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Abstract 30 
The increase of publicly available bioactivity data in recent years has fueled and 31 

catalyzed research in chemogenomics, data mining, and modeling approaches. As a direct 32 

result, over the past few years a multitude of different methods have been reported and 33 

evaluated, such as target fishing, nearest neighbor similarity-based methods, and Quantitative 34 

Structure Activity Relationship (QSAR)-based protocols. However, such studies are typically 35 

conducted on different datasets, using different validation strategies, and different metrics.  36 

In this study, different methods were compared using one single standardized dataset 37 

obtained from ChEMBL, which is made available to the public, using standardized metrics 38 

(BEDROC and Matthews Correlation Coefficient). Specifically, the performance of Naive 39 

Bayes, Random Forests, Support Vector Machines, Logistic Regression, and Deep Neural 40 

Networks was assessed using QSAR and proteochemometric (PCM) methods. All methods 41 

were validated using both a random split validation and a temporal validation, with the latter 42 

being a more realistic benchmark of expected prospective execution.  43 

Deep Neural Networks are the top performing classifiers, highlighting the added value 44 

of Deep Neural Networks over other more conventional methods. Moreover, the best method 45 

(‘DNN_PCM’) performed significantly better at almost one standard deviation higher than the 46 

mean performance. Furthermore, Multi task and PCM implementations were shown to improve 47 

performance over single task Deep Neural Networks. Conversely, target prediction performed 48 

almost two standard deviations under the mean performance. Random Forests, Support Vector 49 

Machines, and Logistic Regression performed around mean performance. Finally, using an 50 

ensemble of DNNs, alongside additional tuning, enhanced the relative performance by another 51 

27% (compared with unoptimized DNN_PCM).  52 

Here, a standardized set to test and evaluate different machine learning algorithms in 53 

the context of multitask learning is offered by providing the data and the protocols. 54 
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1   Introduction 58 

The amount of chemical and biological data in the public domain has grown 59 

exponentially over the last decades [1-3]. With the advent of ChEMBL, computational drug 60 

discovery in an academic setting has undergone a revolution [4, 5]. Indeed, the amount of data 61 

available in ChEMBL is also growing rapidly (Supplementary figure 1). Yet data availability 62 

and data quality still pose limitations [6]. Public data is sparse (on average a single compound 63 

is tested on two proteins) and prone to experimental error (on average 0.5 log units for IC50 64 

data) [6, 7]. To make full use of the potential of this sparse data and to study ligand-protein 65 

interactions on a proteome wide scale, computational methods are indispensable as they can be 66 

used to predict bioactivity values of compound-target combinations that have not been tested 67 

experimentally [8-10].   68 

In order to compare our work to established target prediction methods, we framed the 69 

original problem as a classification task by labeling compound-protein interactions as ‘active’ 70 

or ‘inactive’. Data explored here contains pChEMBL values, which represent comparable 71 

measures of concentrations to reach half-maximal response / effect / potency / affinity 72 

transformed to a negative logarithmic scale. The threshold at which molecules are labeled 73 

‘active’ determines the fraction of data points belonging to the ‘active’ compound class. If this 74 

is set at 10 µM (pChEMBL = 5) as is done frequently in literature, almost 90% of the extracted 75 

ChEMBL data is an ‘active’ compound making it the default state (Supplementary figure 2) 76 

[10, 11].  77 
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Hence, predictions out of the model will likely be ‘active’. Such a high fraction of active 78 

compounds is not in accordance with what is observed experimentally. Moreover, in an 79 

experimental context, model output should ideally lead to identification of compounds with 80 

affinity higher than 10 µM to make most efficient use of costly experimental validation. Based 81 

on these considerations, we chose to set the decision boundary at 6.5 log units (approximately 82 

300 nM), defining interactions with a log affinity value larger than or equal to 6.5 as ‘active’ 83 

compounds. At this boundary, the distribution between ‘active’ and ‘inactive’ compounds is 84 

roughly 50% (Supplementary figure 2). For reference, a model using the 10 µM threshold 85 

and a Naïve Bayesian classifier was included in this study which could be seen as a baseline.  86 

Furthermore, as was touched upon above, public data can have relatively large 87 

measurement errors, mostly caused by the data being generated in separate laboratories by 88 

different scientists at different points in time with different assay protocols. To make sure that 89 

bioactivity models are as reliable as possible, we chose to limit ourselves to the highest data 90 

quality available in ChEMBL (Supplementary figure 3) using only confidence class 9 data 91 

points were used. A common misconception in literature is that the confidence class as 92 

implemented in ChEMBL is interpreted as quality quantification rather than classification (i.e., 93 

the higher the confidence, the better, using data points confidence class higher than 7). Yet, 94 

this is not always true as the confidence represents different classes (i.e., ‘homologous protein 95 

assigned’ as target versus ‘direct target assigned’). Hence some confidence classes are not 96 

compatible with each other for the goal pursued by a method. An example of a confidence class 97 

8 assay is: CHEMBL884791 and an example of a class 9 assay is CHEMBL1037717. Both 98 

compound series have been tested on the Adenosine A2A receptor but in the former case it was 99 

obtained from bovine striatal membrane and the latter explicitly mentions human Adenosine 100 

A2A receptors. In the current work, we chose consistently class 9 (see the recent paper by the 101 

ChEMBL team on data curation and methods for further details) [6].  102 
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 103 

Figure 1: Differences between methods for modeling bioactivity data exemplified by the ligand 104 

adenosine which is more active (designated as ‘active’) on the adenosine A2A receptor, than 105 

on the A2B receptor (‘inactive’, using PChEMBL > 6.5 as a cutoff). With binary class QSAR, 106 

individual models are constructed for every target. With multiclass QSAR one model is 107 

constructed based on the different target labels (A2A_active, A2B_inactive). With PCM one 108 

model is constructed where the differences between proteins are considered in the descriptors 109 

(i.e. based on the amino acid sequence). With multiclass DNN a single output node is explicitly 110 

assigned to each target. 111 

 112 

It has been shown that compounds tend to bind to more than one target, moreover 113 

compounds have sometimes been tested active on multiple proteins [12, 13]. This activity 114 

spectrum can be modeled using (ensembles of) binary class estimators, for instance by 115 

combining multiple binary class RF models (Figure 1). Another strategy is to assemble one 116 

model with all targets, which can be done in various ways. With multiclass QSAR (MC), it can 117 

be predicted if a compound is active based on the probability of belonging to the active target 118 

class versus the inactive target class for a given target; each compound-target combination is 119 

assigned 'active' or 'inactive' (Figure 1).  120 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2017. ; https://doi.org/10.1101/168914doi: bioRxiv preprint 

https://doi.org/10.1101/168914
http://creativecommons.org/licenses/by/4.0/


 

6 

Yet another approach is to apply machine learning algorithms with added protein 121 

descriptors, commonly known as proteochemometrics (PCM) [14, 15]. Targets are represented 122 

in the data in the form of target descriptors and this is combined with compound descriptors. 123 

Hence, instead of determining the activity of a compound, the activity of a compound / protein 124 

pair (Figure 1) is determined. Explicitly quantifying this protein similarity allows models to 125 

make predictions for targets with no or very little bioactivity data but for which a sequence is 126 

known. Moreover, explicit protein features allow interpretation of both the important protein 127 

and ligand features from the validated model. The relationships between structure and 128 

biological activity in these large pooled datasets are non-linear and best modeled using non-129 

linear methods such as RF or Support Vector Machines (SVM) with non-linear kernels. 130 

Alternatively, when linear methods are used cross-terms are required that account for the non-131 

linearity [16].  132 

Several of our models benchmarked here are multitask, however for simplicity we 133 

grouped the different methods on underlying machine learning algorithm. Nevertheless, 134 

multitask learning has been shown to outperform other methods in bioactivity modeling and 135 

the reader is referred to Yuan et al. for a more in depth analysis [17].  136 

Another non-linear method is Deep Neural Networks (DNNs), which have recently 137 

gained traction being successfully applied to a variety of artificial intelligence tasks such as 138 

image recognition, autonomously driving cars, and the GO-playing program AlphaGO [18, 19]. 139 

Given their relative novelty they will be introduced here in relation to our research but the 140 

reader is referred to LeCun et al. for a more extensive introduction of the subject.[19] Deep 141 

Neural Networks have many layers allowing them to extract high level features from the raw 142 

data. DNNs come in multiple shapes but here we focus only on fully connected networks, i.e., 143 

networks where each node is connected to all the nodes in the preceding layer.  144 
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In feed forward networks (such as implemented in the current work) information moves 145 

from the input layer to the output layer through 'hidden' layers (which can be one layer to many 146 

layers). Each hidden node applies a (usually) non-linear response function to a weighted linear 147 

combination of values computed by the nodes from the preceding layer. By this, the 148 

representation of the data is slightly modified at each layer, creating high level representations 149 

of the data. The behavior of the network is fully determined by the weights of all connections. 150 

These weights are tuned during the training process by an optimization algorithm called 151 

backpropagation to allow the network to model the input-output relation. The major advantage 152 

of DNNs is that they can discover some structure in the training data and consequently 153 

incrementally modify the data representation, resulting in a superior accuracy of trained 154 

networks. In our research, we experimented with several scenarios, such as training as many 155 

networks as the number of targets or just one network with as many output nodes as the number 156 

of targets. (Figure 1). 157 

DNNs have been applied to model bioactivity data previously; in 2012 Merck launched 158 

a challenge to build QSAR models for 15 different tasks [20]. The winning solution contained 159 

an ensemble of single-task DNNs, several multi-task DNNs, and Gaussian process regression 160 

models. The multi-task neural networks modeled all 15 tasks simultaneously, which were 161 

subsequently discussed in the corresponding paper [20]. Later (multi-task) DNNs have also 162 

been applied on a larger scale to 200 different targets [21], tested in virtual screening [22], and 163 

was one of the winning algorithms of the Tox21 competition [23]. Recently different flavors 164 

of neural networks also have shown to outperform random forests on various, diverse 165 

cheminformatics tasks [24]. Hence, DNNs have demonstrated great potential in bioactivity 166 

modeling, however they have not been tested in a PCM approach to the best of our knowledge. 167 

Therefore, they have been included in our research as this technique may become the algorithm 168 

of choice for both PCM and QSAR.   169 
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Summarizing, we perform a systematic study on a high quality ChEMBL dataset, using 170 

two metrics for validation Mathews Correlation Coefficient (MCC) and Boltzmann-Enhanced 171 

Discrimination of ROC (BEDROC). The MCC was calculated to represent the global model 172 

quality, and has been shown to be a good metric for unbalanced datasets [25]. In addition, 173 

BEDROC represents a score that is more representative of compound prioritization, since it is 174 

biased towards early enrichment [26]. The BEDROC score used here (α=20) corresponds to 175 

80% of the score coming from the top 8%.  176 

We compare QSAR and PCM methods, multiple algorithms (including DNNs), the 177 

differences between binary class and multi-label models, and usage of temporal validation 178 

(effectively validating true prospective use). We used both open- and closed-source software, 179 

we provide the dataset and predictions, PP protocols to generate the dataset, and scripts for the 180 

DNNs in the Supplementary Information and on the internet (see section 4.10 and a DOI after 181 

acceptance).  182 

Hence, the current work contributes to the literature by providing not only a standardized 183 

dataset available to the public, but also a realistic estimate of the performance that published 184 

methods can currently achieve in preclinical drug discovery using public data.  185 

 186 

187 
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2   Results and discussion                                   188 

2.1   Random split partition 189 

Firstly, the accuracy of all algorithms was estimated with help of the random split 190 

method (Figure 2). Models were trained on 70% of the random split set and then validated on 191 

the remaining 30%. Validation of the classifier predictions on a multi-target dataset such as 192 

this one can be done either based on all predictions in a single confusion matrix or by 193 

calculating a confusion matrix per target and subsequently using the mean value. Both methods 194 

provide relevant information, thus we followed both and show the mean and the standard error 195 

of the mean (SEM) obtained from these two sets of experiments. Multiclass Random Forests 196 

were trained but omitted due to their poor performance (as can be seen in Supplementary 197 

table 1 and 2). For LR or SVM no PCM models were completed. An LR PCM model would 198 

require cross terms due to linearity, which would make a direct comparison impossible. 199 

Training of SVM PCM models was stopped after running for over 300 hours. Since results for 200 

Python (with scikit-learn) and Pipeline Pilot (PP, using R-statistics) were comparable in most 201 

cases, the results reported here are for the Python work with the PP results in the Supplementary 202 

Information. The exception is the 10 µM NB model, trained in PP which is our baseline model. 203 

Individual results for all methods are reported in the Supplementary information. 204 

(Supplementary table 2).  205 
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206 

Figure 2: Performance of the different methods in the random split validation, grouped by 207 

underlying algorithm and colored by metric used. On the left y- axis, and in blue the Matthews 208 

Correlation Coefficient is shown, while on the right y-axis and in red the BEDROC (α = 20) 209 

score is shown. Default, single class algorithms are shown, and for several algorithms the 210 

performance of PCM and multi-class implementations is shown. Error bars indicate SEM. 211 

Mean MCC is 0.49 ( ±0.04) and mean BEDROC is 0.85 (± 0.03). 212 

 213 

 214 

 The average MCC of all algorithms is 0.49 (± 0.04), underlining the predictive power 215 

of most methods. The mean BEDROC was 0.85 (± 0.03), which corresponds with a high early 216 

enrichment. The performance of all DNNs are well above the average performance, both in 217 

terms of MCC and BEDROC. The best method overall is the DNN_MC with an MCC of 0.57 218 

(± 0.07), and a BEDROC score of 0.92 (± 0.05). DNN_PCM is performing slightly worse 219 

(MCC of 0.55 ± 0.07), but slightly better in terms of BEDROC (0.93 ± 0.03) and the DNN 220 

follows (MCC of 0.53 (± 0.07) and BEDROC of 0.91 (± 0.05)). 221 

222 
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 The worst performing method is the NB 10 µM (MCC of 0.19 ± 0.01 and BEDROC 223 

0.66 ± 0.05), where NB (using the 6.5 log units activity threshold) performs around the mean 224 

of all performing methods (MCC of 0.41 ± 0.03 and BEDROC 0.79 ± 0.08). Indeed, using an 225 

activity threshold of 6.5 log units appears to improve performance. Surprisingly logistic 226 

regression performed above the average (MCC of 0.51 ± 0.06 and BEDROC 0.88 ± 0.06). 227 

However, large differences were observed between logistic regression in Pipeline Pilot and 228 

Python, most likely due to the fact that the latter uses regularization (Supplementary table 1). 229 

Overall it is found that high/low MCC scores, typically also corresponded with 230 

high/low BEDROC scores with some exceptions. Most notably was the RF_PCM model which 231 

was the best performing model in terms of MCC (MCC of 0.60 ± 0.07), but underperformed 232 

in terms of BEDROC (BEDROC 0.83 ± 0.08). Moreover, judged on MCC the QSAR 233 

implementation of RF outperforms SVM (MCC of 0.56 ± 0.07 versus 0.50 ± 0.07). Yet, based 234 

on the BEDROC, SVM outperforms the RF model (BEDROC 0.88 ±0.05 versus 0.82 ± 0.03). 235 

Based on this we pose that SVMs are better in predicting top ranking predictions, but RFs are 236 

better in predicting negative predictions. 237 

While these results look encouraging, it should be noted that in a random splitting 238 

scenario all data points (measured activities of protein-compound combinations) are 239 

considered separate entities. Hence, members of a congeneric compound series from a given 240 

publication can be part of the test set while the remaining are part of the training set (see 241 

methods - validation partitioning). Therefore, this method is expected to give an optimistic 242 

estimate of model performance; for a more representative performance estimate, a more 243 

challenging validation is exemplified below. 244 

 245 

246 
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2.2   Temporal split partition 247 

In the temporal split, training data was grouped by publication year rather than random 248 

partitioning (Figure 3). All data points originating from publications that appeared prior to 249 

2013 were used in the training set, while newer data points went into the validation set. Using 250 

temporal split we aim to minimize the effect that members of a congeneric chemical series are 251 

divided over training and test set. Temporal split has previously been shown to be a better 252 

reflection of prospective performance, than other validation schemes [27].  253 

 All methods performed worse than on the random split benchmark. The average MCC 254 

dropped to 0.18 (± 0.03) from 0.49 (± 0.04) in the random split with a similar picture for the 255 

BEDROC 0.66 (± (0.03) from 0.85 (± 0.03). A paired t-test p-value < 0.01 for both MCC and 256 

BEDROC was obtained, confirmed that this is indeed a significantly more challenging form of 257 

validation (Supplementary table 2). 258 

 Large differences between methods are observed, for instance the RF model in terms 259 

of MCC is performing around the average, but both RF and RF_PCM underperform in terms 260 

of early enrichment (BEDROC 0.54 ± 0.03 and 0.56 ± 0.04 versus the mean 0.66 ± 0.03). SVM 261 

(MCC of 0.22 ± 0.07 and BEDROC 0.69 ± 0.07) performed in between the DNNs and RF 262 

models. Both NB 10 µM and NB underperform based on MCC and BEDROC. Finally, all 263 

DNNs outperformed the other methods both in terms of MCC (0.22 ± 0.08 - 0.27 ± 0.07) and 264 

even more so in terms of BEDROC (0.73 ± 0.06 – 0.78 ± 0.07). For the DNN_PCM, we found 265 

that for targets with few data points in the training set, the PCM models were able to extrapolate 266 

predictions (Supplementary figure 4).  267 

 268 

269 
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270 

Figure 3: Performance of the different methods in the temporal split validation, grouped by 271 

underlying algorithm and colored by metric used. On the left y- axis, and in blue the Matthews 272 

Correlation Coefficient is shown, while on the right y-axis and in red the BEDROC (α = 20) 273 

score is shown. Default, single class algorithms are shown, and for several algorithms the 274 

performance of PCM and multi-class implementations is shown. Error bars indicate SEM. 275 

Mean MCC is 0.17 ( ±0.03) and mean BEDROC is 0.66 (± 0.03) 276 

 277 

Summarizing, the lower performance observed here is more in line with the performance 278 

that can be expected from a true prospective application of these types of models. It has been 279 

suggested in literature that also temporal splitting is not ideal, but it still provides a more 280 

challenging form of validation and better than leaving out chemical clusters [27]. Hence, this 281 

make temporal split validation a better way to validate computational models. Yet, in addition 282 

to raw performance, training time is also of importance.  283 

284 
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2.3   Run time 285 

Quick training models allow for easy retraining when new data becomes available, 286 

models that require a long time are not readily updated, making their maintenance a tradeoff. 287 

It was found that on our hardware most models could be retrained in under 10 hours. This 288 

training time corresponds with an overnight job (Supplementary table 3).  289 

One point should be visited, NB in Pipeline Pilot was considerable slower than the NB 290 

trained in scikit-learn (20 minutes in scikit-learn compared with 31 hours, Supplementary 291 

table 3). This is caused by the calculation of the background scores (see methods for details) 292 

as was done previously [28]. Calculation of z-scores requires the prediction of all ligand – 293 

protein interactions in the matrix and is a lengthy procedure regardless of the high speed of 294 

NB. As can be seen, the NB 10 µM models do not suffer this penalty (as they do not use z-295 

score calculation) and are hence the fastest.  296 

When we compare training time with MCC and BEDROC, we observe that training times 297 

do not directly correlate with the quality of the model. In both cases a weak trend is observed 298 

between performance and training time (R2 0.25 and 0.38 respectively, Supplementary figure 299 

5). It should be noted that RF can be trained in parallel (on CPUs) leading to a speedup in wall 300 

clock time but that there is a saturation around 40 cores [29]. In addition, the parallel 301 

implementation requires installation of additional third party packages such as ‘foreach’ for the 302 

R implementation [30]. In scikit-learn this works more efficiently, however, in both cases 303 

running in parallel increases memory consumption. Note that a GPU version of RF 304 

(CUDAtrees) was published in 2013 but this package is no longer maintained (abandoned 305 

November 2014). Hence, while RF can be optimized, this is not as straightforward as in DNN. 306 

Still, it should be noted that the GPU-implementation of the DNN speeds up the calculation 307 

about ~150 times when compared with the CPU-implementation (benchmarked on a single 308 

core); this makes GPUs a definite requirement for the training of DNNs.  309 
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 310 
Figure 4. Comparison of the mean z-scores obtained by the different methods. Bars are 311 

colored by method and error bars indicate SEM, best performance is by the DNN (0.96 312 

±0.19, 0.92 ±0.13, and 0.60 ±0.11 respectively), followed by SVM (0.32 ±0.09), LR (0.22 313 

±0.06), RF (-0.21 ±0.41 and -0.28 ±0.41), and finally NB (-0.69 ±0.04 and -1.84 ±0.40). 314 

 315 

2.4   Ranking the various methods 316 

To accurately compare the methods, 4 z-scores were calculated for each method and 317 

metric within the experiments (random split MCC, random split BEDROC, temporal split 318 

MCC, and temporal split BEDROC, Table 1 and Figure 4). Herein DNNs are found to be the 319 

best algorithm, and have the most consistent performance. For instance, for DNN the best 320 

model (DNN_PCM) has an average z-score of 0.96 (± 0.19), compared to -0.69 (± 0.04) for 321 

the best NB model and a slightly better -0.21 (± 0.41) for the best RF model. Moreover, the 322 

three best methods based on the average z-score are all DNNs, which are subsequently 323 

followed by SVM (0.32 ± 0.09). Furthermore, the DNNs perform the best in all types of 324 

validations in terms of BEDROC and MCC, with a single exception (the random split MCC 325 

where RF_PCM is the best as can be observed in bold in Table 1). To confirm whether the 326 
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observed differences were actually statistically significant, the following tests were performed: 327 

the paired Student’s T-Test (determine whether the means of two groups differ), the F-Test 328 

(determine whether the variances of groups differ), Wilcoxon Rank test (determine whether 329 

sets have the same median), and the Kolmogorov-Smirnov test (determine whether two 330 

samples come from the same random distribution). Results can be found in the supporting 331 

information Supplementary tables 4 - 7, here the results will be summarized.  332 

For the Student’s T-Test DNN_PCM and DNN_MC are shown to significantly differ 333 

from all other methods with a p-value < 0.05 except for RF and RF_PCM, where the p-values 334 

are 0.05, 0.06 (2 times), and 0.07. DNN is seen to differ significantly from NB 10 µM, NB, 335 

and LR. Likewise, NB 10 µM differs significantly from all other methods with the p-value < 336 

0.05 with the exception of NB, where the p-value is 0.06. It can hence be concluded that there 337 

are little differences in performance using RF, SVM, and LR, whereas the use of NB is 338 

significantly worse than the rest and usage of DNN leads to significantly better results. 339 

In the variances (F-Test) less significant differences are found. NB 10 µM differs 340 

significantly from NB, SVM, LR. Similarly, NB differs significantly from RF, RF_PCM, and 341 

DNN_PCM. RF and RF_PCM differ significantly from SVM, LR, DNN (with the exception 342 

of the pair RF_PCM – DNN which has a p-value of 0.06). Hence in general variance in SVM 343 

and LR differs significantly from NB and RF, whereas between the other methods not really 344 

significant differences exist. 345 

The results of the Wilcoxon and Kolgomorov-Smirnov test were very similar to each 346 

other. For both, the differences between SVM, LR, DNN, DNN_MC, DNN_PCM on one hand 347 

and both NB 10 µM and NB on the other hand are significant. Secondly, in both DNN_MC 348 

differs significantly with RF, SVM, and LR. Finally, DNN_PCM differs significantly with LR 349 

in both. In general it can be concluded that NB and RF methods differ significantly from other 350 
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methods and DNN_MC differs from most (based on the methods median value and whether 351 

samples come from the same random distribution). 352 

In conclusion, here it was shown that DNN methods generally outperform other 353 

algorithms and that this is a statistically significant result. However, we used DNN as is and it 354 

should be noted that there is room for improvement by (among other things) inclusion of more 355 

information and training of hyper parameters which will be further explored in the next section.  356 

 357 

Table 1: Overview of the performance of the benchmarked methods.  358 

Method	
MCC	

Random		
BEDROC	
Random	

MCC	
Temporal		

BEDROC	
Temporal		 Average	 SEM	

NB 10 uM	 -2.41	 -2.22	 -2.07	 -0.67	 -1.84	 0.40	

NB	 -0.65	 -0.66	 -0.81	 -0.64	 -0.69	 0.04	

RF	 0.56	 -0.30	 0.02	 -1.41	 -0.28	 0.41	

RF_PCM	 0.88	 -0.17	 -0.46	 -1.10	 -0.21	 0.41	

SVM	 0.11	 0.36	 0.53	 0.30	 0.32	 0.09	

LR	 0.17	 0.40	 0.11	 0.19	 0.22	 0.06	

DNN	 0.32	 0.75	 0.56	 0.79	 0.60	 0.11	

DNN_MC	 0.60	 0.85	 1.03	 1.20	 0.92	 0.13	

DNN_PCM	 0.44	 0.98	 1.09	 1.33	 0.96	 0.19	
 359 

Z-scores are shown for all methods for both types of splitting and for both MCC and BEDROC. 360 

In bold the best performance for a given machine learning algorithm per column is highlighted. 361 

See main text for further details.  362 

 363 

364 
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2.5   Exploring the potential of DNNs 365 

An additional reason that DNNs were of interest in this study is the fact that they can 366 

process more information without a high penalty in training time. Because in general DNNs 367 

are quite sensitive to the choice of hyper parameters, we explored a number of different 368 

parameters through a grid search based exploration of model parameter space. For this we 369 

varied the architecture of the networks, ranging from one layer of 1000 hidden nodes (very 370 

shallow), to two layers of 2000 and 1000 nodes (shallow), to the default settings (4000, 2000, 371 

1000 nodes) and the deepest network used here (8000, 4000, 2000 nodes).  372 

In addition to the number of nodes we varied the dropout which represents the 373 

percentage of nodes that are dropped randomly during the training phase, a technique to prevent 374 

overfitting [31]. By default (as used above), there is no dropout in the input layer and 25% on 375 

the hidden layers. However, in the increased dropout scenario 25% dropout is introduced in 376 

the input layer and in the higher layers increased to 50%.  377 

Thirdly, the usage of more extensive compound descriptors was investigated (up to 378 

4096 bits and additional physicochemical descriptors) which was not possible with the RF and 379 

NB models due to computational restraints.  380 

Finally, differences between PCM, MC, and QSAR were investigated. To test all these 381 

different combinations mentioned above the maximum number of epochs was decreased from 382 

2000 to 500 (see methods - machine learning methods - neural networks). These settings were 383 

validated on the temporal split because it represents a more realistic and more challenging 384 

scenario as shown in section 2.3. 385 

The predictive performance of all the DNNs are summarized in Figure 5, while 386 

performance of individual models is shown in Supplementary figure 6. Improvements are 387 

expressed in the percentage of increase over the baseline performance as demonstrated by the 388 

DNN_PCM covered in section 2.2 (temporal split). Based on these results the following can 389 
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be concluded. First of all, performance using a longer bit string is better (9% improvement for 390 

4096 bits with extra features compared to the baseline), with on the low end of the performance 391 

spectrum the 256 bits that were used prior to this optimization (average decrease of 2% in the 392 

grid search). This intuitively makes sense as the shorter fingerprints contain less information. 393 

Moreover, it could be that distinct chemical features computed by the fingerprint algorithm 394 

hash to the same bit. In that case a specific bit could represent the presence of multiple features, 395 

which is more likely to happen with a shorter fingerprint. Furthermore, out of the models 396 

trained with 256 bits descriptors for ligands, the PCM DNN consistently outperformed the 397 

others, likely due to the fact that PCM profits from the added protein features also containing 398 

information.  399 

Of the three different DNNs, PCM slightly outperforms the other methods (average 400 

improvement 8%), although examples of both single and multi-task models are also found in 401 

the top performing methods (average increase 2% and 2% respectively). With regard to the 402 

architecture, deep and wide networks seem to perform best (e.g., architecture 3 with an average 403 

increase of 12%), although some of the shallow, multiclass and binary class networks 404 

(architecture 7) are also found in the top performing methods.  405 

Overall it seems that increasing dropout leads to a poorer performance. Since dropout 406 

is a technique to prevent overfitting, a DNN can be considered as underfitted if dropout is too 407 

strict. This is confirmed by these results, as higher dropout rates and dropout on the visible 408 

layer (the fingerprint/feature layer) results in a drop of accuracy (1 versus 2 and 3 versus 4). 409 

Moreover, if all increased dropout results and normal dropout results are aggregated, increased 410 

dropout performs near identical to the baseline (0%) and the normal dropout architectures (on 411 

average) perform 7% better than baseline. Therefore, an option to be considered is a less 412 

aggressive dropout. Alternatively lowering the dropout percentage adaptively (during the 413 

training), similar to the learning rate would be an option too.   414 
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Finally, the best performance is observed by using an ensemble of the predictions from 415 

all models, for instance by using a majority prediction or an average vote (improvement 25% 416 

and 26%, black bars Figure 5). This improvement suggests that there is still room for further 417 

improvement and only the surface was scratched in this work. Indeed, ensembles of different 418 

machine learning methods, including neural networks have been used to achieve competitive 419 

results on bioactivity prediction tasks. More context will be discussed below.  420 

 421 

Figure 5: Average performance of the individual DNN grouped per method, architecture and 422 

descriptors. Average value is shown for all models trained sharing a setting indicated on the 423 

x-axis, error bars represent the SEM of that average. Black bars on the left represent the 424 

ensemble methods (average value and majority vote). Grey bars on the right indicate the 425 

previous best performing DNN (DNN_PCM), NB with activity cut-off at 6.5 log units and z-426 

score calculation, and default NB with activity cut-off at 10 µM. We observed PCM to be the 427 

best way to model the data (green bars), architecture 3 to be the best performing (blue bars), 428 

and usage of 4096 bit descriptors with additional physicochemical property descriptors to 429 

perform the best (red bars). Using ensemble methods further improves performance (black 430 

bars). 431 
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2.6   Putting this work into context 432 

As touched upon, ChEMBL has fueled a diverse array of publications and this 433 

discussion is limited to the most relevant and recent ones in the context of this paper. For 434 

instance Mervin et al. constructed a (Bernoulli) Bayesian model on both ChEMBL and 435 

PubChem data [32]. To balance the class sizes, a sphere exclusion algorithm was used to extract 436 

putative inactive data. A different threshold was used (10 µM, pChEMBL = 5) compared to 437 

the current study, and PubChem data in addition to the ChEMBL data was used. Also in the 438 

current work, it was found that inclusion of inactive molecules enhanced the performance for 439 

the Naive Bayes models (Supplementary table 8). 440 

A later study by Lusci et al. that was performed on ChEMBL data release 13 441 

benchmarked the performance of a number of different algorithms [33]. Similar to the current 442 

work the authors performed a temporal validation (on ChEMBL release 13) as a more realistic 443 

estimate of model performance. They also found that their method, potency-sensitive influence 444 

relevance voter (PS-IRV) outperformed other methods such as RF and SVM. However, here it 445 

is proposed that limiting the training set to high quality data with only the highest confidence 446 

from ChEMBL, leads to better performance. This is also corroborated by the AUC values 447 

obtained by Lusci et al. on their full set and the higher values obtained in the current work. 448 

IRV has been benchmarked before [34], and can be seen as an extension of K-nearest neighbors 449 

in a shallow neural network. In that study, random molecules were added (presumably 450 

inactive), in addition to the experimentally inactive molecules to boost results. Inclusion of 451 

more data, and more specifically inactive molecules is a line of future investigation we also 452 

aim to pursue. 453 

Regarding the DNNs, the influence of network architecture has been studied before 454 

[20], where it was noted that the number of neurons especially impacts the performance of 455 

deeper structured networks. This corresponds to our observations where the deepest and widest 456 
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network performed best. Further fine-tuning of the architecture might be worthwhile; in multi-457 

task networks trained for the Tox21 challenge up to 4 layers with 16,384 units were used [23]. 458 

Additionally, it was found that multiclass networks outperformed binary class networks, and 459 

similar gains in performance were observed on the joint (multi-task) DNN published by Ma et 460 

al. [20]. This is also in line with our own results where DNN is seen to slightly improve over 461 

state of the art methods such as RF and SVM, but DNN_MC and DNN_PCM are demonstrated 462 

to really improve performance. 463 

Finally, work by Unterthiner et al. demonstrated similar DNN performance [22]. 464 

Though the authors did not calculate the BEDROC, they obtained an AUC of 0.83 versus the 465 

here obtained AUC of 0.89 (Supplementary table 1). Interestingly, they found a worse NB 466 

performance (AUC 0.76 versus 0.81) compared to the current work [22]. This divergence is 467 

potentially caused by the fact that their dataset included lower quality ChEMBL data, which 468 

was the main reason for assembling the current benchmark dataset. Moreover, Unterthiner et 469 

al. used much larger feature input vectors, requiring ample compute power to use the non-DNN 470 

based algorithms. We have shown that we can achieve similar performance on a smaller dataset 471 

with fewer fingerprint features, suggesting that there is much room for improvement by 472 

hyperparameter optimization. Furthermore, Unterthiner et al. used a cost function weighted, 473 

based on the dataset size for every target. In our hands, experimentation choosing different 474 

weights inversely proportional to the target dataset size did not improve the performance of the 475 

models, however this can be further be explored. Finally, we have shown that usage of (simple) 476 

ensemble methods outperformed a single DNN alone, hence more sophisticated ensemble 477 

methods and inclusion of different models is a worthy follow up.  478 

DNNs have also been applied with promising results to the prediction of Drug-Induced 479 

Liver Injury [35], although a different descriptor was used than the conventional fingerprints, 480 

i.e. directed acyclic graph recursive neural networks [36]. Similarly, convolutional networks 481 
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were recently applied to molecular graphs, outperforming extended connectivity fingerprints 482 

(ECFP) [37]. Interestingly, contrary to ECFP, such graphs are directly interpretable [38]. This 483 

work was further extended to a diverse palate of different cheminformatics datasets, in 484 

MoleculeNet, where a lot of different architectures have been tested and compared [24]. 485 

Moreover, these methods are also publicly available in the form of the package DeepChem, a 486 

package for DNNs that is actively maintained. Future work will focus on using such models, 487 

and thus more tailored architectures to create ChEMBL wide bioactivity models. 488 

3 Conclusions 489 

We have created and benchmarked a standardized set based on high quality ChEMBL 490 

data (version 20). This dataset, together with the scripts used is available online, and can serve 491 

as a standardized dataset on which novel algorithms can be tested. Moreover, we have tested 492 

and compared a diverse group of established and more novel bioactivity modeling methods 493 

(descriptors, algorithms, and data formatting methods). To the best of our knowledge this is 494 

the first paper wherein in Deep Learning is coupled to proteochemometrics. Finally, we have 495 

explored the potential of DNNs by tuning their parameters and suggested ways for further 496 

improvement. 497 

From our results we draw a number of conclusions. Most of the methods and algorithms 498 

can create models that are predictive (perform better than random). Training time versus 499 

accuracy is a less relevant issue as the best performing methods required less than 10 hours. 500 

Commonly used ‘random split’ partitioning might lead to an overly optimistic performance 501 

estimate. It is proposed to split training and tests sets based on time-based differences, 502 

providing a more challenging and more realistic performance estimate. It should also be noted 503 

that active and inactive compound-target combinations can impact the performance. 504 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2017. ; https://doi.org/10.1101/168914doi: bioRxiv preprint 

https://doi.org/10.1101/168914
http://creativecommons.org/licenses/by/4.0/


 

24 

Focusing on machine learning methods, usage of DNN based models increases model 505 

prediction quality over existing methods such as RF, SVM, LR, and NB models. This is 506 

especially true when using multi task or PCM based DNNs and less so when using single task 507 

DNNs. As an added benefit, this gain in performance is not obtained at the expense of highly 508 

increased training times due to deployment of GPUs.  509 

It was shown that the widest and deepest DNN architectures produced the best results 510 

in combination with the most descriptor features. There is certainly still room for improvement 511 

as hardware (memory) limitations or extreme training times were not reached. Moreover, 512 

model ensembles of the 63 individual models further enhanced the results yielding performance 513 

that was 27% better than the best performing model prior to tuning, indicating that indeed better 514 

results are possible. 515 

Taken together, we anticipate that methods discussed in this paper can be applied on a 516 

routine basis and can be fine-tuned to the problem (e.g. target) of interest. Moreover, due to 517 

low training time and high performance we anticipate that DNNs will become a useful addition 518 

in the field of bioactivity modeling. 519 

520 
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4   Methods 521 

4.1   Dataset 522 

Data was obtained from the ChEMBL database (version 20) [4], containing 13,488,513 523 

data points. Activities were selected that met the following criteria: at least 30 compounds 524 

tested per protein and from at least 2 separate publications, assay confidence score of 9, ‘single 525 

protein’ target type, assigned pCHEMBL value, no flags on potential duplicate or data validity 526 

comment, and originating from scientific literature. Furthermore, data points with activity 527 

comments ‘not active’, ‘inactive’, ‘inconclusive’, and ‘undetermined’ were removed.  528 

If multiple measurements for a ligand-receptor data point were present, the median value 529 

was chosen and duplicates were removed. This reduced the total number of data points to 530 

314,767 (Supplementary figure 2), or approximately 2.5% of the total data in ChEMBL 20. 531 

Typically, studies have used thresholds for activity between 5 and 6 [10, 11, 32, 33]. Data 532 

points here were assigned to the ‘active’ class if the pCHEMBL value was equal to or greater 533 

than 6.5 (corresponding to approximately 300 nM) and to the ‘inactive’ class if the pCHEMBL 534 

value was below 6.5. This threshold gave a good ratio between active and inactive compounds. 535 

Around 90% of the data points are active when a threshold of 10 µM is used, while a roughly 536 

equal partition (55%/45%) occurs at a threshold of 6.5 log units (Supplementary figure 3). 537 

Additionally, it represents an activity threshold that is more relevant for biological activity. 538 

The final set consisted of 1,227 targets, 204,085 compounds, and 314,767 data points. 539 

Taken together this means the set 0.13 % complete (314,767 out of 250,412,295 data points 540 

measured). Moreover, on average a target has 256.5 (±427.4) tested compounds (median 98, 541 

with values between 1 and 4703).  542 

ChEMBL L1 and L2 target class levels were investigated. For the L1 targets, most 543 

dominant are enzyme (144,934 data points) followed by membrane receptor (113,793 data 544 
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points), and ion channel (16,023 data points). For the L2 targets G Protein-Coupled Receptors 545 

are most dominant (104,668 data points), followed by proteases (34,036 data points), and 546 

kinases (31,525 data points). See Supplementary figure 7 for a graphical view. Finally, each 547 

compound has on average been tested on 1.5 (±1.3) targets (median 1, with values between 1 548 

and 150). In total the set contained 70,167 Murcko scaffolds [39].  549 

4.2   Compound Descriptors 550 

Fingerprints used were RDKit Morgan fingerprints, with a radius of 3 bonds and a length 551 

of 256 bits. For every compound the following physicochemical descriptors were calculated: 552 

Partition Coefficient (AlogP) [40], Molecular Weight (MW), Hydrogen Bond Acceptors and 553 

Donors (HBA/HBD), Fractional Polar Surface Area (Fractional PSA) [41, 42], Rotatable 554 

Bonds (RTB). For descriptors used in the PP context please see Supporting Information 555 

Methods. 556 

4.3   Protein Descriptors 557 

For the PCM models, protein descriptors were calculated based on physicochemical 558 

properties of amino acids similar to previous work [43, 44]. However, lacking the ability to 559 

properly align all proteins, descriptors were made alignment independent which is different 560 

from our previous work. The sequence was split into 20 equal parts (where part length differed 561 

based on protein length). Per part, for every amino acid the following descriptors were 562 

calculated: Amount of stereo atoms, LogD [40], charge, hydrogen bond acceptors and 563 

hydrogen bond donors, rigidity, aromatic bonds, and molecular weight. Subsequently per part 564 

the mean value for each descriptor was calculated, and repeated for the whole protein, 565 

calculating the mean value for the full sequence length. Leading to an ensemble of 21 * 8 mean 566 

physicochemical property values (20 parts + global mean). Furthermore, sequence length was 567 

included as separate descriptor. It should be noted that this type of descriptor is a crude protein 568 
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descriptor at best with significant room for improvement. However, the descriptor captures 569 

similarity and differences between the proteins and it is shown to improve model performance 570 

over models lacking this descriptor. Optimizing this descriptor is judged to be out of scope of 571 

the current work but planned for follow up.  572 

4.4   Machine Learning – NB, RF, SVM, and LR models. 573 

Models were created using scikit-learn [45]. Naive Bayes models were trained using the 574 

same procedure as MultinomialNB [46]. A reference NB model with an activity threshold of 575 

10 µM was included using PP and default setup.  576 

RF were trained using the RandomForestClassifier. The following settings were used: 577 

1000 trees, 30% of the features were randomly selected to choose the best splitting attribute 578 

from, with no limit on the maximum depth of the tree.  579 

SVMs were trained using the SVC class, using the following settings: radial basis 580 

function kernel wherein gamma was set at 1 / number of descriptors. Further parameter cost 581 

was set at 1 and epsilon was set at 0.1.  582 

For LR, the LR class of the linear_model package was used. The settings were mostly set 583 

to default, except for the solver, which was set to Stochastic Average Gradient descent with a 584 

maximum of 100 iterations. 585 

4.5   Machine Learning – Neural Networks 586 

In our experiments, we used a network with the following architecture: an input layer 587 

with, for example, 256 nodes representing 256 bit fingerprints, connected to 3 hidden layers of 588 

4000, 2000, 1000 of rectified linear units (ReLU) and an output layer with as many nodes as 589 

the number of modeled targets (e.g. 1227 for the multi-task network). ReLU units are 590 

commonly used in DNNs since they are fast and unlike other functions do not suffer from a 591 
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vanishing gradient. The output nodes used a linear activation function. Therefore, the original 592 

pChEMBL values were predicted and were subsequently converted to classes (pChEMBL ≥ 593 

6.5 = active, pChEMBL < 6.5 = inactive). The target protein features and physicochemical 594 

features in the input layer were scaled to zero mean and unit variance. The output for a 595 

particular compound is often sparse, i.e. for most targets there will be no known activity. 596 

During training, only targets for which we have data were taken into account when computing 597 

the error function to update the weights. We chose to equally weight each target, for which we 598 

had data.  599 

For training our networks we used stochastic gradient descent with Nesterov momentum 600 

which leads to faster convergence and reduced oscillations of weights [47]. Data was processed 601 

in batches of size of 128. After the neural network has seen all the training data, one epoch is 602 

completed and another epoch starts.  603 

Moreover, after every epoch the momentum term was modified: the starting Nesterov 604 

momentum term was set to 0.8 and was set to 0.999 for the last epoch (scaled linearly). 605 

Likewise, during the first epoch the learning rate (the rate at which the parameters in the 606 

network are changed) was set to 0.005 and scaled to 0.0001 for the last epoch. These settings 607 

were decreased/increased on a schedule to allow for better convergence, increasing the 608 

momentum allows for escaping local minima while decreasing the learning rate decreases the 609 

chance of missing a (global) minimum. 610 

To prevent overfitting of the networks, we used 25% dropout on the hidden layers 611 

together with early stopping [31]. The early stopping validates the loss on an evaluation set 612 

(20% of the training data) and stops training if the network does not improve on the evaluation 613 

set after 200 epochs (Supplementary figure 7). The maximum number of iterations was set to 614 

2000 epochs. Dropout is a technique to prevent overfitting, by discarding, in each iteration of 615 

the training step, some randomly chosen nodes of the network. 616 
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To find the optimal network configuration we used grid search, limiting the number of 617 

epochs to 500 to speed up the training. In total, 63 individual models were trained to validate 618 

the influence of different descriptors, architecture and type of neural network (Supplementary 619 

figure 6). Due to problems with the stochastic gradient descent, for the PCM models with 4096 620 

fingerprints plus physicochemical chemical properties, architectures 2, 4, 6 (Supplementary 621 

figure 6); a batch size of 256 instead of 128 was used. In all cases where physicochemical 622 

chemical properties were used, they were scaled to zero mean and unit variance.  623 

In our experiments with neural networks we used nolearn/Lasagne and Theano packages 624 

[48-50] and GPU-accelerated hardware. The main script for training the networks is available 625 

in the supporting dataset deposit (‘FFNN.py’ and ‘instructions_DNN.pdf’). 626 

4.6 Validation Metrics 627 

We used the MCC and BEDROC as a primary validation metrics [26, 51, 52]. BEDROC 628 

(α=20), which corresponds to 80% of the score coming from the top 8% was used [26]. This 629 

was done to evaluate the performance in a prospective manner, where often the top % scoring 630 

hits is purchased. 631 

Four separate MCCs and BEDROCs were calculated. One value for the pooled 632 

predictions (pooling true positives, false positives, true negatives, and false negatives) was 633 

calculated, and secondly an average MCC was calculated based on the MCC values per protein. 634 

Of these two values the mean is visualized in figures 1 and 2, with the unprocessed values 635 

given in Supplementary tables 1 and 2. This was done for both the random split set and 636 

temporal split set. 637 

When no predictions were made for a given target-compound combination a random 638 

number was generated for this pair between 0 and 1. The reason for this is that we aimed to 639 

simulate a true use case and not cherry pick good or bad predictions. To be able to compare 640 

prediction quality across the different methods used random values were used, leading to MCC 641 
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scores close to 0 for these cases. For values > 0.5 this score was deemed ‘active’ and anything 642 

below 0.5 was deemed ‘inactive’.  643 

4.7  Validation Partitioning 644 

Two different methods were applied to partition the data in training/validation sets. The 645 

first method that was used was a ‘random split’, herein 10% of the data was partitioned using 646 

semi-stratified random partitioning with a fixed random seed as implemented in PP and set 647 

apart for future reference. The remaining 90% was partitioned in the same way in a 70% 648 

training and 30% test set.   649 

For the second method, a separate set was constructed wherein the year of the 650 

publication was the split criterion. All data points originating from publications that appeared 651 

prior to 2013 were used in the training set, while newer data points went into the validation set. 652 

4.8   Hardware 653 

Experiments were performed on a Linux server running CentOS 6.7. The server was 654 

equipped with two Xeon E5-2620v2 processors (hyperthreading disabled) and 128 GB RAM. 655 

GPUs installed are a single NVIDIA K40 and 2 NVIDIA K20s. 656 

4.9   Software used 657 

Python (version 2.7) was used with the following libraries: RDKit (version 2014.09.2) 658 

for the calculation of the fingerprints and descriptors [53], scikit-learn version 0.16 for the NB 659 

and RF [45]. For the neural networks we used Theano [54] and nolearn, together with Lasagne 660 

[49, 50].  For the supplementary information tables, Pipeline Pilot (version 9.2.0) [55], 661 

including the chemistry collection for calculation of descriptors, and R-statistics (R version 662 

3.1.2) collection for machine learning [56] were used. Algorithms only reported in the 663 

supplementary information are mentioned in the supplementary information. 664 

665 
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5 Abbreviations 666 

AUC: Aurea under the curve 667 

BEDROC: Boltzmann-enhanced discrimination of Receiver Operator Characteristic 668 

DNN: Deep Neural Networks 669 

IRV: Influence Relevance Voter  670 

LR: Logistic Regression 671 

MCC: Matthews Correlation Coefficient 672 

NB: Naive Bayes  673 

PCM: Proteochemometrics 674 

PP: Pipeline Pilot 675 

PS-IRV: Potency-Sensitive Influence Relevance Voter  676 

PY: Python 677 

QSAR: Quantitative Structure-Activity Relationship  678 

RF: Random Forests 679 

ROC: Receiver Operator Characteristic 680 

SEM: Standard Error of the Mean 681 

SVM: Support Vector Machines 682 
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