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Abstract

Sequencing the transcriptomes of single cells has greatly advanced our un-
derstanding of the cellular composition of complex tissues. In many of these
systems, the role of heterogeneity has risen to prominence as a determinant
of cell type composition and lineage transitions. While much effort has gone
into developing appropriate tools for the analysis and comprehension of sin-
gle cell sequencing data, further advances are required. Optimization-based
approaches are under-utilized in single cell analysis and hold much potential
due to their ability to capture global properties of the system in low di-
mension. Here we present SoptSC: an optimization-based algorithm for the
identification of subpopulation structure, transition paths, and pseudotem-
poral ordering within a cell population. Based on a measure of similarity
between cells, SoptSC uses non-negative matrix factorization to create low
dimensional representations of the data for analysis and visualization. We
find that in several examples, the low-dimensional representations produced
by SoptSC offer greater potential for insight than alternative methods. We
tested our methods on a simulated dataset and four published single cell
datasets from Homo sapiens and Mus musculus. SoptSC is able to recapit-
ulate a simulated developmental trajectory with greater fidelity than com-
parable methods. Applied to two datasets on early embryonic development,
SoptSC recapitulates known trajectories with high accuracy. Analysis of
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murine epidermis reveals overall agreement with previous studies, but differs
markedly regarding the composition and heterogeneity of the basal compart-
ment. Analysis of murine myelopoiesis found that SoptSC can resolve com-
plex hematopoietic subpopulation composition, and led to a new prediction
regarding the asynchronous development of myeloid subpopulations during
stem cell differentiation.

Keywords: optimization, similarity measure, non-negative matrix
factorization, dimensionality reduction, single cell analysis, hematopoiesis,
epidermal homeostasis, embryonic development

1. Introduction1

Multicellular life can be defined by the collection of cell types present2

within an organism, their developmental trajectories, and potential inter-3

change between types via cell state transitions throughout lifetime. Cell4

type is in turn controlled by the transcriptional state of a cell, together with5

interplay from proteomic and epigenetic factors. Our ability to measure the6

transcriptional state of a cell — and thus approach an understanding of its7

type or fate — has advanced dramatically within the past few years [1] due in8

part to high-throughput single-cell RNA sequencing (scRNA-seq) [2, 3, 4, 5].9

This move away from bulk [6, 7, 8] to single-cell sequencing permits delin-10

eation of the different sources of heterogeneity from within a population, an11

increasingly important task given the preeminent role of biological noise in12

such data (e.g. [9, 10]). In addition, scRNA-seq analyses have promoted the13

identification of new (rare) cell types [11, 12], challenged classical models of14

cellular lineage hierarchies [13, 10], and deepened our knowledge of various15

developmental trajectories [14, 15].16

scRNA-seq experiments yield measurement of O(104) genes in hundreds17

to thousands (and rapidly approaching > 105 [1]) cells across multiple time18

points and perturbations. Computational approaches are essential for the19

analysis of such high-dimensional datasets. Typical scRNA-seq analysis20

pipelines include clustering, pseudotemporal ordering of cells, and identifi-21

cation of marker genes, all of which require a dimensional reduction step22

[16, 17]. Dimensional reduction, e.g. via principal components analysis23

(PCA), t-distributed stochastic neighbor embedding (tSNE), etc., can also be24

performed directly for visualization purposes [18, 19]. Clustering — specifi-25

cally the identification of functionally relevant (sub-)populations of cells and,26

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2017. ; https://doi.org/10.1101/168922doi: bioRxiv preprint 

https://doi.org/10.1101/168922
http://creativecommons.org/licenses/by-nc-nd/4.0/


ideally, the relationships between them [20] — presents a crucial challenge27

for the interpretation of scRNA-seq datasets. “Pseudotemporal” ordering28

projects cells onto a pseudotime axis that may represent (e.g.) a develop-29

mental process, or stem cell differentiation, and can deviate from real time30

due to the unsynchronized nature of single cells [21, 14]. Discontinuities in31

cellular fate transitions further complicate the analysis of pseudotime [9].32

A number of factors present challenges for scRNA-seq analysis, including33

systematic noise, the dropout effect, sparsity, sensitivity to parameters, and34

non-uniqueness of outputs [22, 23]. The most significant of these, in our opin-35

ion, is appropriate consideration of the (biological and measurement) noise36

present in such data. Current methods for pseudotemporal ordering struggle37

to handle noise by selecting markers genes based on prior knowledge, pro-38

jecting data into lower dimensional space and constructing diffusion distance39

etc [21, 24, 25].40

Optimization generally seeks to find parameter values that maximize or41

minimize a real-valued function subject to given constraints [26, 27]. Op-42

timization methods have found widespread use throughout computational43

systems biology, from early uses for the analysis of ecological or life history44

models [28, 29], to network inference or parameter estimation of biochemical45

reaction networks [30]. Optimization methods have the inherent advantages46

that they are able to retain global aspects of the input data through low-rank47

regularization, and they preserve local structure using a neighborhood pro-48

jection constraint. This makes them significantly more robust to the effects49

of biological noise, as we will show below.50

Here we present SoptSC (sopt-see): Similarity matrix-based optimization51

for Single-Cell analysis; a method for reconstructing the pseudotemporal or-52

dering of cells, de novo identification of subpopulations, and identification53

of the transition paths between these subpopulations. SoptSC constructs a54

cell-to-cell similarity matrix, upon which non-negative matrix factorization55

(NMF) is performed to find a low-rank representation of the relationships be-56

tween individual cells: rank-1 factorization determines the pseudotime axis;57

rank-k factorization clusters the cells into k distinct subpopulations. Key58

advantages of this approach include: i) optimization guarantees that coeffi-59

cients of the linear representation are nonzero only in a local neighborhood60

of the data point, thus preserving the intrinsic geometric structure of the61

manifold; ii) the low-rank constraint enables SoptSC to capture global prop-62

erties of the data while remaining robust to biological noise and outliers [31];63

iii) SoptSC predicts the number of subpopulations present in the data in64
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an unsupervised manner; iv) the method is insensitive to ‘nuisance’ genes,65

i.e. those which are not relevant to the trajectory or process currently being66

studied.67

The remainder of the paper is organized as follows: in the next section we68

describe the methods and algorithmic design of SoptSC; we then test its per-69

formance by comparison to existing methods for clustering and dimensional70

reduction using in silico data. We go on to apply SoptSC to four biological71

datasets, and find not only that we can comprehensively recapitulate the72

results of previous analyses, but that SoptSC also generates new insight into73

the cellular relationships and developmental trajectories of adult stem cell74

systems.75

2. Methods76

Here we describe SoptSC, an optimization-based algorithm that enables77

the de novo detection of subpopulations, pseudotemporal ordering, and cell78

subpopulation transition paths from single cell gene expression datasets.79

SoptSC is based on the concept of similarity between cells, i.e. we find a80

low-rank representation of a cell (here we use ‘cell’ to mean the vector of81

gene expression values for a cell) in terms of other cells within a given neigh-82

borhood. For each cell, the similarity score is thus defined by a set of linear83

coefficients (the solution of the low-rank optimization model) in a subspace84

given by its neighboring cells. This measure is quite distinct from distance-85

based metrics often used to define similarity.86

The SoptSC algorithm consists of two optimization steps. In the first, a87

square matrix is constructed that describes the cell-to-cell similarities based88

on the input gene expression data. In the second step, low-rank approxima-89

tions of the similarity matrix are calculated to define either (i) cell subpop-90

ulations within the data (rank-k, where k is the number of subpopulations),91

or (ii) pseudotemporal ordering of cells (rank-1). Via the construction of a92

transition matrix from the similarity matrix, we identify the transition paths93

between cell subpopulations. To determine the number of subpopulations, k,94

we propose a novel algorithm that finds the consensus matrix (SC) for range95

of values of k, specified by a suitable prior, and then estimates the value of96

k from the eigenvalue spectra of the graph Laplacian of SC .97
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2.1. Construction of the cell-to-cell similarity matrix98

The input to SoptSC is a single cell gene expression matrix:

X =

... ... ...
... Xi,j ...
... ... ...

 ∈ Rm×n,

with m genes (1 ≤ i ≤ m), and n cells (1 ≤ j ≤ n), i.e. the element
Xi,j represents the expression value of the ith gene in the jth cell. SoptSC
computes the coefficient matrix Z from X by the following optimization
model:

P1 : min
Z

λ||X −XZ||2,1 + ||Z||∗

s.t. Z>1 = 1,

Zi,j = 0, (i, j) ∈ Ḡ,

where ||·||2,1 is the L2,1 norm (the sum of the Euclidean norm of all columns);99

|| · ||∗ is the nuclear norm; λ is a non-negative parameter and 1 = (1, ..., 1)>100

is a vector of ones of length n. Ḡ defines the complement of G, where G101

is the set characterizing neighbor relationships between cells, i.e. cell pairs102

(i, j) ∈ G mean that cell i is in the neighborhood of cell j. G is obtained103

using K-nearest neighbors [32], and we choose K = min{0.1m, 20}. The104

coefficient matrix Z was found to be robust to changes in K. The linear105

constraint Z>1 = 1 guarantees translational invariance of the data [33].106

The optimization model P1 is a representation method for the construc-
tion of graphs from nonlinear manifolds [31]. Informally, this captures the
relationships between cells by representing each cell as a linear combination
of all other cells. By restricting coefficients of non-neighboring cells to be
zero, the model preserves the local structure of the linear representation. By
imposing the low rank constraint, the model can better capture the global
structure of the overall single cell gene expression data, and is more robust
to noise and outliers. The optimization problem P1 can be solved numeri-
cally by the alternating direction method of multipliers [31]. Let Z∗ be the
optimal solution of P1 , then via symmetric weights we define the similarity
matrix S as

S = max
{
|Z∗|, |Z∗>|

}
. (1)

The elements Si,j of S thus quantify the degree of similarity between cell i107

and cell j.108
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2.2. Rank-k NMF for cell subpopulation clustering109

In order to classify cells into subpopulations based on their similarity,
we use symmetric non-negative matrix factorization (NMF) [34, 35], which
can be regarded as a graph-based clustering method. The (non-negative)
similarity matrix S is decomposed into a product of a non-negative low rank
matrix H ∈ Rn×k

+ and its transpose H> via the optimization problem:

P2 : min
H∈Rn×k

||S −HH>||2F

s.t. H ≥ 0,

where k is the number of subpopulations of cells and || · ||F is the Frobenius
norm. The low rank condition for H is ideally suited for capturing the
clustered nature of the cell subpopulations, i.e. by reordering S according
to the columns of H, a block-diagonal or near-block-diagonal structure can
be obtained (see Fig. 1A). We denote the reordered similarity matrix SB.
The structure of SB is such that cells within a block have high similarity to
each other and low similarity to cells from other blocks. It can be shown
that the solution of P1 is strictly block-diagonal when the data are clean
and sampled from independent subspaces [36]. Due to this observation, the
similarity matrix S can be approximated by a sum of rank one matrices
H iH i>, i = 1, 2, ..., k, where H = [H1, H2, ..., Hn], which can be obtained
by solving the NMF problem P2 . Singular value decomposition is used to
find H0, an initial low-rank non-negative matrix required as an input for P2

[37]. If we now let S = [S1, S2, ..., Sn] represent the columns of S, then the
columns of S can be approximated by the space spanned by the columns of
H as:

Si ≈
k∑

j=1

Hi,jH
j.

Thus, the columns ofH represent a basis for S in the (low rank) k-dimensional110

space, and the columns of H> provide the coefficients for their corresponding111

columns of S in the space spanned by the columns of H.112

Since H ≥ 0, each column of H> can be viewed as a distribution for which113

the ith column Si has the component in the corresponding column of H. We114

can use HT to classify the N cells into k subpopulations by assigning the ith115

cell to the jth subpopulation when the largest element among all components116

of the ith column of HT lies in the jth position.117
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Figure 1: Overview of SoptSC. (A) Pipeline of the SoptSC algorithm. An input matrix
XData ∈ Rm×n (measuring m genes in n cells) is used to construct the cell-to-cell similarity
matrix S by solving an optimization problem on the coefficients of X. Rank-k non-negative
matrix factorization (NMF) is then performed (where for pseudotime k = 1, and for
clustering k > 1) to find low-rank representations of S. These are used to order cells
in pseudotime or cluster cells into subpopulations. From the transition matrix P lineage
relationships are inferred, and eigenvectors of P are used to visualize the data in low
dimension. (B) Schematic of the pseudotime algorithm. Si,j is the similarity between cells
i and j. Then h characterizes the rank-1 NMF used to decompose S. from h, distances
for each cell i in pseudotime are calculated (di) by choosing an initial start point hs and
ranking cells accordingly. See Methods for full details.
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2.3. Identification of k from eigenspectra of the graph Laplacian118

Determining the number of clusters in a dataset is a fundamental prob-119

lem extending far beyond the identification of cell populations from single-cell120

data; many clustering algorithms still require the user to specify the num-121

ber of clusters. We propose a method to automatically identify the number122

of clusters within a dataset based on properties of the graph Laplacian (L)123

and the consensus similarity matrix [38], which is similar to [39]. We con-124

sider a range of values: ki = {k1, k2, ..., kq}, which can be viewed as a prior125

distribution for the number of cell subpopulations.126

It has been shown that the number of eigenvalues of L equal to 0 is127

equivalent to the number of diagonal blocks of L [38].128

The steps required to determine the number of clusters k are as follows:129

1. Given the inputs S and ki, i ∈ (1, 2, ..., q), partition the cells into ki130

subpopulations by solving the NMF problem P2 .131

2. Find the consensus matrix [40, 41], SC . For each j ∈ (1, 2, ..., q), define
a matrix M j by

M j
p,q =

{
1 if p and q belong to the same cluster

0 otherwise.

The consensus matrix SC is then defined by

SC =

q∑
j=1

M j

3. Prune the consensus matrix as follows: set a tolerance τ ∈ [0, 0.5], and132

let SC
i,j = 0 if Si,j ≤ τq. This increases the robustness of consensus133

clustering to biological noise.134

4. Compute the graph Laplacian L and its eigenvalues, given the identity
matrix I and a diagonal matrix D such that:

L = I −D−1/2SCD−1/2

with Dii =
n∑

j=1

SC
i,j.

5. Find (i) the number of eigenvalues that are close to zero, and (ii) the135

index at which the largest eigenvalue gap occurs [38].136
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An initial estimate for k is given by (i). In cases where there may be137

significant sources of noise in the data, or where other uncertainties exist,138

we can use (ii) instead as an estimate of k. Especially for cases displaying139

a prominent largest eigenvalue gap (see e.g. Fig 5G below), (ii) can provide140

a better estimate of the subpopulation structure present in the data. For141

all analyses performed below, we choose a prior ki so the number of clusters142

ranges from 1 to 25, and we set the tolerance τ = 0.3.143

2.4. Rank-1 NMF to determine pseudotemporal ordering144

Most algorithms for pseudotemporal ordering of cells proceed via graph-
based methods. Here we propose an alternative method to rank cells in
pseudotime based on similarity properties, rather than a distance measure.
Specifically, we use the rank-1 non-negative matrix factorization of S to
characterize the pseudotemporal ordering of cells. The rank-1 NMF ma-
trix h = [h1, h2, ..., hn] can be obtained by setting k = 1 in the optimization
problem P2 . In this case, the overall structure of S can be approximated by
h, i.e.,

S ≈ hh>.

It follows immediately that each of the columns of S, denoted Si, can be rep-145

resented by a single vector h, and a non-negative coefficient hi, i.e. Si ≈ hih.146

Then the non-negative coefficient hi can be used to measure the similarity147

of Si to h. If the starting cell is denoted the sth cell, then a new vector148

d = [d1, d2, ..., dn] can be defined where di = |hi − hs|, i = 1, 2, ..., n. Each149

element of d represents the relative distance from cell i to the initial cell s.150

The temporal order of cells is then obtained by sorting d in ascending order.151

High levels of noise lead to challenges for estimation of pseudotime in the152

sense that the obtained similarity matrix might not fully capture similarity153

among all cells. In an effort to combat this, instead of using the similarity154

matrix directly, we propose to alternatively use the transition matrix P (de-155

fined below), and we compute pseudotemporal ordering through two steps:156

1) compute the first J largest eigenvectors of P (the default value is set as157

J = 6); 2) use these eigenvectors as input and perform rank-1 NMF to obtain158

the pseudotemporal ordering.159

2.5. Identification of cell subpopulation transition paths160

Following the identification of the number of cell populations present, and161

assigning cells to their relevant subpopulations, here we infer the transition162
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paths between these subpopulations in order to identify the cellular hierarchy163

present in the data. As above, we use similarity measures to determine the164

probabilities of transition between cell subpopulations, by first defining a165

transition matrix, and then using this to compute a minimum spanning tree166

between cell subpopulations.167

The transition matrix P is defined by:

P = D−1S,

where D is a diagonal matrix defined by Dii =
∑n

j=1 Si,j. For visualization168

purposes below, we calculate the eigenvectors of P and use the second two169

eigenvectors as components for visualization (SO1 and SO2). We do not use170

the first eigenvector as it is trivially defined as 1 = (1, 1, ..., 1). We then171

project P into low (three) dimensional space via principal components anal-172

ysis (PCA) [42], and construct a complete weighted graph between the cell173

subpopulations using the centroids of the subpopulations as vertices and the174

distances between centroids as the weights. Then by setting a root node (the175

initial cell population), we can construct the minimum spanning tree for this176

graph: determining the order of transitions between the cell subpopulations.177

2.6. Generation of in silico data for performance assessment178

To assess the performance of SoptSC , we construct a dataset for which179

the cell subpopulations and transition paths are known. The expression levels180

of genes were set as a function of a parameter t which can be regarded as cel-181

lular “differentiation time”. Three distinct functions are used for simulation,182

where the expression values of genes generated by a functions are analogous183

to responses from a common biological mechanism [24]. The functions used184

(two nonlinear and one constant) are:185

f1(t) = c1cos(t/3) + 1 + ε1,

f2(t) = c2sin(t/3) + 1 + ε2,

f3(t) = 1 + ε3,

where ci ∼ N(1, σ2) (i = 1, 2) and εi ∼ N(0, σ2) (i = 1, 2, 3). For each186

function, the expression levels of genes were simulated by sampling the ran-187

dom variables ci and εi. We chose 170 values of t as input to the first two188

functions f1(t), f2(t) from the interval [2π, 4π] to simulate two distinct cell189
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subpopulations. In order to simulate ‘trajectory like’ data in 2-dimensional190

space, we introduce the third function f3(t) on the interval [−0.5,−0.1] to191

generate a third cell subpopulation containing 100 cells. In order to obfuscate192

this trajectory, we then add genes unrelated to the process being studied; we193

can vary this number of “nuisance” genes to test the performance of each194

method.195

3. Results196

3.1. SoptSC captures salient features of single cell data and out-197

performs other methods when data are noisy198

We applied SoptSC to an in silico dataset that contains three subpopu-199

lations located close to one another in gene space, which follow a nonlinear200

developmental trajectory, with XData = 52 × 270 (see Methods for full de-201

tails). As a first step, we studied low-dimensional projections of the data202

in order to assess, at a general level, which features of the data are cap-203

tured by SoptSC in comparison with principal component analysis (PCA)204

or t-distributed stochastic neighbor embedding (tSNE), two widely-used di-205

mensional reduction techniques for single cell analysis [19].206

We varied the noise level by manipulating the relative standard deviation,207

defined as the ratio of σ to the mean of data, from 10-30% by choosing dif-208

ferent values of σ, and visualized the known subpopulation structure of the209

data (three subpopulations) using the first two components of each method210

(Fig. 2). We can thus assess each method as we study the projections pro-211

duced under increasing noise. At 10% noise (Fig. 2A) we observe that all212

three methods capture three distinct subpopulations, but tSNE loses the dis-213

tinct shape of the developmental trajectory. At 20% noise (Fig. 2B), tSNE214

can distinguish neither the trajectory nor the subpopulation structure. PCA215

and SoptSC both retain the subpopulation structure, but PCA loses repre-216

sentation of the trajectory, which SoptSC retains. At 30% noise (Fig. 2C),217

clear distinction between subpopulations or the shape of the developmental218

trajectory is lost for all three methods. We note that a 30% noise level may219

be low in comparison with some real datasets. These results highlight the220

general challenge of meaningful low-dimensional data representations when221

“true” biological subpopulations are located close to one another in high222

dimensional space.223

Clustering methods rely crucially on identifying how many subpopula-224

tions are present in a given sample. This is in general a difficult problem,225
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Figure 2: Comparison of low-dimensional data representations by tSNE, PCA,
and SoptSC. The first two dominant components of the transition matrix (SO1 and SO2)
are used to project the in silico data into 2D space, with varying levels of Gaussian noise:
(A) 10%; (B) 20%; and (C) 30%. Cells are colored according to their true subpopulation
labels.
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Figure 3: Number of subpopulations within a dataset as identified by SoptSC.
The first 25 eigenvalues of the graph Laplacian of SC , the consensus similarity matrix, are
shown at different noise levels. Number of eigenvalues approximately zero (threshold =
0.01; dark gray region) predicts the number of subpopulations (marked in red). Number
of eigenvalues below the largest eigengap (light gray region) provides secondary prediction
of the number of subpopulations.
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formance of SoptSC against k-means or SIMLR clustering algorithms. The normalized
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and one that is compounded by the presence of noise, which is unavoidably226

widespread in scRNA-seq datasets. The output for the method we use to227

identify the number of subpopulations is illustrated in Fig. 3 (details given228

in Methods). We use the in silico dataset described above for testing; the229

number of eigenvalues close to zero is used to predict the number of subpop-230

ulations.231

We see that at 0-10% noise, SoptSC can correctly identify that the data232

contain three subpopulations. At 20-30% noise, this structure can no longer233

be recovered by our algorithm; we note here that given 20-30% noise there is234

in fact little population structure left to recover (see Fig. 2). The light gray235

regions on Fig. 3 demarcate the number of eigenvalues below the largest gap236

in the eigenspectrum. This number can be used as a secondary estimate of237

structure, e.g. indicating the presence of hidden subpopulations, and can be238

used especially for clustering heterogeneous data, i.e. at 20% noise, the same239

number of hidden subpopulations are recovered as for 0-10% noise (±1).240

In Fig. 4 we test the ability of SoptSC to project cells in pseudotime and241

identify subpopulations, and we compare the results of clustering to other242

current methods. In the input data the true subpopulation labels are hidden243

and noise is added to perturb the cells in gene expression space (Fig. 4A). In244

Fig. 4B we plot the pseudotemporal ordering of cells at different noise levels.245

We see that for up to 20% noise a clear developmental trajectory through246

pseudotime can be obtained, but that at 30% noise our pseudotemporal or-247

dering is no longer reliable. We then cluster the data in SoptSC via rank-3248

NMF, and find that even at a 30% noise level, it is still possible to identify249

three subpopulations with good accuracy. In order to quantify performance,250

we repeat this clustering at different noise levels up to 30%. We compare251

the performance of SoptSC to two alternative methods: a recently published252

algorithm SIMLR [43]; and K-means clustering in 2D space following dimen-253

sional reduction by tSNE [44, 19]. Normalized mutual information (NMI) is254

the metric used for comparison [45, 46]. The results in Fig. 4D show that255

as the noise varies from 1-10% SoptSC performs similarly or marginally bet-256

ter than alternative methods (no significant differences). At the 20% noise257

level, SoptSC outperforms the other methods, however none of the methods258

attain high scores at this noise level. At the 30% noise level, none of the259

methods are able to cluster these data successfully. These results are in line260

with our central proposal: that optimization-based dimensional reduction261

and clustering methods are well-suited to handling biological noise.262
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3.2. SoptSC recapitulates known developmental trajectories in hu-263

man and mouse early embryonic single cell data264

Development of the early embryo — from oocyte to blastocyst — has265

been intensely studied in humans and other mammals [47, 48]. With the266

introduction of widespread scRNA-seq, we are now able to interrogate the267

beginnings of life in new detail, by characterizing the transcriptomes of single268

cells in these early stages [49, 50]. As a test of SoptSC, we chose to analyze269

two single cell embryonic datasets, from a mouse study [49] and a human270

study [50]. On each dataset, we ran SoptSC to extract the subpopulation271

structure and pseudotemporal ordering of cells and compared the results to272

previously characterized trajectories. These data are particularly suitable273

for testing our algorithm since they display clear temporal trajectories as274

the embryos grow. In addition, they have relatively low dimension either in275

number of genes (in the mouse dataset) or number of cells (in the human276

dataset), thus providing us with good first-step benchmarks with which to277

test SoptSC.278

First we study 48 qPCR gene expression profiles in 438 individual cells279

taken from early stage mouse embryos, published by Guo et al [49]. These280

data describe the six cell doublings between zygote and 64-cell stage. Two281

well-characterized cell bifurcation/differentiation events occur during this282

progression, one at the 32-cell stage, and one at the 64-cell stage [51, 52]:283

at the 32-cell stage, totipotent cells branch into trophectoderm and inner284

cell mass (ICM); at the 64-cell stage, the ICM branches into primitive en-285

doderm and epiblast. Therefore, we expect to find two distinct subpopula-286

tions emerge at the 32-cell stage, and another two distinct subpopulations287

to emerge at the 64-cell stage. The results of SoptSC are visualized in the288

2D projection given by the first two dominant components of the transition289

matrix (SO1 and SO2). We begin by labelling cells with their true embryonic290

stage as given in [49] (Fig. 5A). The results produced by SoptSC for these291

data are shown in Fig. 5B-C,G.292

SoptSC clusters the data into eight subpopulations (Fig. 5B). Shown in293

Fig. 5G is the eigenspectrum used to estimate the number of subpopulations294

present: the largest gap occurs after the eighth eigenvalue. Also shown in295

Fig. 5G are the similarity matrices constructed for all cells, and separately296

for the 32-cell and the 64-cell stage. Each of these displays clear structure:297

identifying eight subpopulations for all cells, and the two branch points that298

lead to two subpopulations at the 32-cell stage, and three subpopulations at299

the 64-cell stage.300
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Figure 5: SoptSC identifies cell subpopulations and developmental dynamics
of single cell data from mouse and human early embryonic development [49,
50]. (A) Low dimensional projection using SoptSC of qPCR profiles from 438 single
cells, developmental stages labelled according to [49]. (B) SoptSC identifies 8 clusters
during mouse zygote to 64-cell stage development. (C) Pseudotemporal ordering of mouse
embryonic cells by SoptSC. (D) Low dimensional projection using SoptSC of scRNA-
seq profiles from 88 single human cells, developmental stages labelled according to [50].
(E) Clustering of human oocyte to blastocyst development identifies 3 populations. (F)
Pseudotemporal ordering of human embryonic cells by SoptSC. (G) Eigenspectra derived
from the similarity matrix for mouse embryonic data: the number of eigenvalues below the
largest gap is indicated by the shaded region. The similarity matrices for the full dataset
(all cells) and at two distinct cell stages are also shown. (H) Human gene expression in
single cells over pseudotime.
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By comparison of the known labels (Fig. 5A) with the subpopulations301

identified by SoptSC (Fig. 5B), we see that SoptSC clusters the zygote and302

the 2-cell stage into a single population, and similarly clusters the 4-cell and303

the 8-cell stages together. The 16-cell stage is identified as a single subpopula-304

tion. At the 32-cell stage the first bifurcation occurs (forming trophectoderm305

and ICM); this can be seen by the two distinct 32-cell stage subpopulations306

in Fig. 5A. SoptSC identifies each of these subpopulations (C4 and C5).307

Furthermore we see that a second branching event occurs during the differ-308

entiation of cluster C5 (which we thus can identify as the ICM) and SoptSC309

correctly clusters two subsequent 64-cell stage subpopulations distinctly (C6310

and C7, corresponding to primitive endoderm and epiblast). A separate311

64-cell stage subpopulation (C8) emerges following the differentiation of the312

trophectoderm (C4). In Fig. 5C we order the cells along pseudotime, and313

see that the inferred pseudotime is consistent with the cellular developmental314

stages. Overall, we find that the results of SoptSC are in excellent agreement315

with previous analyses of these data and with the known biology [51, 53].316

Next we ran SoptSC on single-cell RNA-seq data from the very early317

stages of human embryo development, published by Yan et al. [50] and318

studied further in [54, 55]. The results are shown in Fig. 5D-F,H. The data319

consist of 88 cells from seven stages of human early embryonic development,320

beginning from the oocyte and transitioning through 2-cell to 8-cell stages321

before differentiating into the morula and finally the late blastocyst stage322

(approximately 32 cells). We selected 8220 genes from a total of 20,012 based323

on two criteria: 1) a minimum gene expression level (FPKM > 1) must be324

satisfied in at least 50% of the cells; 2) the variance of log2-transformed325

FPKM of each gene is larger than 0.5. Fig. 5D shows the distribution of326

cells along the seven human early embryo developmental time points (labels327

from [50]). We see that SoptSC projects these subpopulations into a single328

developmental trajectory.329

In Fig. 5E we plot the subpopulation structure as identified by SoptSC:330

three subpopulations were predicted based on the eigenspectra of the graph331

Laplacian, i.e. we predict that overlap between these early developmental332

stages leads to fewer functionally different (in gene expression space) sub-333

populations. The first four stages (oocyte to 4-cell) are clustered together,334

as are the 8-cell and morula stages. The late blastocyst stage is clustered335

alone. We note that among the cells studied, the cluster boundaries are dis-336

tinguished in perfect agreement at C1/C2, and very good agreement (two cells337

mis-classified) at C2/C3. The pseudotemporal trajectory inferred by SoptSC338
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(Fig. 5F shows that the ordering cells by this method is highly consistent339

with the known stage of development. To further dissect the pseudotemporal340

ordering obtained, we plot six genes previously identified as important mark-341

ers [54] along pseudotime (Fig. 5H). We find very good agreement between342

the dynamics predicted here and those previously studied [54].343

3.3. SoptSC reveals new structure within epidermal cell subpopu-344

lations during telogen345

The mammalian epidermis is a well-characterized adult stem cell system346

[56], yet significant questions remain regarding the constituents of specific347

epidermal cell subpopulations and the interactions between them. Cells of348

the epidermis exhibit considerable heterogeneity [57], and can transition be-349

tween multiple compartments (sometimes crucial for function, see e.g. the350

formation of hair follicles [58]). In the interfollicular epidermis (IFE), cells351

are highly stratified: a stem cell population in the basal layer maintains the352

tissue through proliferation and production of differentiated cells (popula-353

tions DI and DII below) and finally keratinized cells (populations KI and354

KII below). The keratinized cells form the outermost layer of the skin that355

is eventually shed [56].356

Here we analyze a recent scRNA-seq dataset of murine epidermis taken357

during the second telogen [59] in order to assess the effects that such epider-358

mal heterogeneity may have on subpopulation structure and pseudotemporal359

ordering. Joost et al. [59] performed multi-level clustering in order to identify360

the various subpopulations of the epidermis, and found five subpopulations361

within the interfollicular epidermis (IFE) at the first level of clustering (Fig.362

6A). Here we focus our studies on the IFE, as it likely represents a faithful363

trajectory in pseudotime, and we thus analyze 720 single cells using SoptSC.364

We select 1523 variable genes as input, based on the criterion that the gene365

expression variance > 0.8. By inspection of the eigenspectra of the graph366

Laplacian we predict that eight subpopulations exist within the IFE: three367

more than were identified in the first level of clustering by Joost et al., in-368

cluding one subpopulation than was not identified at all in their analysis369

(including at second level clustering). We visualize the results of SoptSC in370

Fig. 6 using the first two dominant components (SO1 and SO2).371

SoptSC projects the IFE cell population onto a 2D plane that reflects372

the known differentiation trajectory of the IFE, and preserves the overall373

subpopulation structure identified by Joost et al. (Fig. 6A), although we374

also see that in some regions (on the right of the plot) there is overlap where375
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Figure 6: SoptSC identifies subpopulation structure within the IFE. (A). Low
dimensional projection using SoptSC of 720 single cells from the interfollicular epidermis
(IFE); data and cluster labels from [59]. (B). Subpopulations of the IFE identified by
SoptSC. (C) Pseudotemporal ordering of IFE cells by SoptSC. Solid gray box marks cells
of cluster C4; dashed gray box marks cells of cluster C3. Arrows denote putative transition
paths through pseudotime.(D) Gene expression of key epidermal markers; gray box marks
cells of cluster C4.
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all of the subpopulations meet. SoptSC also captures additional substructure376

in the IFE, namely within the basal and differentiated cell populations (Fig.377

6B). Of particular interest are clusters C3 and C4, which we will analyze in378

greater depth below.379

In Fig. 6C we order the cells of the IFE in pseudotime and visualize this380

developmental trajectory in the same 2D projection by SoptSC. We plot the381

gene expression of four epidermal markers across the IFE in Fig. 6D. We382

see broad agreement with known epidermal cell biology whereby basal cells383

appear earliest and transition through a differentiated cell state to eventu-384

ally become keratinized (late in pseudotime). However we also see a rather385

dramatic departure from the expected trajectory for the subpopulation C3,386

which appears late in pseudotime even though it contains only a few cells387

that are (identified as) keratinized, mixed with cells identified as basal and388

differentiated. This result highlights that the heterogeneity within IFE sub-389

populations is greater than previously known, spanning the whole compart-390

ment: putative basal cells appear both at the beginning and at the end of391

pseudotime. Whereas Joost et al. hinted at this by saying that “all basal392

cellsbefore reaching this pointare to some extent plastic” [59], our results go393

even further in their prediction of the extent of heterogeneity within the IFE.394

A priori, one could suggest at least three possible hypotheses to explain395

the composition of cluster C3: (i) the basal cells of C3 differentiate late; (ii)396

a subpopulation of differentiated/keratinized cells retains basal cell markers;397

or that (iii) a subpopulation of differentiated cells is able to dedifferentiate398

back to a basal state. Dedifferentiation would imply transition through mid399

stages (DI,DII) that are marked by the gene Mt4 (Fig. 6D), however we see400

very low expression of Mt4 for C3, thus providing putative evidence against401

hypothesis (iii). In addition we know of no examples from the literature of402

dedifferentiation occurring in the IFE. Higher expression of stem cell marker403

Krt14 than keratinized cell marker Lor (Fig. 6D) leads us to suggest that hy-404

pothesis (i) may be more likely than hypothesis (ii); to resolve this however,405

further experiments are needed.406

In order to assess the composition of subpopulation C4, we study the gene407

expression of four key epidermal marker genes across the IFE (Fig. 6D, gray408

box). The basal subpopulations are marked by high expression of Krt14, and409

the keratinized subpopulations by high expression of Lor, in agreement with410

Joost et al. [59]. Expression of Mt4 is greatest at mid-pseudotime, around411

the differentiated cell subpopulations, also in agreement with Joost et al.412

Investigating the gene expression in subpopulation C4, we find high Mt4 and413
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relatively high Krt14 expression, but also some expression of Lor and Krt79.414

This indicates a mixed population of basal and differentiated cells (in agree-415

ment with the labels of Fig 6A), but also suggest a contribution from the416

hair follicle compartment, implicating this subpopulation as the infundibu-417

lum subpopulation (INFU-B) identified in [59]. Our data thus recapitulate418

in a single step the three subpopulations of basal cells that were found during419

two levels of clustering, and in addition, delineate the heterogeneity present420

within the major subpopulations of the IFE.421

3.4. SoptSC resolves the monocytic/granulocytic cell fate deci-422

sion directly from high-dimensional scRNA-seq hematopoi-423

etic data424

Hematopoiesis is the formation of all blood cells, including erythrocytes,425

leukocytes, and platelets, from a rare stem cell residing in the bone marrow426

in adult mammals [60]. The rise of single cell sequencing has had a dramatic427

impact on our understanding of hematopoiesis: progenitor cell populations428

previously resolved (by cell surface markers) within the developmental tra-429

jectory between stem and differentiated cells have had their roles/existence430

thrown into question, or even putatively discarded, as alternative lineage431

paths are drawn and we see the role of heterogeneity expand [10, 61, 12].432

Given these recent results, the complexity of the hematopoietic hierarchy,433

and the significant levels of heterogeneity yet to be fully accounted for, we434

chose to analyse a scRNA-seq dataset describing hematopoiesis in mice [12].435

Olsson et al. specifically study myelopoiesis, i.e. the formation of erythro-436

cytes, megakaryocytes, monocytes, and granulocytes. We analyze gene ex-437

pression in 382 single cells, and select 1567 variable genes as input based on438

the criteria: coefficient of variation > 3; gene included are expressed in at439

least 40% of the cells. We then applied SoptSC to analyze the substructure440

of hematopoietic cell populations, their ordering in pseudotime, and their441

transition paths during differentiation.442

We project the cells into low dimension via SoptSC and label them ac-443

cording to their surface marker expression [12] in order to visualize the de-444

velopmental trajectory (Fig. 7A). We see that there is a visible trajectory445

from top left moving downwards and rightwards, but also considerable popu-446

lation overlap leading to a lack of distinguishability between the cell surface447

marker-labelled subpopulations in this projection. Analysis of the eigenspec-448

tra of the graph Laplacian for these data predicts nine subpopulations, the449
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same number of subpopulations as was identified by Olsson et al. via it-450

erative clustering and guide gene selection [12]. The clustering results of451

SoptSC are shown in Fig. 7B, labelled C1−C9; these labels will be discussed452

in detail below. Due in part to the complex structure of the hematopoietic453

system, this 2D projection cannot completely resolve all the subpopulations454

(see also inset for zoom in). We note that we compared SoptSC visualization455

with tSNE and found that projecting via tSNE was considerably worse at456

capturing this trajectory of myelopoiesis than SoptSC (see S2 Fig. B and457

Olsson et al. [12]).458

Pseudotemporal ordering of cells contributing to myelopoiesis (Fig. 7C)459

highlights that there are multiple branch points during differentiation, lead-460

ing to three distinct subpopulations at the end of pseudotime on the main461

projection, and a fourth that can be identified in the inset; there may be more462

branching points that are not resolved on this projection. Inference of the463

transition path between subpopulations suggests four final subpopulations464

(Fig. 7D). In light of these results we are able to ascribe functional labels to465

the subpopulations identified in Fig. 7B. C1 appears at the top of the tree and466

at the start of pseudotime, expressing stemness markers (e.g. high Gata2 —467

Fig. 7E) thus representing multipotent hematopoietic stem/progenitor cells.468

C2 and C4 (Fig. 7B inset) can be identified as erythrocytic and megakary-469

ocytic precursors by the expression of Vwf, Klf1, EpoR (See SI Figs). We470

note that Fig. 7D infers a transition from erythrocytic to megakaryocytic471

progenitor cells: this annotation is probably incorrect; these lineages develop472

concurrently. We have however managed to resolve all the other transitions473

present in agreement with known biology. Subpopulation C6 can be identi-474

fied as a myelocytic population, as described in [12] with high granulocytic475

markers (Fig. 7A [pink/purple] and 7E [Gfi1]) and high expression of Mmp9476

(S2 Fig. C), appearing late in pseudotime.477

Subpopulations C7−C9 (Fig. 7D, bottom) define the monocytic/granulocytic478

cell fate choice, as can be seen from their marker gene expression (Fig. 7E):479

the mixed progenitor population expresses Gata2 and low levels of Itga2b;480

the monocytic population expresses Irf8; and the granulocytic population ex-481

presses Gfi1. Interestingly, this key monocytic/granulocytic branching point482

can be clearly visualized in the 2D projection of SoptSC (Fig. 7B), with483

the monocytic cells located at the bottom of the plot (C8) and the granu-484

locytic cells on the right hand edge (C9). Moreover, the subpopulation C7,485

closely associates with the population identified by Olsson et al. as ‘Multi-486

Lin’: playing a crucial role in the regulation of myelopoiesis. C7 appears487
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Figure 7: Sc-RNA-seq subpopulation structure and pseudotemporal ordering
during myelopoiesis [12]. (A). Low dimensional projection by SoptSC of 382 single
cells from the hematopoietic system. LSK: Lin−Sca1+c-Kit+; CMP: common myeloid
progenitor; GMP: granulocyte monocyte progenitor; CD34+: LSK CD34+ cells. (B).
Hematopoietic subpopulation structure identified by SoptSC; inset shows zoom in. (C)
Pseudotemporal ordering of hematopoietic cells by SoptSC; inset shows zoom in. Arrows
show differentiation paths identified in pseudotime. Dashed arrow indicates that the dif-
ferentiation path lies on a different manifold than the one SoptSC projects onto here.
(D) Lineage hierarchy constructed by SoptSC. Colors correspond to the mean pseudo-
time value for the subpopulation. Hematopoietic population identities have been curated
after construction of the lineage hierarchy. HSPC: hematopoietic stem/progenitor cells;
Prog: multipotent progenitor; Multi-Lin: mixed progenitor (see [12]); Mono: monocytic
progenitor; Granulo: granulocytic progenitor; Myelo: myelocytic progenitor; Erythro: ery-
throcytic progenitor; Mega: megakaryocytic progenitor. (E) Gene expression of selected
marker genes in single cells.
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spread across large portions of the SoptSC projection, located both around488

monocytic cells and granulocytic cells near the bottom of the plot, and inter-489

spersed with less differentiated cells situated on the projection above these.490

This substantial heterogeneity present within the Multi-Lin subpopulation491

corroborates the findings of Olsson et al. Comparison of clusters C8 and C9492

in pseudotime (Fig. 7C) also reveals an intriguing prediction: that upon493

differentiation of the granulocyte-monocyte progenitor, granulocytes appear494

earlier, and develop more slowly (i.e. span more of pseudotime) than their495

monocytic counterparts.496

4. Discussion497

Here we have presented SoptSC: similarity matrix optimization for single-498

cell analysis, a new method for the identification of subpopulations, and the499

reconstruction of pseudotime and cellular transition paths from single cell500

gene expression data. SoptSC is based on cell-to-cell similarity scores, which501

are obtained by introducing a low-rank optimization model in which the rela-502

tionships among cells are represented by a structured similarity matrix [31].503

This method preserves the intrinsic geometric structure of the manifold un-504

der study by allowing coefficients to be nonzero only in a local neighborhood505

of each data point. This low-rank constraint enables the model to better506

capture the global structure of a dataset, and improves its robustness to507

noise and outliers. These methods lead to a particular strength of SoptSC508

— exemplified in the previous two applications — namely its ability to ex-509

tract pertinent information from data directly from a high dimensional space510

with a large number of clusters; previous analyses of these data [59, 12] first511

projected the data into a lower dimension or selected out particular clusters512

for study. Other recent approaches have also focussed on analysis of the513

geometrical properties of high dimensional data [62].514

We applied SoptSC to four published datasets on three biological sys-515

tems: embryonic development, epidermal homeostasis, and hematopoiesis.516

SoptSC showed very good agreement with previously determined subpopu-517

lation structure and developmental trajectories, in particular recapitulating518

with high accuracy the branching events occurring during early mouse em-519

bryo development [49], and development of early human embryo from oocyte520

to blastocyst [50]. In addition, scRNA-seq data analysis via SoptSC gen-521

erated a number of unintuitive predictions: we found evidence for a label-522

promiscuous population of cells within the interfollicular epidermis, marked523
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by a combination of both basal stem and differentiated cell markers, and an524

overal higher than previously reported [59] degree of variability between the525

epidermal cell populations studied. Analysis of hematopoiesis (specifically526

myelopoiesis) in mice [12] led us to identify differences in the developmental527

trajectories of granulocytic and monocytic progenitor cells, with the former528

appearing earlier and developing more slowly than the latter.529

Clustering cells and pseudotime reconstruction are performed in SoptSC530

using rank-k non-negative matrix factorization (NMF), where k > 1 is the531

number of clusters in the data, or for pseudotime, k = 1. As we have shown532

through detailed analyses, high levels of noise lead to significant challenges533

for these tasks. We thus proposed a modified algorithm for pseudotemporal534

ordering in the presence of noise that proceeds by projecting the similarity535

matrix into a lower dimension defined by a set of eigenvectors, before per-536

forming rank-1 NMF. We found that this yields more reliable predictions,537

however it produces an additional parameter (the number of eigenvectors538

used to project) that needs to be set by the user. An improvement to SoptSC539

would be to fix the number of eigenvectors according to some criteria, how-540

ever defining this generally, rather than in a data-dependent manner, remains541

challenging. Another potential extension to SoptSC is to relax the constraint542

on Z that forces non-neighboring cell coefficients to be zero, this could be543

achieved using sparse regularization, i.e. by adding a (L1 regularization)544

penalty term to the objective function such that the neighbors of each cell545

can be inferred directly (by the non-zero coefficients) from the solution to546

the optimization problem.547

SoptSC provides a prediction of the number of clusters present in a548

dataset; this is performed by constructing the graph Laplacian of the con-549

sensus similarity matrix, and calculating the number of zeros and the largest550

gap in its eigenvalue spectrum. The advantage of this method lies in the551

step that inputs (simultaneously) the structures of several similarity matri-552

ces to the construction of a consensus matrix; we find that this helps to553

increase robustness of the method to noise in the data, relative to, for exam-554

ple, approaches based on ensemble methods or iterative consensus clustering555

[39, 38]. However challenges remain; it is not always possible to obtain a556

good prediction for the number of clusters in a dataset. This ambiguity is557

in part inherent to single cell analysis: depending on the level of focus, the558

number of relevant subpopulations may change, and this can be confounded559

by mixed discrete and continuous cell state transitions [9].560

Single cell data analysis comes with a particular set of promises and561
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pitfalls. The key strength of scRNA-seq lies in its ability to measure many562

signals simultaneously and provide global quantification of the transcriptional563

state of a cell. On the other hand, technical challenges (due to amplification,564

alignment, dropout, etc [63]) — as well as challenges inherent to the biological565

system — make appropriately accounting for the heterogeneity in these data566

is a difficult problem. By presenting SoptSC, an optimization-based pipeline567

for clustering, pseudotemporal ordering, and cell lineage path reconstruction,568

we offer new methods for the analysis of scRNA-seq datasets that can stand569

alone or be integrated into existing workflows. We hope that as such, SoptSC570

will help to generate insight into emergent biological phenomena in complex571

tissues.572

5. Availability573

SoptSC is implemented in MATLAB under a GNU license (GPLv3). The574

code is available on GitHub: https://github.com/WangShuxiong/SoptSC.575
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S1 Fig.. Eigenspectra and similarity matrices for the identification577

of subpopulations. The first 25 eigenvalues of the graph Laplacian of the578

consensus matrix (left) and the similarity matrix constructed via SoptSC579

for (A) the human embryonic dataset studied [50]; (B) the interfollicular580

epidermal dataset studied [59]; and (C) the hematopoiesis dataset studied581

[12].582
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S2 Fig.. Additional analysis of subpopulations and marker genes583

from Olsson et al. [12]. (A) tSNE projection of cells labelled by their cell584

surface marker expression: LSK: Lin−Sca1+c-Kit+; CMP: common myeloid585

progenitor; GMP: granulocyte monocyte progenitor; CD34+: LSK CD34+
586

cells. (B) tSNE projection of cells labelled by their clusters as identified by587

SOptSC. (C) Gene expression of selected genes projected into 2D via SoptSC588

. (D) Gene expression in the inset projections as specified in Fig. 7.589
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