. q: g:Profiler g:SCS q-value [7].

p term ID sub-ontology EF/UF term name

3.98× 10−06 GO:0021895 BP UF cerebral cortex neuron differentiation

Table 6: GREAT: VISTA nose. The 1 GO term found by GREAT for VISTA nose enhancers with
p < 0.05. Red row: term apparently unrelated to nose (unexpected function, UF). GO: Gene Ontology.
BP: biological process. p: binomial rank p-value.
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p sub-ontology term ID EF/UF term name

1.24× 10−07 BP GO:0021895 UF cerebral cortex neuron differentiation
2.07× 10−07 BP GO:0045665 UF negative regulation of neuron differentiation
8.76× 10−07 BP GO:0030216 keratinocyte differentiation
5.90× 10−06 BP GO:0035116 UF embryonic hindlimb morphogenesis
6.30× 10−06 BP GO:0072132 mesenchyme morphogenesis
7.27× 10−06 MF GO:0043425 bHLH transcription factor binding
7.81× 10−06 BP GO:0009913 UF epidermal cell differentiation
1.48× 10−05 BP GO:0009954 proximal/distal pattern formation
1.95× 10−05 BP GO:0045596 negative regulation of cell differentiation
2.24× 10−05 BP GO:0045599 negative regulation of fat cell differentiation
2.47× 10−05 BP GO:0035115 UF embryonic forelimb morphogenesis
4.23× 10−05 BP GO:0048715 negative regulation of oligodendrocyte

differentiation
5.11× 10−05 BP GO:0048663 UF neuron fate commitment
6.45× 10−05 BP GO:2000272 negative regulation of receptor activity
6.67× 10−05 MF GO:0031432 titin binding
6.77× 10−05 BP GO:0072080 UF nephron tubule development
7.17× 10−05 BP GO:0006821 chloride transport
7.64× 10−05 BP GO:0043584 EF nose development
8.01× 10−05 BP GO:0035137 UF hindlimb morphogenesis
8.39× 10−05 BP GO:0000288 nuclear-transcribed mRNA catabolic process,

deadenylation-dependent decay
8.90× 10−05 BP GO:0061326 UF renal tubule development
1.01× 10−04 BP GO:0072079 UF nephron tubule formation
1.29× 10−04 BP GO:0045616 regulation of keratinocyte differentiation
1.33× 10−04 BP GO:0045604 UF regulation of epidermal cell differentiation
1.41× 10−04 BP GO:0007379 segment specification
1.73× 10−04 BP GO:0045747 positive regulation of Notch signaling pathway
1.78× 10−04 BP GO:0072078 UF nephron tubule morphogenesis
2.09× 10−04 BP GO:0035136 UF forelimb morphogenesis
2.17× 10−04 BP GO:0051093 negative regulation of developmental process
2.26× 10−04 BP GO:0030857 negative regulation of epithelial cell

differentiation
2.33× 10−04 BP GO:0001709 cell fate determination
2.41× 10−04 BP GO:0048713 regulation of oligodendrocyte differentiation
2.96× 10−04 BP GO:0048709 oligodendrocyte differentiation
3.20× 10−04 BP GO:0021953 UF central nervous system neuron differentiation
3.30× 10−04 BP GO:0015698 inorganic anion transport

Table 7: ChIP-Enrich: VISTA nose. Most significant 35 GO terms found by ChIP-Enrich for VISTA
nose enhancers. Green rows: terms that strictly refer to nose (expected functions, EF). Red rows: terms
apparently unrelated to nose (unexpected functions, UF). White rows: terms not specifically related
to any tissue. GO: Gene Ontology. BP: biological process. MF: molecular function. p: binomial rank
p-value.
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BEHST and existing methods retrieve specific and relevant GO terms for FANTOM5
enhancers

To further evaluate the effectiveness of our method, we examined blood enhancers predicted from
FANTOM5 cap analysis gene expression (CAGE) data of whole blood [32, 29].

q sub-ontology term ID EF/UF term name

6.65× 10−08 BP GO:0002682 EF regulation of immune system process
7.66× 10−08 BP GO:0002376 EF immune system process
6.77× 10−07 BP GO:0006955 EF immune response
8.86× 10−06 BP GO:0048584 positive regulation of response to stimulus
1.75× 10−05 BP GO:0002252 EF immune effector process
7.53× 10−05 BP GO:0002684 EF positive regulation of immune system process
1.04× 10−04 BP GO:0050776 EF regulation of immune response
3.76× 10−04 BP GO:0048583 regulation of response to stimulus
6.19× 10−04 BP GO:0048518 positive regulation of biological process
1.09× 10−03 BP GO:0001775 cell activation
1.22× 10−03 BP GO:0002521 EF leukocyte differentiation
2.23× 10−03 BP GO:0006952 EF defense response
3.06× 10−03 BP GO:0006950 response to stress
3.36× 10−03 BP GO:0045321 EF leukocyte activation
4.80× 10−03 BP GO:1902578 single-organism localization
5.86× 10−03 BP GO:0002573 EF myeloid leukocyte differentiation
6.75× 10−03 BP GO:0006909 phagocytosis
7.56× 10−03 CC GO:0009986 cell surface
1.40× 10−02 BP GO:0009607 response to biotic stimulus
1.46× 10−02 BP GO:0002523 EF leukocyte migration involved in inflammatory

response
1.47× 10−02 BP GO:0030097 EF hemopoiesis
1.47× 10−02 BP GO:0051707 response to other organism
1.56× 10−02 BP GO:0043207 response to external biotic stimulus
1.56× 10−02 BP GO:0050778 positive regulation of immune response
1.59× 10−02 BP GO:0044765 single-organism transport
1.62× 10−02 BP GO:0006954 inflammatory response
1.83× 10−02 BP GO:0032496 EF response to lipopolysaccharide
2.17× 10−02 BP GO:0048522 positive regulation of cellular process
2.32× 10−02 BP GO:0009605 response to external stimulus
2.44× 10−02 BP GO:0023014 signal transduction by protein

phosphorylation
2.56× 10−02 BP GO:0070887 cellular response to chemical stimulus
2.77× 10−02 BP GO:0098602 single organism cell adhesion
3.00× 10−02 BP GO:0002237 response to molecule of bacterial origin
3.10× 10−02 BP GO:0046649 EF lymphocyte activation
4.89× 10−02 BP GO:0007159 EF leukocyte cell-cell adhesion

Table 8: BEHST: FANTOM5 blood. Most significant 35 GO terms found by BEHST for FANTOM5
blood enhancers. Green rows: terms that refer to blood, specifically (expected function, EF). Purple
rows: terms that refer generally to blood and immune biology. White rows: terms not specifically related
to any tissue. GO: Gene Ontology. BP: biological process. CC: cellular component. q: g:Profiler g:SCS
q-value [7].
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p sub-ontology term ID EF/UF term name

1.44× 10−71 BP GO:0002376 EF immune system process
3.85× 10−56 BP GO:0006952 EF defense response
1.09× 10−50 BP GO:0006955 EF immune response
4.69× 10−50 BP GO:0001775 cell activation
8.32× 10−50 BP GO:0009611 response to wounding
1.30× 10−49 BP GO:0006954 inflammatory response
1.92× 10−43 BP GO:0002684 EF positive regulation of immune system process
8.85× 10−43 BP GO:0002682 EF regulation of immune system process
1.80× 10−39 BP GO:0045321 EF leukocyte activation
2.57× 10−38 BP GO:0098542 response to other organism
1.38× 10−37 BP GO:0009607 response to biotic stimulus
6.84× 10−37 BP GO:0002407 dendritic cell chemotaxis
2.12× 10−34 BP GO:0036336 dendritic cell migration
2.39× 10−34 BP GO:0001817 regulation of cytokine production
3.32× 10−32 BP GO:0050776 EF regulation of immune response
5.61× 10−32 BP GO:0046649 EF lymphocyte activation
4.06× 10−28 BP GO:0002757 EF immune response-activating signal

transduction
2.54× 10−27 BP GO:0050778 EF positive regulation of immune response
8.20× 10−27 BP GO:0002253 EF activation of immune response
4.07× 10−26 BP GO:0009617 response to bacterium
1.01× 10−21 MF GO:0004950 chemokine receptor activity
4.97× 10−16 MF GO:0004896 cytokine receptor activity
8.77× 10−14 CC GO:0005944 1-phosphatidylinositol-4-phosphate 3-kinase,

class IB complex
5.89× 10−13 CC GO:0009897 EF external side of plasma membrane
1.95× 10−09 MF GO:0043566 structure-specific DNA binding
9.64× 10−08 CC GO:0001931 uropod
3.47× 10−06 MF GO:0005178 integrin binding
8.19× 10−06 CC GO:0070062 EF extracellular vesicular exosome
9.89× 10−06 CC GO:0065010 extracellular membrane-bounded organelle
1.66× 10−03 CC GO:0001772 immunological synapse
4.59× 10−03 CC GO:0031234 extrinsic to cytoplasmic side of plasma

membrane

Table 9: GREAT: FANTOM5 blood. The 31 GO terms found by GREAT for FANTOM5 blood
enhancers with p < 0.05. Green rows: terms that refer to blood, specifically (expected functions, EF).
Purple rows: terms that refer generally to blood and immune biology. White rows: terms not specifically
related to any tissue. GO: Gene Ontology. BP: biological process. MF: molecular function. CC: cellular
component. p: binomial rank p-value.

Blood enhancers. We examined the FANTOM5 blood enhancers with GREAT, BEHST,
and ChIP-Enrich. BEHST found multiple expected function GO terms highly specific for blood,
including the top terms “regulation of immune system process”, “immune system process”, and
“immune response” (Table 8, green rows). GREAT generated more GO terms in general, and many
of these were expected function terms strictly related to blood (Table 9, green rows). ChIP-Enrich
even found more expected function GO terms than BEHST and GREAT (Table 10, green rows).
None of these methods produced any unexpected function GO terms.
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p sub-ontology term ID EF/UF term name

1.19× 10−38 BP GO:0002376 EF immune system process
8.73× 10−32 BP GO:0006955 EF immune response
4.73× 10−26 BP GO:0045321 EF leukocyte activation
1.33× 10−25 BP GO:0046649 EF lymphocyte activation
2.16× 10−25 BP GO:0001775 cell activation
2.25× 10−23 BP GO:0050776 EF regulation of immune response
3.00× 10−23 BP GO:0006952 EF defense response
1.40× 10−22 BP GO:0002684 EF positive regulation of immune system process
1.75× 10−22 BP GO:0002682 EF regulation of immune system process
2.51× 10−22 BP GO:0009611 EF response to wounding
9.11× 10−21 BP GO:0050867 positive regulation of cell activation
3.74× 10−20 BP GO:0051251 EF positive regulation of lymphocyte activation
8.51× 10−20 BP GO:0002696 EF positive regulation of leukocyte activation
2.71× 10−19 BP GO:0051249 EF regulation of lymphocyte activation
1.06× 10−18 BP GO:0050778 EF positive regulation of immune response
1.07× 10−18 BP GO:0030097 EF hemopoiesis
3.42× 10−18 BP GO:0042113 B cell activation
4.21× 10−18 BP GO:0042110 T cell activation
1.68× 10−17 BP GO:0002694 EF regulation of leukocyte activation
3.68× 10−17 BP GO:0050865 regulation of cell activation
4.12× 10−17 BP GO:0048534 EF hemopoietic or lymphoid organ development
7.92× 10−17 BP GO:0002520 EF immune system development
2.33× 10−16 BP GO:0002757 EF immune response-activating signal

transduction
6.18× 10−16 BP GO:0006954 inflammatory response
9.22× 10−16 BP GO:0051707 response to other organism
9.35× 10−16 BP GO:0030098 EF lymphocyte differentiation
1.22× 10−15 BP GO:0001816 cytokine production
3.06× 10−15 BP GO:0050870 positive regulation of T cell activation
4.12× 10−15 BP GO:0002764 EF immune response-regulating signaling pathway
5.44× 10−15 BP GO:0009607 response to biotic stimulus
9.80× 10−15 BP GO:0050863 regulation of T cell activation
1.64× 10−14 BP GO:0002521 EF leukocyte differentiation
1.82× 10−14 BP GO:0032496 response to lipopolysaccharide
2.21× 10−14 BP GO:0001817 regulation of cytokine production
2.70× 10−14 BP GO:0002237 response to molecule of bacterial origin

Table 10: ChIP-Enrich: FANTOM5 blood. Most significant 35 GO terms found by ChIP-Enrich
for FANTOM5 blood enhancers. Green rows: terms that refer to blood, specifically (expected functions,
EF). Purple rows: terms that refer generally to blood and immune biology. White rows: terms that refer
to gene regulation. GO: Gene Ontology. BP: biological process. p: binomial rank p-value.

BEHST’s superior results are robust to different gene set enrichment methods

After identifying target genes, BEHST and GREAT employ different approaches to associate the
genes with Gene Ontology terms. GREAT uses a binomial test which explicitly takes into account
the variability of gene regulatory domains [13]. BEHST uses g:Profiler [7], which, in turn, employs
the g:SCS (set counts and sizes) method [33]. The g:SCS method computes a multiple testing
correction for GO term q-values [34]. It considers statistically significant all terms with corrected
q-values in the upper fifth percentile.
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BEHST, GREAT, and ChIP-Enrich also use different versions of the Gene Ontology Anno-
tation (GOA) [35] database. Here, BEHST used the GOA database of Ensembl 87 (December
2016) [36]. GREAT used a GOA version prior to February 2015. ChIP-Enrich used a GOA version
from Bioconductor 2.13 [37], released on October 2013.

Outdated Gene Ontology annotations are a major source of differences in pathway enrichment
analyses [1]. We wished to eliminate the possibility that these differences in significance tests or
annotation databases drove differences in results between BEHST and GREAT. To do this, we
took gene lists produced by GREAT, but did not use GREAT’s binomial test. Instead, we applied
g:Profiler to those gene lists. We could not perform a similar analysis using ChIP-Enrich because it
does not produce a gene list as output [38].

Limb enhancers. First, we ran the hybrid GREAT-g:Profiler analysis on VISTA limb enhancers
(Table 12). The hybrid GREAT-g:Profiler analysis found several unexpected function GO terms
unrelated to limb, in top positions: “generation of neurons” and “neurogenesis”, among others
(Table 12, red rows). This appeared less specific than the enrichment performed by BEHST on the
same dataset (Table 2).

q sub-ontology term ID EF/UF term name

1.25× 1004 BP GO:0022008 UF neurogenesis
1.31× 1004 BP GO:0048699 UF generation of neurons
3.12× 1004 BP GO:0030182 UF neuron differentiation
6.40× 1004 BP GO:0021895 UF cerebral cortex neuron differentiation
9.43× 1004 BP GO:0048468 cell development
1.63× 1003 BP GO:0021892 UF cerebral cortex GABAergic interneuron

differentiation
4.35× 1003 BP GO:0021953 UF central nervous system neuron differentiation
4.42× 1003 BP GO:0097154 UF GABAergic neuron differentiation
5.40× 1003 BP GO:0045595 UF regulation of cell differentiation
5.45× 1003 BP GO:0007399 UF nervous system development
8.99× 1003 BP GO:0048513 animal organ development
9.25× 1003 BP GO:0030154 cell differentiation
1.40× 1002 BP GO:0045598 regulation of fat cell differentiation
2.29× 1002 BP GO:0021544 UF subpallium development
2.35× 1002 BP GO:0048731 system development
2.56× 1002 BP GO:0010721 negative regulation of cell development
3.29× 1002 BP GO:0048869 cellular developmental process
3.98× 1002 BP GO:0030900 UF forebrain development
4.04× 1002 BP GO:0035295 tube development
4.48× 1002 CC GO:0005634 nucleus

Table 11: GREAT-g:Profiler VISTA nose. The 20 GO terms found by g:Profiler using a GREAT
gene list for VISTA nose enhancers with p < 0.05. Green rows: terms that strictly refer to nose (expected
functions, EF). Purple rows: terms that refer generally to nose biology. Red rows: terms apparently
unrelated to nose (unexpected function, UF). GO: Gene Ontology. BP: biological process. CC: cellular
component. q: g:Profiler g:SCS q-value [7].

Nose enhancers. Next, we ran the hybrid GREAT-g:Profiler analysis on VISTA nose enhancers
(Table 11). Again, the hybrid analysis found several unexpected function GO terms unrelated to
nose in top positions, such as “neurogenesis”, “generation of neurons”, “neuron differentiation”,
“cerebral cortex neuron differentiation”, and many others (Table 11, red rows). It also found some
GO terms generally related to organ development (for example, “animal organ development),
but no expected function GO terms strictly related to nose. This appeared far less specific than
BEHST’s enrichment on the same dataset (Table 5).
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q sub-ontology term ID EF/UF term name

4.69× 1013 BP GO:0035295 tube development
1.81× 1011 BP GO:0009790 embryo development
1.92× 1011 BP GO:0009887 animal organ morphogenesis
2.16× 1011 BP GO:0048699 UF generation of neurons
3.32× 1011 BP GO:0048598 embryonic morphogenesis
4.41× 1011 BP GO:0022008 UF neurogenesis
9.57× 1011 BP GO:0007399 UF nervous system development
3.18× 1010 BP GO:0021537 telencephalon development
3.47× 1010 BP GO:0030182 UF neuron differentiation
4.52× 1010 BP GO:0007507 UF heart development
1.05× 1009 BP GO:0051254 positive regulation of RNA metabolic process
1.2× 1009 BP GO:0045893 positive regulation of transcription,

DNA-templated
1.2× 1009 BP GO:1903508 positive regulation of nucleic acid-templated

transcription
1.95× 1009 BP GO:0030900 UF forebrain development
2.27× 1009 BP GO:1902680 positive regulation of RNA biosynthetic process
4.53× 1009 BP GO:0035239 tube morphogenesis
5.99× 1009 BP GO:0009653 EF anatomical structure morphogenesis
7.37× 1009 BP GO:0048562 embryonic organ morphogenesis
7.54× 1009 BP GO:0045935 positive regulation of nucleobase-containing

compound metabolic process
7.66× 1009 BP GO:0006357 regulation of transcription from RNA

polymerase II promoter
7.69× 1009 MF GO:0003700 transcription factor activity, sequence-specific

DNA binding
7.96× 1009 MF GO:0001071 nucleic acid binding transcription factor

activity
8.41× 1009 BP GO:0003002 regionalization
1.63× 1008 BP GO:0010628 positive regulation of gene expression
3.29× 1008 BP GO:0010558 negative regulation of macromolecule

biosynthetic process
4.27× 1008 MF GO:0000981 RNA polymerase II transcription factor

activity, sequence-specific DNA binding
4.85× 1008 BP GO:0051173 positive regulation of nitrogen compound

metabolic process
5.22× 1008 BP GO:0060562 epithelial tube morphogenesis
5.35× 1008 BP GO:0035107 EF appendage morphogenesis
5.35× 1008 BP GO:0035108 EF limb morphogenesis
5.67× 1008 BP GO:0006366 transcription from RNA polymerase II

promoter
6.36× 1008 BP GO:0048513 animal organ development
6.49× 1008 BP GO:2000113 negative regulation of cellular macromolecule

biosynthetic process
6.99× 1008 BP GO:0043009 chordate embryonic development
7.19× 1008 BP GO:0006355 regulation of transcription, DNA-templated

Table 12: GREAT-g:Profiler VISTA limb. Most significant 35 GO terms found by g:Profiler using
a GREAT gene list for VISTA limb enhancers. Green rows: terms that strictly refer to limb (expected
functions, EF). Purple rows: terms that refer generally to limb biology. Red rows terms: terms apparently
unrelated to limb (unexpected functions, UF). Terms in the white rows refer to gene regulation. GO:
Gene Ontology. BP: biological process. MF: molecular function. q: g:Profiler g:SCS q-value [7].
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Unexpected function retrieval rates in enrichment tests
BEHST’s main goal is providing genomic set enrichment analysis with fewer unexpected function
terms than existing tools such as GREAT and ChIP-Enrich. To avoid the strong assumptions
inherent in terms such as true positive and false positive, we instead evaluated these methods in
terms of the number of expected function terms (EF) and the number of unexpected function
terms (UF). In this study, we limited our analysis to the top 35 GO terms with q < 0.05 or p < 0.05,
so the maximum possible values of EF and UF are 35. By analogy to false discovery rate (FDR),
we merged EF and UF into a combined measurement called unexpected function rate (UFR), where

UFR =
UF

UF + EF
.

UFR ranges from 0 (best) to 1 (worst).
In addition to measuring performance by comparing UF to those terms specifically designated

EF, we also compared it against all of the top 35 GO terms retrieved on a dataset with q < 0.05
or p < 0.05. The total number of terms found here also includes broadly relevant terms and
non-specific terms, such as those pertaining to gene regulation and housekeeping functions. We call
this measurement the total UFR (tUFR), where

tUFR =
UF

total
.

Like UFR, tUFR ranges from 0 (best) to 1 (worst).

dataset method total EF UF UFR tUFR details

VISTA limb BEHST 35 6 0 0.00 0.00 Table 2
GREAT 24 6 3 0.33 0.13 Table 3
ChIP-Enrich 35 14 5 0.26 0.14 Table 4
GREAT-g:Profiler 35 3 6 0.67 0.17 Table 12

VISTA nose BEHST 22 3 0 0.00 0.00 Table 5
GREAT 1 0 1 1.00 1.00 Table 6
ChIP-Enrich 35 1 14 0.93 0.40 Table 7
GREAT-g:Profiler 20 0 11 1.00 0.55 Table 11

FANTOM5 blood BEHST 35 15 0 0.00 0.00 Table 8
GREAT 31 13 0 0.00 0.00 Table 9
ChIP-Enrich 35 21 0 0.00 0.00 Table 10

Table 13: Summary of expected function (EF) and unexpected function (UF) terms for
each dataset examined. Unexpected function rate UFR = UF/(UF+EF). Total unexpected function
rate tUFR = UF/total total: number of terms retrieved with q < 0.05 or p < 0.05, or 35, whichever is
smaller.

To quantitatively summarize the individual comparisons of BEHST and other methods, we
computed UFR and tUFR for each comparison (Table 13). In the VISTA tests, BEHST produced
UFR and tUFR lower than all the other methods. In FANTOM5 blood enhancers, no method
retrieved a UF term, so all methods tied with UFR of 0.00.

Semantic similarity of enriched terms
To better understand the differences between BEHST and other methods, we generated semantic
similarity analyses of enriched GO terms with REVIGO [39]. For each analysis of a GO term list,
REVIGO calculated semantic similarity between every pair of terms in the list. Specifically, we
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used Resnik similarity [40] to estimate how much information content a pair of terms share [41] in
the GO Annotation database [42]. REVIGO removed any redundant terms—terms with a very
high semantic similarity with another term. Then, REVIGO clustered enriched terms based upon
semantic similarity (Methods).
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Figure 5: REVIGO [39] scatterplots of GO terms enriched in VISTA limb enhancers.
Enrichment performed by (a) BEHST or (b) GREAT. Each colored bubble represents a GO term, placed
near semantically similar GO terms via multidimensional scaling [43] of a Resnik similarity [40] matrix.
Bubble size: background frequency of the term in the GO Annotation database, as a percentage [44].
Bubble color: log10 p. UF: unexpected function. EF: expected function.

BEHST retrieved EF GO terms as single clusters. In VISTA limb enhancers, BEHST
retrieved a cluster of EF GO terms represented by “embryonic skeletal system development”
and semantically similar terms (Figure 5a). Thus, BEHST correctly identified a group of similar
biological processes, distinct from the rest of the network.

GREAT retrieves UF GO terms as accidental errors in clusters of correct GO
terms, or as independent UF clusters. For the limb dataset, GREAT found a set of similar
GO terms which contains both EFs and UFs (Figure 5b). This cluster shows that GREAT retrieved
not only GO terms related to limb, but also included unrelated terms, such as “cardiovascular
system development”.

Discussion
BEHST uses three-dimensional genome organization information instead of adjacency to link
arbitrary genomic regions with genes that have annotated GO terms. Using this information,
BEHST retrieved more specific and precise GO terms for enriched genomic regions than existing
methods. Furthermore, BEHST identified fewer UF GO terms than existing methods, and therefore
attained a lower UFR.

We hope to add several extensions to improve BEHST. First, by setting the extension parameters
eQ and eT based on the effective resolution of the long-range interaction data (Table 14), BEHST
might provide analyses more tuned to the capabilities of the original experiments. Second, instead of
the union of multiple cell types, using chromosome conformation data from only the most relevant
cell types could provide more precise enrichment results. Third, adding transcript-centric analysis
would allow more use of specific terms annotated to alternative transcripts, where available.
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Methods

Datasets
In addition to the query data, BEHST employs three reference datasets:

• Long-range interactions: Hi-C data (GEO accession GSE63525 [27]) from a union of eight
cell types (Table 14; Table 15);

• Gene annotations: the GENCODE comprehensive gene annotation (version 19 GRCh37.p13 [45]);

• Principal transcript annotations: APPRIS principal isoform annotation (version 2017 01.v20,
Species: Human, Assembly Version: GRCh37/hg19, Gene Dataset: Gencode19/Ensembl74 [46]).

We used human genome assembly GRCh37/hg19 [47] for all analyses.
We used enhancers from the VISTA Enhancer Browser [28], for eye, forebrain, heart, hindbrain,

limb, midbrain, and nose. We acquired the FANTOM5 blood enhancer dataset from the Promoter
Enhancer Slider Selector Tool (PrESSTo) [29].

cell type description number of
interactions

median
interaction

distance

mean
region size

GM12878 B-lymphocyte, lymphoblastoid 9,448 275,000 bp 6,657 bp
HeLa-S3 Human epitheloid cervical carcinoma 3,094 225,000 bp 20,236 bp

HMEC Human mammary epithelial cell 5,152 150,000 bp 8,001 bp
HUVEC Human umbilical vein endothelial cells 3,865 250,000 bp 19,225 bp

IMR90 Human fetal lung fibroblasts 8,040 220,000 bp 7,579 bp
K562 Human immortalised myelogenous leukemia 6,057 255,000 bp 14,089 bp

KBM7 Chronic myelogenous leukemia 2,634 275,000 bp 21,253 bp
NHEK Normal human epidermal keratinocytes 4,929 275,000 bp 22,047 bp

union of all (excluding duplicates) 34,367 240,000 bp 12,443 bp

Table 14: Summary statistics of the Hi-C datasets used.

cell type file name

GM12878 GSE63525 GM12878 primary+replicate HiCCUPS looplist.txt.gz
HeLa-S3 GSE63525 HeLa HiCCUPS looplist.txt.gz

HMEC GSE63525 HMEC HiCCUPS looplist.txt.gz
HUVEC GSE63525 HUVEC HiCCUPS looplist.txt.gz

IMR90 GSE63525 IMR90 HiCCUPS looplist.txt.gz
K562 GSE63525 K562 HiCCUPS looplist.txt.gz

KBM7 GSE63525 KBM7 HiCCUPS looplist.txt.gz
NHEK GSE63525 NHEK HiCCUPS looplist.txt.gz

Table 15: Hi-C datasets used from GEO (accession number GSE63525).

3D-aware genomic region enrichment
BEHST takes query regions comprising genomic loci of interest and identifies genes and annotation
terms associated with these query regions through chromatin looping (Figure 2). In short, BEHST
expands each query region both upstream and downstream by a query extension eQ, finds long-range
interactions with one side within the expanded query region (Figure 2a–c), and then examines the
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distal side of these interactions (Figure 2d,i). At the distal side of a long-rage interaction, BEHST
identifies cis-regulatory regions of protein-coding genes (Figure 2e–h). BEHST uses an upstream
and downstream target extension eT to define how far it will search for cis-regulatory regions. Next,
BEHST creates a list of all genes in the identified cis-regulatory regions (Figure 2j,k). Finally,
BEHST performs pathway enrichment analysis on this gene list using g:ProfileR [7] (Figure 2l,m).

We describe this procedure in more detail in the following paragraphs.
Extended query bounds. BEHST intersects the query regions with the long-range interaction

dataset (Figure 2a,b), and then widens them by the query extension parameter eQ, in both directions.
We call these widened regions the extended query bounds.

Long-range interactions. Here, we used a union of chromatin loops Hi-C datasets for
the GM12878, HeLa, HMEC, HUVEC, IMR90, K562, KBM7, and NHEK cell types in Hi-C
Computational Unbiased Peak Search (HiCCUPS) format [27]. We used the union of all cell types
(Table 14c), rather than one specific cell type, treating the union as a repertoire of potential
long-range interactions. This works in all cases, unlike requiring a mapping of a query dataset to a
cell-type–specific Hi-C dataset. The appropriate Hi-C dataset to use with many queries is unclear
or simply does not exist.

Gene annotation processing. BEHST reads a gene annotation dataset to identify potential
target genes. BEHST employs APPRIS [46] to select the principal transcript for each gene. BEHST
then uses the principal transcript’s identifier to extract transcript features from a gene annotation
(Figure 2e–g). This prevents problems in downstream analysis with multiply counting genes with
multiple transcripts.

Extended target bounds. BEHST establishes a basal cis-regulatory region around the
principal TSS of each gene (Figure 2h). To do this, BEHST employs a strand-specific upstream
and downstream adjustment (5 kbp upstream and 1 kbp downstream of the TSS). We adapted
these values from GREAT [13].

From the opposite side of any chromatin loops within the extended query bounds, BEHST
identifies a widened area for target search called the extended target bounds. For efficiency of
implementation, BEHST performs this by actually extending the cis-regulatory regions (Figure 2i,j),
but this is equivalent to extending from the target side of a chromatin loop.

Functional enrichment analysis. BEHST concludes by producing a list of all genes with
cis-regulatory regions that overlap with the extended target bounds by ≥1 bp (Figure 2k). BEHST
performs functional enrichment analysis on this gene list using g:ProfileR [7], with default parameters
(Figure 2l,m).

Parameter optimization
BEHST relies on two extension parameters, the query extension eQ and the target extension eT.
To optimize these two parameters and set default values for BEHST, we performed a grid search.
We ran BEHST on seven VISTA enhancer datasets (eye, forebrain, heart, hindbrain, midbrain,
limb, nose) for ten values of eQ and ten values of eT, from 100 bp to 30,000 bp. We incremented
eQ by 3000 bp, and eT by 3100 bp in each step. We chose two different range increments to avoid
identical values of the two parameters during the grid search.

For each combination of parameter values and dataset, we identified the q-value of the most
significant GO term found by BEHST. We created seven matrices of most significant log10 (q-values),
one for each of the seven VISTA datasets. Each matrix has 10× 10 cells, each cell containing the
most significant log10 (q-value) for one of 10 values of eQ and one of 10 values of eT.

We created a 10 × 10 summation matrix by summing the values in all seven matrices, cell
by cell. From the summation matrix, we selected the cell with the lowest total log10 (q-value) as
parameters to use in all further analyses. This is equivalent to selecting the cell with the lowest
mean. This cell corresponds to eQ = 24,100 bp and eT = 9400 bp.

23

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 15, 2019. ; https://doi.org/10.1101/168427doi: bioRxiv preprint 

https://doi.org/10.1101/168427


Negative controls
To test correctness of BEHST analyses, we created negative controls by shuffling of lists of query
regions with two different procedures.

Total genomic random shuffle. For the total genomic random shuffle procedure, we randomly
shuffled the start coordinates of each query region genome-wide, keeping region sizes identical. We
performed this shuffle without regard to other genomic elements.

TSS-distance–preserving shuffle. The TSS-distance–preserving shuffle procedure randomly
shuffles each query region across the genome, but keeps each query region as near to a TSS as it
stood before shuffling. This prevents the bias inherent in a total genomic random shuffle through
potentially moving query regions into a gene desert. For each query region, we calculated the
distance between the region’s start and the nearest TSS of any protein-coding gene. Next, we
randomly selected another TSS and moved the query region so that its start has the same distance
to the new TSS as the original TSS.

Semantic similarity of enriched terms
We used REVIGO [39] to show the similarity between the GO terms retrieved by BEHST for
each query dataset. REVIGO computes semantic similarity between GO terms by considering
information content of the terms. REVIGO defines the information content of a GO term as the
negative logarithm of the frequency of that term in an annotation database. Here, we used the GO
Annotations [35].

We used REVIGO’s implementation of Resnik similarity [40, 48] to estimate how much informa-
tion content each pair of terms share. Resnik similarity derives from the most informative common
ancestor for the two terms, and ranges in the [0,∞) interval. Two terms with no informative
common ancestor have Resnik similarity of 0. Terms with more informative common ancestors have
higher Resnik similarities. We used Resnik similarity because it best shows correlation between
gene sequence similarities and GO term similarities [49]. Resnik similarity also proves more stable
than other similarity measures when used on different version of annotation databases [50, 51].

We used REVIGO analysis to exemplify differences between BEHST and GREAT on VISTA
limb enhancers (Figure 5a,b). We did not perform this analysis in cases where these differences
need little additional exploration. For example, GREAT retrieved only one significant GO term
on the VISTA nose enhancers (Table 5). And with the FANTOM5 blood enhancers, tests with
BEHST, GREAT, and ChIP-Enrich all led to expected enrichment.

Software availability
BEHST can be used with a web browser (http://behst.hoffmanlab.org).

The BEHST software for Linux and macOS can be downloaded (https://bitbucket.org/
hoffmanlab/behst) under the GNU General Public License version 2 (GPLv2), and can also
be installed through the Bioconda [52] package distribution. We have deposited the current version
of the software in Zenodo (http://doi.org/10.5281/zenodo.2174744).
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