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Abstract 

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a complex array of 

motor and non-motor symptoms, such as autonomic and cognitive impairments. It remains 

unclear whether neurodegeneration in discrete loci gives rise to discrete symptoms, or whether 

network-wide atrophy gives rise to the unique behavioural clinical profile associated with PD. 

Here we apply a data-driven strategy to isolate large-scale, multivariate associations between 

distributed atrophy patterns and clinical phenotypes in PD. In a sample of N = 229 de novo PD 

patients, we estimate disease-related atrophy using deformation based morphometry (DBM) of 

T1w MR images. Using partial least squares (PLS), we identify a network of subcortical and 

cortical regions whose collective atrophy is associated with a robust clinical phenotype with both 

motor and non-motor features. Despite the relatively early stage of the disease in the sample, the 

atrophy pattern encompassed lower brainstem, substantia nigra, basal ganglia and cortical areas, 

consistent with the Braak staging of the disease. In addition, individual variation in this putative 

atrophy network predicted longitudinal clinical progression in both motor and non-motor 

symptoms. Altogether, these results demonstrate a pleiotropic mapping between 

neurodegeneration and the clinical manifestations of PD, and that this mapping can be detected 

even in de novo patients. 

Keywords: Parkinson’s disease, MRI, deformation based morphometry, partial least squares, 

disease progression 
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1. Introduction: 

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive and 

widespread neuronal loss associated with intracellular aggregates of α-synuclein giving rise to 

the classical Lewy pathology (Poewe et al. 2017; Goedert et al. 2013). PD has been traditionally 

known as a motor disease with bradykinesia, rigidity, and tremor as the cardinal symptoms, and 

preferential loss of dopamine neurons of the substantia nigra (SN). The motor symptoms have 

been the main target for diagnosis and treatment (Kalia and Lang 2015). However, it is now clear 

that PD is a more complex disorder involving several non-motor manifestations that both 

precede and follow the initial appearance of motor symptoms. The non-motor aspects of PD 

involve several clinical domains including autonomic, limbic, olfactory, and cognitive 

impairment (Chaudhuri, Healy, and Schapira 2006; W. Poewe 2008). A 15-year follow-up study 

shows cognitive decline and dementia in up to 80% of surviving PD patients (Hely et al. 2005).  

 

Over time, PD diagnostic criteria has been modified toward a multifaceted characterization in 

response to the insufficiency of the narrow motor definition in PD diagnosis and prognosis 

(Postuma et al. 2016). The increasing attention to non-motor aspects of the disease has allowed 

detection of different clinical patterns of neurodegeneration in PD. For example, recent studies 

have subcategorized PD patients based on the dominance of motor, rapid eye movement sleep 

behavior disorder (RBD), autonomic, and cognitive deterioration (Fereshtehnejad et al. 2015, 

2017). Post-mortem and neuroimaging studies have emphasized the preferential loss of 

dopamine neurons in the substantia nigra (Halliday and McCann 2010). However, post-mortem 

studies have also shown that the pathological process is neither initiated nor confined to the 
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substantia nigra, gradually ascending from the olfactory tracts and medulla to the midbrain and 

cortical layers (Braak et al. 2003; Goedert et al. 2013) 

Neuroimaging studies in PD have evolved in the past 30 years (Politis 2014). Initially, the main 

focus of early studies was on dopaminergic innervation, using single photon emission computed 

tomography (SPECT) or positron emission tomography (PET). However, the availability of new 

higher resolution neuroimaging techniques such as magnetic resonance imaging (MRI), 

metabolic imaging with 18F-FDG PET, and resting or task state functional MRI have provided 

the opportunity to investigate the non-dopaminergic aspects of PD (Politis 2014; Tuite and 

Dagher 2013; Yousaf, Wilson, and Politis 2017). Structural analysis using MRI (including T1-w, 

T2-w, and diffusion weighted MRI) was initially inconclusive, or only sensitive enough to 

capture disease related differences in late stages of PD once dementia has set in. More recently, 

with larger sample sizes and higher resolution imaging, it has been possible to study de novo PD 

patients using MRI (Zeighami et al. 2015; Heim et al. 2017). However, these studies mostly 

focus on brain related differences between PD and healthy control populations, or on a single 

aspect of the disease (e.g. dementia). To our knowledge, no studies have attempted to model the 

relationship between brain atrophy and presence and severity of the entire constellation of motor 

and non-motor symptoms in PD simultaneously. 

Here we use a multivariate approach to relate the motor and non-motor aspects of PD to system-

wide atrophy patterns. We use data from 235 newly diagnosed PD patients from the Parkinson’s 

Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data), an observational, 

multicenter longitudinal study designed to identify PD progression biomarkers (Marek et al. 

2011). We use deformation-based morphometry (DBM), which is based on local nonlinear 

subject-to-template deformations as a measure of structural brain alterations (Ashburner, Good, 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 27, 2017. ; https://doi.org/10.1101/168989doi: bioRxiv preprint 

https://doi.org/10.1101/168989
http://creativecommons.org/licenses/by/4.0/


5 

and Friston 2000; Penny et al. 2011; Chung et al. 2001; Aubert-Broche et al. 2013), and partial 

least squares (PLS) (Wold 1966; McIntosh and Lobaugh 2004; McIntosh and Mišić 2013) to 

capture the relationship between brain atrophy patterns and disease-related clinical measures. 

Furthermore, we explore the extent to which brain atrophy patterns can predict disease 

progression by examining longitudinal changes across different measures of disease severity.  

1. Methods 

2.1  PPMI dataset 

Data used in the preparation of this article were obtained from the Parkinson’s Progression 

Markers Initiative (PPMI) database (www.ppmi-info.org/data). For up-to-date information on the 

study, visit www.ppmi-info.org. PPMI is a cohort of people with de-novo idiopathic PD (Marek 

et al. 2011). Individuals were eligible for recruitment if they were at least 30 years old, 

diagnosed with PD within the last 2 years, had at least two signs or symptoms of Parkinsonism 

(tremor, bradykinesia and rigidity), a baseline Hoehn and Yahr Stage of I or II, and did not 

require symptomatic treatment within six months of the baseline visit. The PPMI is a multi-

center international project and the institutional review boards approved the protocol at all 

participating sites. Participation was voluntary and all individuals signed the written informed 

consent prior to inclusion. 

We obtained data from the baseline visit 3T high-resolution T1-weighted MRI scans in 

compliance with the PPMI Data Use Agreement. For clinical data, any participant with > 20% 

missing values at baseline was excluded. Overall, MRI and clinical data were included for 229 

drug-naïve participants with PD (6 subjects failed MRI quality control). For each subject, we 

also obtained demographic and clinical information as well as cerebrospinal fluid (CSF) and 
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SPECT biomarker values from the dataset in May 2016 (accession date). General information 

consisted of age at disease onset, gender, years of education, handedness and disease duration. 

Clinical and laboratory markers are described below. 

1.1.Brain Imaging Data Analysis 

MRI data consisted of 1×1×1 mm3 3T T1-weighted scans obtained from the PPMI database. All 

scans were pre-processed through our MR image processing pipeline, using image de-noising 

(Coupe et al. 2008), intensity non-uniformity correction (Sled, Zijdenbos, and Evans 1998), and 

image intensity normalization using histogram matching. The preprocessed images were first 

linearly (using a 9-parameter rigid registration) and then nonlinearly registered to a standard 

brain template (MNI ICBM152) (Collins et al. 1994; Collins and Evans 1997). Using the 

obtained nonlinear transformations, deformation based morphometry (DBM) was performed to 

calculate local density changes as a measure of tissue expansion or atrophy.  For more detail on 

the processing steps please see (Zeighami et al. 2015). We obtained a single deformation brain 

map for each subject. The value at each voxel is equal to the determinant of the Jacobian of the 

transformation matrix obtained from nonlinear registration of participants’ T1w MR images and 

MNI-ICBM152 brain template. The DBM values reflect regional brain deformations and can be 

used as indirect measures of brain atrophy (Chung et al. 2001; Studholme et al. 2004; Leow et al. 

2006; Cardenas et al. 2007) 

2.3 Clinical Measures 

PD-related motor, cognitive and non-motor clinical manifestations were assessed at baseline and 

each follow-up visit (Table 1). 

Table 1. Demographic and clinical information for individuals with Parkinson's disease from the 
PPMI used in this study. BP Sys= Systolic Blood Pressure. GDS= Geriatric Depression Scale. 
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QUIP = Questionnaire for Impulsive-Compulsive Disorders. RBD= REM sleep behaviour 
disorder. SCOPA= Scales for Outcomes in PD-Autonomic. STAI= State-Trait Anxiety 
Inventory. UPDRS= Unified Parkinson's Disease Rating Scale. SBR= striatal binding ratio. 
MoCA= Montreal Cognitive Assessment. HVLT= Hopkins Verbal Learning Test. LNS= letter-
number sequencing.   

Category Measure Value 

General 

Information 

Number 229 
Sex (Male / Female / % ) 146/ 83 
Age (years) 60.8 ± 9.1 
Education Years 15.5 ± 2.8 
Handedness – Right / Left / Ambidextrous  209/ 15/ 5 
Symptom duration (months) 7 ± 7 

Non-motor 

scores 

BP Sys drop 4 ± 11 
Epworth Sleepiness Score 5.9 ± 3.6 
GDS Score 2.3 ± 2.5 
QUIP total 0.3 ± 0.6 
RBD Score 3.5 ± 2.7 
SCOPA AUT Score 9.4 ± 6 
STAI Total Score 64.2 ± 18.3 
UPSIT Score 12.8 ± 17.6 
UPDRS part I 5.5 ± 4 

 SBR 1.4 ± 0.4 
 UPDRS part II 5.8 ± 4.0 
 UPDRS part III 21.9 ± 9 

Cognitive 

scores 

MoCA Score 27.4 ± 2.2 
Benton 12 ± 2.8 
HVLT total recall 47.1 ± 11.8 
HVLT delayed recall 47.2 ± 12.1 
HVLT retention  Score 50 ± 11.6 
HVLT Recognition 50 ± 13 
LNS  11.4 ± 2.8 
Semantic Fluency Score 50.9 ± 10 
Symbol Digit Score 45.3 ± 8.7 

CSF 

biomarker 

scores 

Total Tau 44.8 ± 19.1 
pTau 15.4 ± 10.2 
Alpha synuclein 1.8 ± 0.7 
Amyloid beta 42 362 ± 93 

 Hoehn and Yahr scale  1.6 ± 0.5 
  

 

We also included Genetic Risk Score as part of general information in the PLS analysis. This is a 

single surrogate indicator previously introduced in PPMI that summarizes 30 risk alleles for PD 

(Nalls et al. 2015).  All clinical assessments were repeated in follow-up visits (minimum= 1 year, 

mean= 2.7 years). In order to evaluate disease progression, we created a putative global 

composite outcome (GCO) as a single indicator by combining z-scores of the most clinically 
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relevant motor and non-motor measures of disease severity including Movement Disorder 

Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part I, II, and III , Schwab and 

England activities of daily living (SE-ADL) score, and Montreal Cognitive Assessment (MoCA) 

score (Fereshtehnejad et al. 2017).  

2.4 Biomarkers 

The striatal binding ratio (SBR), a marker of dopaminergic denervation in caudate and putamen, 

was obtained by SPECT with the DAT tracer 123I-Ioflupane (Marek et al. 2011) at baseline and 

follow-up. Cerebrospinal fluid (CSF) biomarkers consisting of amyloid-beta (Aβ1-42), total Tau 

(T-tau), phosphorylated tau (P-tau181) and α-synuclein were also included in our analysis. 

Information for all variables is summarized in Table 1. 

2.5 Partial least squares analysis  

Partial least squares (PLS) is an associative, multivariate method for relating two sets of 

variables to each other (Wold 1966; Anthony Randal McIntosh and Lobaugh 2004; Abdi and 

Williams 2010; Anthony R. McIntosh and Mišić 2013). The analysis seeks to find weighted 

linear combinations of the original variables that maximally covary with each other. Here, the 

two variable sets were voxel-wise brain atrophy (as measured by DBM) and 

clinical/demographic measures (Table 1). The respective linear combinations of these variables 

can be interpreted as atrophy networks and their associated clinical phenotypes. 

Singular value decomposition: The imaging and clinical data were organized in two matrices, X 

(DBM) and Y (clinical), with participants in the rows of the matrices and variables in the 

columns (Figure 1). Both matrices were first z-scored by subtracting the mean from each column 

(variable) and dividing by the standard deviation. The atrophy-clinical covariance matrix was 
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then computed, representing the covariation of all voxel deformation values and clinical 

measures across participants. Since the data are z-scored, the atrophy-clinical covariance is 

effectively a correlation matrix. The resulting matrix was then subjected to singular value 

decomposition (SVD) (Eckart and Young 1936): 

X'Y = UΔV' 

such that 

U'U = V'V = I. 

The decomposition yields a set of mutually orthogonal latent variables (LVs), where U and V are 

matrices of left and right singular vectors, and Δ is a diagonal matrix of singular values. Each 

latent variable is a triplet of the ith left singular vector, the ith right singular vector and the ith 

singular value. The number of latent variables is equal to the rank of the covariance matrix, 

which is the smaller of its dimensions or the dimension of its constituent matrices. In the present 

study, the number of clinical measures (k = 31) is the smallest dimension, so the rank of the 

matrix and the total number of latent variables is equal to 31. If there are v voxels, the 

dimensions of U, V, and ∆ are v × k, k × k, and k × k, respectively. 

Each singular vector weights the original variables in the multivariate pattern. Thus, the columns 

of U and V weight the original voxel deformation values and clinical measures such that they 

maximally covary. The weighted patterns can be interpreted as a set of maximally covarying 

atrophy patterns and their corresponding clinical phenotypes. Each such pairing is associated 

with a singular value from the diagonal matrix, proportional to the covariance between atrophy 

and behavior captured by the latent variable. Specifically, the effect size associated with each 

latent variable (proportion of covariance accounted for) can be naturally estimated as the ratio of 
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the squared singular value to the sum of all squared singular values (Anthony Randal McIntosh 

and Lobaugh 2004). 

	

Figure 1. Partial Least Square (PLS) Analysis flowchart. 

 Significance of multivariate patterns: The statistical significance of each latent variable was 

assessed by permutation tests. The ordering of observations (i.e. rows) of matrix X was randomly 

permuted, and a set of null atrophy-behaviour matrices were then computed for the permuted 

brain and non-permuted clinical data matrices. These null correlation matrices were then 

subjected to SVD as described above, generating a distribution of singular values under the null 

hypothesis that that there is no relationship between brain deformation and clinical measures. 

Since singular values are proportional to the magnitude of a latent variable, a non-parametric P 

value can be estimated for a given latent variable as the probability that a permuted singular 

value exceeds the original, non-permuted singular value. 
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Contribution and reliability of individual variables: The contribution of individual variables 

(voxels or clinical measures) was estimated by bootstrap resampling. Participants (rows of data 

matrices X and Y) were randomly sampled with replacement, generating a set of resampled 

correlation matrices that were then subjected to SVD. This procedure generated a sampling 

distribution for each individual weight in the singular vectors. A “bootstrap ratio” was calculated 

for each voxel as the ratio of its singular vector weight and its bootstrap-estimated standard error. 

Thus, large bootstrap ratios can be used to isolate voxels that make a large contribution to the 

atrophy pattern (have a large singular vector weight) and are stable across participants (have a 

small standard error). If the bootstrap distribution is approximately normal, the bootstrap ratio is 

equivalent to a z-score (Efron and Tibshirani, 1986). Bootstrap ratio maps were thresholded at 

values corresponding to the 95% confidence interval. 

Patient-specific atrophy and clinical scores: To estimate the extent to which individual patients 

express the atrophy or behavioural patterns derived from the analysis, we calculated patient-

specific scores. Namely, we projected the weighted patterns U and V onto individual-patient 

data, yielding a scalar atrophy score and clinical score for each patient, analogous to a principal 

component score or factor score: 

Atrophy score = XU 

Clinical score = YV 

To investigate the predictive utility of the PLS model, we correlated patient-specific atrophy and 

clinical scores with longitudinal measures of disease progression. These included the Global 

Composite Outcome (GCO) and SE-ADL scores as measures of general disease severity, MoCA 

for cognition, MDS-UPDRS III for motor, and MDS-UPDRS I for non-motor aspects of disease. 
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3. Results 

3.1. PLS analysis 

The PLS analysis revealed five statistically significant latent variables relating clinical measures 

in PD and their corresponding brain atrophy patterns (permuted p <0.0001, p<0.005, p<0.05, 

p<0.05, p< 0.005). These patterns respectively account for 18, 8.5, 8.2, 6, and 4.5% (total of 

45%) of the shared covariance between clinical and brain atrophy measures. Based on the 

variance explained and clinical interpretability of the results, we focus on and discuss only the 

first latent variable (LV-I) in greater detail for the rest of the report (Figure 2).  

	

Figure 2. Covariance explained and permutation p-values for all latent variables in PLS analysis. LV-I is selected for 
analysis based on the variance explained and clinical interpretability of the results. PLS = Partial Least Squares. 

3.2. Clinical features and biomarkers patterns  

The biomarkers and clinical features (Figure 3) contributing to LV-I are composed of: higher 

PD-related severity (motor and non-motor) as measured by UPDRS scores, lower striatal 

dopamine innervation measured by DAT-scan, lower cognitive performance (mainly memory-

related), lower amyloid beta level in CSF, and more severe anxiety, depression, and sleep 
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disorder. We also found the previously reported effects of age (worse with age) and gender 

(males worse). More specifically, age was the strongest contributor to LV-I (R = 0.69, 95% CI 

[0.59,0.74]) followed by motor signs measured by UPDRS-III (R = 0.35, 95% CI [0.35,0.52]) 

and autonomic disturbances (SCOPA-AUT) (R = 0.27, 95% CI [0.25,0.45]). Male gender (R = 

0.23, 95% CI [0.07,0.34]) and symptom duration (R = 0.19, 95% CI [0.10,0.32]) were other 

significant contributors to LV-I. Impaired visuospatial (Benton Line Orientation) (R = -0.25, 

95% CI [-0.40,-0.18]) and executive function (Letter-Number Sequencing) (R = -0.25, 95% CI [-

0.38,-0.16]) were the strongest cognitive features of LV-I, followed by the global cognitive 

status measured by MoCA (R = -0.21, 95% CI [-0.35,-0.12]), impaired speed/attention domain 

(Symbol-Digit Matching) (R = -0.19, 95% CI [-0.35,-0.11]) and memory deficit (HVLT) (R = -

0.13, 95% CI [-0.28,-0.05]). CSF concentration of amyloid-beta (R = -0.17, 95% CI [-0.31,-

0.03]) and severity of dopaminergic denervation (SBR) (R = -0.15, 95% CI [-0.32,-0.06]) were 

the only biomarkers that significantly contributed to LV-I, while genetic risk score and α-

synuclein failed to reach significance levels.  

To ensure the disease specificity of the findings, the PLS analysis was repeated after removing 

the effect of aging from the atrophy maps, by regressing out age effects calculated based on the 

healthy subjects in the same dataset (N=117). This analysis was performed similar to previous 

studies with confounding age effects in diseased populations (Scahill et al. 2003; Franke et al. 

2010; Dukart et al. 2011; Moradi et al. 2015).  The results remained significant after controlling 

for normative aging (12% of covariance explained, p-value < 0.0001). Overall, the directionality 

and significant contributors of the LV-I pattern remained stable after regressing out the effect of 

age.  

3.3. An emerging atrophy network in de novo PD patients 
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The corresponding brain pattern for the clinical and demographic measures in LV-I involved 

discrete cortical regions located in multiple parts of the frontal lobes, fusiform gyrus, cingulate 

gyrus and insular cortex, and subcortical regions including thalamus and basal ganglia (putamen, 

caudate, and nucleus accumbens), hippocampus and amygdala, brainstem (substantia nigra, red 

nucleus, subthalamic nucleus, pons, and areas of medulla that overlap with the dorsal motor 

nucleus of the vagus and nucleus of the solitary tract), and cerebellum. (Table 2, Figure 3.a.)  

Figure 3c shows an example of how the putative atrophy network and the associated clinical 

phenotype relate to each other. For each weighted pattern we estimated patient-specific scores by 

projecting the patterns onto individual patients’ data (see Methods). The resulting scalar values 

(termed atrophy scores and clinical scores), reflect the extent to which an individual patient 

expresses each pattern. By definition, the two scores are correlated (r = 0.7), i.e. patients with 

greater atrophy in the network in Fig. 3a, also tend to conform more closely to the clinical 

phenotype in Fig. 3b. Patients who score highly on both therefore have more severe pathology, 

and we illustrate this by coloring the points (individual patients) by their UPDRS III scores. 

Individuals with more pronounced atrophy and clinical variable severity also tend to score highly 

on UPDRS III, a measure of motor symptoms. 
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Table 2. Peak coordinates in MNI-ICBM152 space for brain PLS scores using bootstrap ratios. 
PLS = Partial Least Squares. B-ratio= Bootstrap ratio. Structures are ordered within regions by z 
coordinate. 

Region B-ratios Structure MNI coordinates  

Brainstem 
4.9 Medulla -6,-42,-58 
3.6 Pons -3,-30,-47 
4.7/4.5 Substantia Nigra 9,-14,-13/-7,-14,-13 
5.1/4.4 Subthalamic nucleus 8,16,-10/-8,-16,-10 

Cerebellum 5.6/4.8 Cerebellum 32,-64,-34 
4.8 Cerebellum -26,-64,-32 

Subcortical 

4.2/4 Hippocampus 23,-9,-25/-22,-9,-26 
4.1/4.2 Amygdala 20,-4,-23/-25,-4,-24 
5.6/5.1 Nucleus Accumbens 10,12,-6/-8,12,-10 
5.7/6.0 Globus Pallidus Internal Segment 22,-6,-4/-22,-8,-4 
5.4/4.7 Putamen 24,12,-6/-24,12,-4 
8.6/7.7 Ventrolateral/Ventroposterior Thalamus 12,-26,-2/-10,-24,-2 
7.3/4.7 Caudate 10,14,-2/-10,14,3 

Cortical 

3.2 Fusiform gyrus 22,8,-48 
3.7 Medial temporopolar region -22,10,-44 
3.4 Medial/Inferior frontal gyrus 50,8,-38 
3.2/3.3 Anterior/medial Orbital Gyrus 23,49,-14/-23,43,-18 
6.4/5.8 Periaqueductal Gray 6,-32,-12/-4,-32,-12 
5.3/2.8 Fusiform gyrus 26,-66,-8/-24,-64,-9 
3.7 Fusiform gyrus -22,-66,-4 
5.0 Inferior Frontal gyrus  -30,32,6 
3.4 Medial frontal gyrus 44,52,12 
3.6 Lateral occipital cortex -24,-78,20 
3.7 Parietal Operculum 70,-30,22 
2.6 Cingulate gyrus 11,22,31 
2.8 Middle Frontal gyrus  24,33,32 
3 Superior Frontal gyrus 26,-4,68 
2.7 Cingulate gyrus -8,-26,76 
4.8 Cerebellum -26,-64,-32 
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Figure 3. First latent variable (LV-I) obtained from PLS analysis. a) Brain pattern bootstrap 
ratios in MNI-ICBM152 space (x= -6, y = -12, y= -8, z= -14, z= -6, z= 0) b) Clinical scores 
pattern (the effect size estimates are derived from SVD analysis and the Confidence Intervals 
(CI) are calculated by bootstrapping, hence the CI are not necessarily symmetrical), c) individual 
subjects' Brain versus Clinical PLS score. PLS= Partial Least Squares. SVD= Singular Value 
Decomposition.   

3.4. Atrophy pattern predicts longitudinal disease progression 

Baseline LV-I score was significantly related to longitudinal changes in several measures after 

an average of 2.7 years. Participants with more severe atrophy in the LV-I brain pattern at 

baseline had significantly greater deterioration in the GCO (r = 0.22, p < 0.001). Longitudinal 

decline in activities of daily living, measured by the SE-ADL score (which was not included in 

the PLS analysis) was significantly greater in those with greater expression of the Brain LV-I 

pattern (r =  - 0.20 , p=0.003). We also assessed the correlation between LV-I score at baseline 

and changes in single clinical measures in different categories. Higher expression of the Brain 
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LV-I pattern was significantly correlated with decline in cognition demonstrated by decrease in 

MoCA score (r = -0.28, p<0.0001). However, the association between baseline LV-I expression 

and changes in motor signs (UPDRS-III) (r = 0.13, p = 0.052) or non-motor symptoms (UPDRS-

I) (r = 0.12, p=0.08) marginally failed to reach significance.  

	

Figure 4. Baseline atrophy is associated with longitudinal clinical progression. Individual 
patients’ atrophy score (expression of the atrophy network from the PLS model) is correlated 
with longitudinal changes in clinical measures of disease severity. PLS= Partial Least Squares. 
MoCA= Montreal Cognitive Assessment. GCO= Global Composite Outcome. UPDRS= Unified 
Parkinson's Disease Rating Scale. SE ADL= Schwab and England ADL score (overall activities 
of daily living). 

 

4. Discussion 
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The present study links multiple domains of clinical and biomarker features of PD to the 

underlying brain atrophy pattern using a single integrated analysis in a recently diagnosed 

population. In this de novo cohort, in addition to higher age, a wide range of motor and non-

motor features were linked to brain atrophy. We hope the PLS approach used here provides a 

means to investigate the complex combination of motor and non-motor features of PD in relation 

to patterns of brain atrophy.  

Our findings suggest that a broadly distributed spatial pattern of brain atrophy is present in the 

early stages of PD, which covaries with motor, early cognitive and other non-motor 

manifestations. This is somewhat at odds with the previous literature, where de novo PD is 

seldom associated with detectable brain atrophy. The participants of this cohort were all drug-

naïve within less than one year of diagnosis. A possible explanation for the greater ability of the 

multivariate approach to detect atrophy is that the course of PD may be stereotyped and the 

disease relatively widespread by the time early motor symptoms appear (Braak et al. 2003). 

Using all the voxels in the brain in a single analysis may confer greater sensitivity to deformation 

in a disease with a consistent spatial distribution. 

PD studies using brain imaging to date have almost always focussed on differences between PD 

and healthy controls, or on a particular symptom manifestation (such as dementia) to study brain 

alterations. As a multivariate approach, PLS enables us to investigate brain alterations in PD 

subjects without a need for a control group and to consider multiple clinical aspects of the 

disease simultaneously.  

We used our standard image analysis pipeline to calculate DBM as a measure of brain 

alterations. This pipeline (Aubert-Broche et al. 2013) has been previously used for multiple 
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multi-center and multi-scanner studies and it has been shown to produce robust results by 

removing site-specific biases (Zeighami et al. 2015; Boucetta et al. 2016; Sanford et al. 2017). 

Also, in an earlier study, we provided evidence that DBM was a more sensitive measure of 

atrophy than VBM, especially for subcortical areas (Zeighami et al. 2015). 

While the presence of atrophy early in the course of the disease is rarely reported, the direction 

of associations between atrophy and different clinical features and biomarkers is consistent with 

the literature. As one notable example, older age of onset and male gender were associated with 

more atrophy in the PD-related pattern that was later demonstrated to correlate with faster 

progression. This is in line with previous findings on poorer prognosis of PD in older male 

patients (Post et al., 2011). Also, key non-motor features such as RBD, somnolence, autonomic 

disturbance and mood disorders also contributed to the latent variable, consistent with the 

prognostic importance of these key manifestations shown in other PD cohorts (Fereshtehnejad et 

al. 2015). Cognitive deficit, even though mild in severity, was also a significant correlate of brain 

atrophy. Although definite cognitive impairment was an exclusion criterion in PPMI, mild 

cognitive impairment still significantly correlated with the pattern of atrophy. Up to one fifth of 

the early PD populations meet the criteria for mild cognitive impairment, which is a strong 

predictor of earlier onset of dementia and poor prognosis (Pedersen et al. 2013, 2017). It is 

noteworthy that visuospatial and executive functioning more prominently contributed to the 

pattern of atrophy than the other cognitive domains. This is consistent with other studies of 

cognitive impairment in PD compared to Alzheimer’s disease (Watson and Leverenz 2010; Wu 

et al. 2012).   

Using PLS, we obtained a disease related atrophy map that included brainstem (more 

specifically, medulla in the area of the dorsal motor nucleus of the vagus, red nucleus and 
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substantia nigra), basal ganglia (including putamen, caudate, pallidum and subthalamic nucleus), 

cortical regions, as well as cerebellar regions. These findings are consistent with the earlier 

stages of Braak’s description of disease spread (Braak et al. 2003), as well as our previously 

published PD atrophy network map, based on this dataset (Zeighami et al. 2015). It is notable 

that atrophy was also identified in frontal regions, belonging to Braak Stage V (Braak et al. 

2003), and not usually thought to be affected at the time of diagnosis. 

One of the main strengths of the proposed approach is the ability to detect brain-clinical 

manifestations of the disease at an early stage. We further show that the PLS scores relate to 

disease progression in the follow up visits. These results provide an opportunity to develop a 

simple comprehensive measure per subject which can be used as a prognostic biomarker of the 

disease. This approach could also have value in assessing prodromal disease populations, 

identified through genetic testing or the presence of RBD. We suggest that it could also be 

applicable to other neurodegenerative or neurodevelopmental diseases. 

The findings from this study should be considered in light of some limitations. Using PLS 

provides the opportunity to comprehensively investigate brain-clinical relations. However, we 

lose specificity as to how each particular clinical manifestation potentially relates to a specific 

brain region, rather than the atrophy pattern as a whole. Such individual relationships need to be 

addressed in future studies using independent PD cohorts. While we investigated the relationship 

between baseline findings and longitudinal clinical changes, future studies also need to 

investigate longitudinal brain alterations in PD and how they relate to disease progression.  

In this study, we have taken advantage of PLS as a multivariate approach to investigate the 

collective relationship between brain alterations reflected in DBM measures and various aspects 
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of the disease reflected in clinical measurements. We used data consisting of people with early 

diagnosed, drug naïve PD who were followed for an average of 2.7 years from PPMI, a global 

multi-center study. Clinically speaking, 2.7 years is a relatively short-term follow-up in the 

course of PD. Yet, the atrophy pattern was significantly associated with the longitudinal rate of 

decline in several clinical measures. In other words, high-scoring participants with more atrophic 

patterns at baseline experienced faster progression on the global single indicator of all symptom 

categories as well as the cognitive measure. Taken together, this study provides a new 

framework for studying neurodegenerative diseases with multi-faceted clinical measures and the 

interactions between brain alterations and disease manifestations. In addition, the single 

collective score summarizing the disease burden for each individual subject can be used as a 

potential biomarker for both diagnostic and prognostic purposes. 
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