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ABSTRACT 

 
When weighing evidence for a decision, individuals are continually faced with the choice 
of whether to gather more information or act on what has already been learned. The 
present experiment employed a self-paced category learning task and fMRI to examine 
the neural mechanisms underlying stopping of information search and how they 
contribute to choice accuracy. Participants learned to classify triads of face, object, and 
scene cues into one of two categories using a rule based on one of the stimulus 
dimensions. After each trial, participants were given the option to explicitly solve the rule 
or continue learning. Representational similarity analysis (RSA) was used to examine 
activation of rule-relevant information on trials leading up to a decision to solve the rule. 
We found that activation of rule-relevant information increased leading up to 
participants’ stopping decisions. Stopping was associated with widespread activation that 
included medial prefrontal cortex and visual association areas. Engagement of 
ventromedial prefrontal cortex (vmPFC) was associated with accurate stopping, and 
activation in this region was functionally coupled with signal in dorsolateral prefrontal 
cortex (dlPFC). Results suggest that activating rule information when deciding whether to 
stop an information search increases choice accuracy, and that the response profile of 
vmPFC during such decisions may provide an index of effective learning.  
 
KEYWORDS: Attention, Categorization, Decision making, fMRI, Representational 
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1. Introduction 

 Should I keep studying for my math test? Do I know enough about cars to pick 

out a good one? When gathering evidence for a decision, individuals are continually 

faced with the question: Have I learned enough yet? Learners must strike a compromise 

between collecting enough information to make accurate decisions while avoiding 

collecting redundant information and—consequently—wasting time and resources.  

 Currently, little is known about the neurobiological mechanisms that govern 

decisions about when to stop gathering new information. In the domain of value-based 

decision making, behavioral research has often focused on heuristics or stopping rules, 

such as take-the-best, that people employ when presented with cues of varying predictive 

value (Gigerenzer & Goldstein, 1996). The use of such strategies, however, can vary 

across participants, even in decision environments that encourage the use of a particular 

heuristic (Newell & Shanks, 2003; Newell et al., 2004). Thus recent research has begun 

to focus on participants’ use of confidence thresholds for determining when stopping is 

appropriate, as opposed to application of specific rules per se (Svenson, 1992; Karelaia, 

2006; Hausmann & Läge, 2008). In the present study, we test the neural mechanisms that 

contribute to stopping decisions during learning, and how activation of information 

associated with a choice evolves leading up to when a decision threshold is reached.  

Neurobiologically, in a recent study that required participants to take or decline 

sequentially-presented stock options, stopping of information search was found to engage 

anterior cingulate, insula, and ventral striatum (Costa & Averbeck, 2015). Additionally, 

accumulated value and reward associated with stopping decisions in sequential sampling 

paradigms have been associated with activation in lateral orbitofrontal cortex, vmPFC, 
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and the basal ganglia (Gluth, Rieskamp, & Büchel, 2012; Costa & Averbeck, 2015). 

Although these results have shed light on the neural correlates of stopping in value-based 

choice, how they translate to stopping in learning contexts, such as when people make 

decisions about their mastery of new concepts, remains an open question.  

  Rule-based category learning provides an ideal context to examine the neural 

basis of stopping in learning because many real world concepts are associated with rules, 

and because the neural systems that support rule-based categorization are well-

understood (for review, see Seger & Miller, 2010; Ashby & Maddox, 2011). Cognitively, 

rule-based category learning involves using hypothesis testing and selective attention to 

establish and focus on stimulus dimensions that are relevant for predicting category 

membership (Maddox & Ing, 2005; Zeithamova & Maddox, 2006). For example, when 

learning to distinguish between birds and mammals, people may learn to selectively 

attend to whether an organism has wings. Selective attention emerges over the course of 

learning to minimize prediction error, and has the effect of expanding the representation 

of dimensions that lead to successful categorization (Nosofsky, 1986; Kruschke, 1992; 

Folstein, Palmeri, & Gauthier, 2013). Neurobiologically, rule-based category learning is 

thought to depend on executive cortico-striatal loops connecting the prefrontal cortex 

with the head of the caudate (Seger & Miller, 2010), with the ventral striatum playing a 

particularly important role in both initial rule acquisition and reversal learning in the 

event of a rule switch (Seger & Cincotta, 2006; Liu et al., 2015). The medial temporal 

lobes are thought to be involved in the long-term maintenance and retrieval of these 

category rules (Poldrack et al., 2001; Davis, Love, & Preston, 2012).  

 Currently, how the neurobiological systems involved in rule-based category 
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learning contribute to decisions to stop learning is not clear because the vast majority of 

neuroimaging studies have employed fixed numbers of trials and not given participants 

leeway in decisions about whether to continue learning. However, it is possible to infer 

what mechanisms may underlie decisions to stop learning by incorporating predictions 

from recent neuroimaging research on stopping decisions in value-based choice and 

research on confidence in choice behavior more generally. In value-based decision 

making, the vmPFC has been shown to track subjective value (Tom et al., 2007; Bartra et 

al., 2013), and is sensitive to cost-benefit discrepancies among response options (Basten 

et al., 2010; Lim, O’Doherty, & Rangel, 2011). These findings are consistent with results 

showing that the vmPFC tracks accumulated value in value-based stopping decisions. 

Recent findings suggest that vmPFC may also code general decision evidence or 

confidence associated with a choice, perhaps in parallel with value (Di Martino et al., 

2013; Barron, Garvert, & Behrens, 2015; Lebreton et al., 2015). Indeed, a number of 

basic category learning tasks have found that the engagement of vmPFC is correlated 

with greater decision evidence for categorization choices (Grinbald et al., 2006; DeGutis 

& D’Esposito, 2007; Seger et al., 2015; Davis, Goldwater, & Giron, 2017). Thus we 

expect that decision evidence/confidence signals from the vmPFC may contribute to 

subjective thresholds participants use when deciding whether they have learned enough 

information. 

In addition to the vmPFC, we also expect the dorsolateral PFC (dlPFC) to 

contribute to stopping decisions. Recent research has suggested that a region of the 

posterior dlPFC may be involved in comparing accumulated perceptual information to 

decision criteria when making perceptual decisions (Heekeren et al., 2004; White et al., 
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2012). In terms of decisions to stop gathering new information, the dlPFC may monitor 

information from a number of regions to determine when stopping criteria have been 

reached, including confidence signals from the vmPFC. Indeed, several studies have 

observed increased functional connectivity between the dlPFC and vmPFC when 

participants make decisions that require weighing the subjective values of different 

choice options (Baumgartner et al., 2011; Rudorf & Hare, 2014). A similar coupling 

between dlPFC and vmPFC may support computing decision criteria for stopping in 

category learning. 

 As a complement to univariate activation, which measures the extent to which 

brain regions are engaged leading up to decisions to stop, multi-voxel pattern analysis 

(MVPA) may provide an additional window into how participants are processing 

category information leading up to stopping decisions.  Recent studies have found, as a 

result of learning, similarities between activation patterns elicited for members of a 

category come to reflect how participants attend to the stimulus dimensions, such that 

items sharing values along a rule dimension come to elicit more similar activation 

patterns (e.g., Mack, Preston, & Love, 2013; Mack, Love, & Preston, 2016). Such 

changes in neural similarity spaces may track participants’ decisions to stop learning. 

Specifically, we expect that as subjects selectively narrow their attention to a particular 

rule dimension leading up to a decision to stop gathering information, activation patterns 

associated with this dimension will become increasingly prominent in the underlying 

neural similarity space.  

 To test our predictions for engagement of the vmPFC/dlPFC and how rule-

relevant information will be activated leading up to a stopping decision, we trained 
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participants to categorize triads of visual stimuli using simple rules based on one of three 

binary stimulus dimensions (Figure 1). The stimulus dimensions consisted of three 

distinct visual categories: faces, objects and scenes. Participants learned, using trial and 

error, which stimulus dimension was the rule dimension and was predictive of category 

membership. Each full task trial was comprised of three to four fixation-separated 

subcomponents: a learning trial, which involved categorizing the visual stimulus; the 

presentation of correct/incorrect feedback; a decision trial where participants chose 

whether to solve the category rule or to continue learning; and finally, if a solve response 

was made, a trial for selecting between the three possible category rules. The use of a 

Type I category structure (Shepard, Hovland, & Jenkins, 1961) allowed participants to 

solve rules rapidly, allowing us to robustly measure how activation of rule-relevant 

information evolved over many different individual decisions to stop learning and solve 

the rule. To further maximize our ability to detect subtle changes in attentional weighting 

that result from learning, face, object, and scene images were used as stimulus 

dimensions. These real-world categories exhibit strong properties for representational 

decoding (Haxby et al., 2001; O’Toole et al., 2005), and were localized within each 

subject using independent scans to create ROIs that were unbiased to any potential 

learning effects (Davis et al., 2014). For the purposes of this study, the representational 

analysis was focused on the activation of patterns associated with the rule dimension that 

participants eventually chose as the solution during both the “learning” and “decision” 

portions of the trial (Figure 1).  

 To successfully navigate our task, participants must first learn to selectively 

attend to the rule dimension to predict category membership. We hypothesized that the 
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increasing selective attention to the rule dimension prior to stopping would result in 

multi-voxel patterns that become increasingly similar to the object class associated with 

the chosen rule dimension as participants’ neared a choice to stop. Once attention is 

allocated to the potential rule dimension, it is necessary for the participant to monitor the 

evidence consistent with this category rule. We predicted that vmPFC would be involved 

in representing the confidence or decision evidence for an attended rule dimension, with 

stopping marked by greater vmPFC activation than decisions to continue learning. 

Finally, participants must make a decision to stop learning once this evidence has reached 

a criterion. We hypothesized that dlPFC would track confidence/decision evidence 

signals from the vmPFC to determine whether a stopping threshold had been reached.  

 To preview our findings, the representational analysis revealed a dynamic neural 

accumulation process whereby activation of multi-voxel patterns associated with the  

object class eventually chosen as the rule dimension increased over the trials leading up 

to stopping decisions. Compared with the choice to continue learning, participants 

engaged a widespread network of brain regions including medial PFC when choosing to 

stop; within this contrast, activation of vmPFC and object-selective cortex were 

positively correlated with participants’ ability to solve rules accurately throughout the 

task. Moreover, we show that decisions to stop acquiring information and solve a rule are 

associated with enhanced functional connectivity between vmPFC and dlPFC. 
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2. Materials and Methods 

2.1. Participants 

 Twenty-five healthy, right-handed volunteers (ages 21 – 57, mean ± SEM = 27.32 

± 1.67, 17 women) were recruited through online newsletters and flyers posted at Texas 

Tech University. All subjects were included in the final analysis. All subjects provided 

written informed consent prior to participation, and were compensated $35 for a 1.5 hour 

session. The study protocol was approved by the Texas Tech University Human Research 

Protection Program.  

 

2.2. Experimental Paradigm 

 The experimental paradigm consisted of a self-paced category learning task 

completed over 5 consecutive fMRI scanning runs. Participants first learned to classify 

image triads as belonging to one of two categories based on feedback delivered following 

each learning trial. The three simultaneously presented features always consisted of one 

face, one object, and one scene. One object class was predictive of category membership 

and was the rule dimension. Subjects were instructed to learn the rule dimension that was 

predictive of category membership. Each dimension (object class) had two values, 

resulting in a category structure comprised of six total cues (Figure 1). The face, object, 

and scene images used were black-and-white squares presented on a white background 

with black text. The screen positions of each cue (left, right, or center) were randomized 

on each learning trial to avoid gaze effects. Within each scanning run, the stimuli used for 

each rule were drawn randomly from a set of 36 images for each respective class, and 

were removed from the set after they were used for a given rule. After each 
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learning/feedback trial pairing, participants were given the option to explicitly solve the 

rule (indicating whether faces, objects, or scenes were predictive) or to continue learning. 

These decision trials were of primary interest to the present study, allowing us to isolate 

the neural and behavioral correlates of stopping.  

 Participants received instructions indicating that their goal was to correctly solve 

as many rules as possible over the course of the experiment. Beyond the overall 

instructions to focus on solving rules correctly, correct solves were not explicitly 

incentivized. Participants were provided with an on-screen summary of their performance 

(the number of rules solved correctly) at the end of each scanning run. Figure 1 displays a 

schematic of the self-paced category learning task. Procedurally, image triads were 

presented on the screen accompanied by the prompt “Category 1 or Category2?” and a 

response prompt, with a maximum response time of 3 s. Next, feedback was presented 

for 1.75 s, indicating whether the response was correct or incorrect accompanied by the 

correct response. Feedback included presentation of the associated stimulus triad to 

facilitate learning. Following feedback, participants were prompted to make a button 

press indicating whether they wished to continue learning or solve the rule. These 

decision trials had a 2 s response deadline, and did not present the associated image triad. 

If a continue response was given, the task proceeded to the next category learning trial for 

the current rule and stimulus set. If a solve response was given, participants were 

prompted to make a response as to whether the rule (predictive feature) was faces, 

objects, or scenes within 3 s. Regardless of whether a response was given in the allotted 

time, the rule and associated set of images were then randomly reset, and the task 

proceeded to a category learning trial for the new rule. 
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Figure 1. Abstract category structure and an example trial for the self-paced rule learning task. Any given rule 
follows a Type I category structure (Shepard, Hovland, & Jenkins, 1961), where only one stimulus dimension is 
the “rule dimension” and is predictive of the correct category during learning (e.g., if the category rule is Face: 
Face 1 = Category 1, Face 2 = Category 2). Each point on the cubes corresponds to one of eight possible 
exemplars (feature combinations) displayed on the screen. During the task, participants are prompted with the 
decision to solve the rule or continue learning after each response-feedback pairing. If ‘continue’ is chosen, a 
new feature combination is randomly selected from the same rule structure and the process repeats. If ‘solve’ is 
chosen, participants are taken to a screen where they are prompted to select the object class that constituted the 
rule dimension. Following a solve response, learning begins again with a random rule and new set of stimuli. 
 

Variable fixation periods drawn from truncated exponentials (mean = 2 s) separated 

stimulus presentation from feedback, feedback from decision trials, decision from solve or 

the next category learning trial, and solve trials from the next category learning trial. The 

number of learning trials completed by each participant varied slightly due to the nature of 

the task and the necessity of a timed cutoff for each scanning run. The mean number of 

learning trials completed in the sample over 5 functional scans was 150.4 (Range = 140 – 

159, SD = 4.28). To provide subjects with a performance index of their rule solving 

accuracy, at the conclusion of each scanning run a screen notified them of the number of 
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rules they correctly solved during that scan. Participants received instructions and completed 

practice trials for the task outside of the scanner for approximately 10 minutes before 

engaging in the fMRI experiment.  

 Prior to beginning the rule learning task, participants completed two functional 

localizer scans. Each trial of the localizer task involved presenting a face, object, or scene 

individually on the screen, asking subjects to make a button press corresponding to the 

appropriate item category within 3 s. Variable fixation lengths drawn from a truncated 

exponential (mean = 2 s) separated each trial. Over the duration of the localizer phase, 

subjects categorized 38 examples of each object class. The black-and-white images used 

during the localizer runs were presented in a random order, and did not include any of the 

stimuli used for the experimental task.  

 

2.3. Image Acquisition  

 Imaging data were acquired on a 3.0 T Siemens Skyra MRI scanner at the Texas 

Tech Neuroimaging Institute. MPRAGE anatomical scans provided high-resolution 

structural images of the whole brain in the sagittal plane for each participant (TR = 1.9 s; 

TE = 2.49 ms; θ = 9°; FoV = 240 x 240 mm; matrix = 256 x 256 mm; slice thickness = 

0.9 mm, slices = 192). Functional images were acquired using a single-shot T2*-

weighted gradient echo EPI sequence (TR = 2.09 s; TE = 25 ms; θ = 70°; FoV= 192 x 

192 mm; matrix = 64 x 64; number of axial slices = 41, slice thickness = 2.5 mm; 0.5 mm 

gap), and slices were tilted to reduce orbitofrontal dropout (Deichmann et al., 2003).  

 

2.4. Image Analysis and Preprocessing 
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 Functional data were preprocessed and analyzed using FSL 

(www.fmrib.ox.ac.uk/fsl) and anatomical preprocessing was conducted with Freesurfer 

(autorecon1). Images were skull stripped, motion corrected, prewhitened, and high-pass 

filtered (cutoff: 60 s). For univariate analysis, data were spatially smoothed using a 6 mm 

FWHM Gaussian kernel. No spatial smoothing was used for representational similarity 

analysis. First-level statistical maps were registered to the Montreal Neurological 

Institute (MNI)-152 template using boundary-based registration (BBR) to align the 

functional image to the structural image, and 12 df to align the structural image to the 

MNI-152 template. 

 Three-level statistical analysis of the functional data was carried out using FEAT 

and FSL’s Randomise. At level-one, within-run associations between task regressors and 

functional time series were examined. Eight task regressors and their temporal derivatives 

were included in the level-one analysis, including the onsets of correct/incorrect learning 

trials, correct/incorrect feedback, decision trials receiving a continue response, decision 

trials receiving a solve response, and correct/incorrect rule-solving trials. Nuisance 

regressors included temporal derivatives for the task variables, trials in which subjects 

failed to make a response, realignment parameters from motion correction, their temporal 

derivatives, and volume-wise indicator variables for scrubbing volumes that exceeded a 

framewise displacement of 0.9 mm (Siegel et al., 2014). Task-based regressors were 

convolved with a double gamma hemodynamic response function, while motion 

parameters were left unconvolved. Prewhitening was performed at level-one to control 

for temporal autocorrelation in the hemodynamic response. At level-two, within-run 

parameter estimates for task variables were averaged across runs for each subject using a 
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fixed effects model. At level-three, we averaged parameter estimates across subjects 

using a random effects model for population inference. Z-scored mean rule solving 

accuracy was included in the level-three model as a moderator to test the hypothesis of 

performance-based differences in neural engagement. Final statistical maps were 

corrected for multiple comparisons at p < .05 using a permutation-based cluster mass 

thresholding, implemented in FSL’s Randomise. This analysis included a primary 

(cluster-forming) threshold of t = 2.49 (critical value of t for df = 24 and alpha = 0.01), 

and 6 mm variance smoothing. Permutation-based tests are immune to recent concerns 

about potential inflation of family-wise error rates in parametric GRF-based cluster 

thresholding (Eklund, Nichols, & Knutsson, 2016). 

 

2.5. Multivariate fMRI Analysis 

 To obtain trial-by-trial estimates of the hemodynamic response, we computed a β-

map (Rissman, Gazzaley, & D’Esposito, 2004) for each stimulus onset using an LS-A 

procedure (Mumford et al., 2012), which involves modeling individual task trials as 

separate regressors in a single general linear model. The estimated neural activation 

patterns for each onset were then registered to standard space. The aim of the multi-voxel 

pattern analysis was to examine neural signatures indicating the processing of predictive 

versus non-predictive item classes over time leading up to a solve decision. To obtain 

featural selective attention predictions, we computed similarities between the patterns for 

each trial in the task and the patterns computed for face-, object-, and scene-only trials 

from the independent localizer. The β-series used to compute the multi-voxel patterns 

was spatially localized to a functional ROI spanning category-selective brain regions in 
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ventral temporal/occipital cortex that included lateral occipital complex, fusiform gyrus, 

and parahippocampal cortex (Supplementary Figure A1). This mask was created by 

binarizing and combining the statistical maps for Object > Scene and Scene > Object 

from the independent localizer task. As opposed to creating three distinct ROIs for face-, 

object-, and scene-selective regions, the decision to use a larger cross-category ROI was 

motivated by the fact that measuring the relative neural similarity to each visual stimulus 

type at the trial level was crucial for the present analysis. In this scenario, using a 

combined mask allows pattern estimates for a given feature to vary according to neural 

activity in the regions specifically associated with that feature, while simultaneously 

accounting for pattern variability in the alternative regions. Given that attention to a 

certain object class should lead to high relative activation in the brain region that 

represents it and relatively low activation in regions that do not, the absence of activation 

in these alternative regions may add positive predictive value to similarity estimates. A 

Pearson correlation was used to compute correlation distances (1 – r) between trials in the 

category learning task with face, object, and scene patterns from the independent 

localizer task within each subject. Each subject-level correlation map was transformed 

using Fisher’s Z and aggregated over trial type for statistical comparison.  
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Figure A1. Functional localizer mask encompassing face-, object-, and scene-selective regions for the RSA 
learning analysis. 
 

 The primary goal of the multivariate analysis was to examine how temporal 

changes in the representation of rule information during learning support stopping 

decisions. Therefore, we first sorted learning trials according to the rules participants 

selected during the solve stage regardless of whether these solve responses were correct.  

We then counted back five trials from the solution trial to determine how the activation of 

information associated with the selected class changed as participants approached a 

solution. Five trials were analyzed in order to capture the average number of learning 

trials encountered by participants prior to solving (see Behavioral Results). For each 

learning trial, similarity estimates for the chosen object class were contrasted with the 

mean similarity to both of the unchosen object classes. To test whether there were 

significant time-based changes in neural similarity to the chosen item class during 

learning, we computed two multi-level models with similarity to chosen/unchosen as the 

outcome variables and 5-trial n-back to solve as a fixed predictor variable, allowing the 

intercept for each subject to vary randomly. Similarity output for the chosen/unchosen 
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object classes over 3070 total observations served as the level-1 units for each model, 

nested within 25 participants. A random slope parameter for n-back was then added to 

each null model to examine whether the relationship between neural similarities and time 

differed between subjects. We determined whether to proceed with the inclusion of each 

random effect parameter (i.e., random time slopes and intercepts for each subject) by 

comparing AIC between model fits. To determine how the time-course of attention 

differed across instances of effective and ineffective learning, the same series of analyses 

were then conducted for similarity to the chosen object class for the learning trials 

preceding correct and incorrect solves, respectively. 

 

2.6. vmPFC Signal Analysis 

 To assess how vmPFC signal may covary with the temporal distance from a solve 

decision, subject-level accuracy, and neural similarity to the chosen object class, we 

conducted two multi-level regression models with trial-by-trial vmPFC signal during the 

decision phase as the outcome variable. Both models included n-back and subject-level 

accuracy as fixed predictor variables, allowing subject intercepts to vary randomly. The 

two models differed only in that the first model included fixed predictors for similarity to 

the chosen and unchosen object classes during the immediately preceding learning trial, 

whereas the second model included predictors for similarity to the chosen/unchosen 

object classes from the decision trials. For these analyses, the signal in vmPFC was 

measured via mean activation estimates from the beta-series regression, masked 

anatomically within bilateral frontal medial cortex from the Harvard-Oxford Atlas.  
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2.7. PPI Analysis 

 A psychophysiological interaction analysis was conducted to examine whether 

any regions of the brain were functionally coupled with vmPFC during stopping 

decisions. The specific location of the vmPFC ROI (Figure 5A) was obtained by 

binarizing and anatomically masking the statistical map for Solve > Continue using 

bilateral frontal medial cortex from the Harvard-Oxford Atlas. FEAT 3-level analysis was 

then conducted, starting with the same eight level-1 explanatory variables used in the 

primary univariate model (see image analysis for further detail). Further, the model 

included z-scored time series for the vmPFC seed region, an interaction between 

Continue (centered) and the vmPFC time series (mean), and an interaction between Solve 

(centered) and the vmPFC time series (mean). The model included the same nuisance 

variables as listed above. The contrast of interest for the PPI was the difference between 

interactions: solve*vmPFC time series > continue*vmPFC time series. Final statistical 

maps were obtained using FSL’s Randomise and the same thresholding settings described 

in the image analysis section. 

 

3. Results 

3.1. Behavioral Results 

 The average number of learning trials encountered prior to a solve response and 

subsequent rule switch was 4.48, with mean learning trial accuracy at 57.2% (SD = 

7.94%, range = 45.9% – 74.5%). Performance curves for category learning trials 

preceding both correct and incorrect rule solves are displayed in Figure 2. The mean 

number of solve responses (and thus, rules encountered) by subjects over the 5 task runs 
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was highly variable (M = 33.6, SD = 10.5, range = 11 – 61), which was expected due to 

the free-responding nature of the task. Group performance for rule solving was well 

above chance (M = 66.1%, SD = 24.5%, range = 19.4% - 94.4%), although 7 participants 

failed to perform significantly above chance. Comparison of learning behavior across 

task performance revealed a significant negative correlation between the number of solve 

responses made throughout the task and mean rule solving accuracy (r = -.444, t (23) = -

2.37, p = .026), raising the possibility that some participants may have focused on 

completing a higher total volume of rules as opposed to focusing on solving fewer 

accurately. Similarly, the number of correct learning trials prior to solving the rule was 

positively associated with rule solving accuracy (r = .504, t (23) = 2.80, p = .010). In 

particular, subjects with below-chance rule solving accuracy chose to solve the rule after 

making fewer correct responses (M = 1.95) than those who solved rules with above-

chance accuracy (M = 3.39). 

 

 

Figure 2. Learning performance 
curves preceding correct and 
incorrect solves. On the x-axis, 4:0 
represent category learning trials 
preceding a solve decision, with 
zero being the final learning trial 
before participants opted to stop and 
solve the rule. Mean proportion 
correct is depicted on the y-axis. 
The horizontal line at 50% correct 
represents chance performance. 
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3.2. MVPA Results: Learning 

 To solve for a rule, participants need to identify which of the three object classes 

was predictive of category membership for that rule (i.e., participants needed to solve for 

the rule dimension). Theories of learned selective attention posit that individuals will 

shift their attention away from feature dimensions which result in response errors, and 

through experience learn to focus on only information which is predictive of the outcome 

(e.g., Kruschke, 1992). Employing an independent localizer and task stimuli that are 

characterized by readily distinguishable distributed activation patterns in object-selective 

cortex (Haxby et al., 2001; O’Toole et al., 2005) enabled us to examine the operation of 

feature-based selective attention using representational similarity analysis (Kriegeskorte, 

Mur, & Bandettini, 2008). To conduct this analysis, the patterns participants activated 

during learning trials of the experimental task were compared to the patterns that were 

activated for face, object, and scene stimuli from the independent localizer task within a 

combined functional ROI that spanned face-, object-, and scene-selective cortical regions 

(Supplementary Figure A1). It was predicted that neural similarity to the subsequently 

chosen object class would increase over trials leading up to a decision, reflecting an 

attentional narrowing to dimensions that participants believed to be predictive (regardless 

of whether or not their belief was correct). Alternatively, we predicted that mean neural 

similarity to the non-rule/non-predictive dimensions would decrease as a function of time 

leading up to a decision. 

 The time course of neural similarities to both the object class participants 

subsequently chose as the rule dimension (similarity to chosen class) and the classes 

constituting the unchosen dimensions (similarity to unchosen class) is displayed in Figure 
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3. As hypothesized, there was a strong increasing relationship between learning duration 

over the five trials preceding a solve decision and neural similarity to the subsequently 

chosen item class (Figure 3, blue line), with mean similarity to chosen class increasing as 

subjects approached a decision (γ = .019, t = 3.34, p < .001). For similarity to the 

unchosen class (Figure 3, green line), the n-back to decision variable was also predictive 

of similarity output (γ = -.006, t = -2.00, p = .045), with similarity to unchosen items 

decreasing over the trials preceding decisions to stop learning. In both cases, the addition 

of a random slope parameter for n-back to decision did not improve model fit according 

to AIC comparison, suggesting no significant subject-level differences in the relationship 

between neural similarity to the object classes and trial number. The addition of random 

slopes did not affect the main statistical outcome of either model. Considering the two 

time-courses of neural similarity, it is important to note that the initial advantage of 

similarity output for the unchosen object classes (Figure 3) is attributable to the fact that 

early in learning, participants are more likely to be attending to a subsequently unchosen 

class due to their 2:1 frequency on each trial (see Figure 1).  
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 Due to the wide variability in rule solving accuracy observed in the present 

experiment, the overall patterns of neural similarity depicted in Figure 3 may mask 

differences in how the stimulus dimensions were attended across trials where learning 

was effective versus ineffective. Specifically, in light of the observed positive 

relationship between the average number of learning trials per rule and subject-level 

accuracy (Section 3.1), attention to chosen features may increase more gradually 

preceding correct, versus incorrect solves.  Accordingly, we examined how neural 

similarity to chosen and unchosen rule dimensions varied during learning depending on 

whether the eventual rule selection following these trials was correct or incorrect. The 

time courses of neural similarity to chosen and unchosen object classes broken down by 

correct and incorrect solve responses are displayed in Figure 4 (correct solve; left panel, 

incorrect solve; right panel).  
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Figure 3. Mean time course of neural 
similarities preceding solve decisions. On 
the x-axis, 4:0 represent category learning 
trials preceding a solve decision, with zero 
being the final learning trial before 
participants opted to stop and solve the 
rule. The y-axis displays z-scored mean 
multi-voxel pattern dissimilarity. Similarity 
estimates were computed in functionally-
defined regions exhibiting selectivity for 
faces, objects, and scenes during the 
localizer phase (Supplementary Figure 
A1). The y-axis is flipped for ease of 
interpretation, as decreasing values signify 
increasing neural similarity. “Sim to 
chosen” (blue) reflects the neural similarity 
to the feature class that was eventually 
chosen as the category rule. “Sim to 
unchosen” (green) reflects the average 
neural similarity to the two feature classes 
that were not chosen as the category rule. 
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Figure 4. Mean time course of neural similarities to the chosen item class preceding correct versus 
incorrect solve decisions. On the x-axis, 4:0 represent category learning trials preceding a solve decision, 
with zero being the final learning trial before participants opted to stop and solve the rule. The y-axis 
displays z-scored mean multi-voxel pattern dissimilarity. Similarity estimates were computed in 
functionally-defined regions exhibiting selectivity for faces, objects, and scenes during the localizer phase 
(Supplementary Figure A1). The y-axis is flipped for ease of interpretation, as decreasing values signify 
increasing neural similarity. “Sim to chosen” (blue) reflects the neural similarity to the feature class that 
was eventually chosen as the category rule. “Sim to unchosen” (green) reflects the average neural similarity 
to the two feature classes that were not chosen as the category rule.  
  

 As with the combined analysis, we tested whether similarities to the chosen and 

unchosen dimensions exhibited significant linear effects over the five trials leading up to 

a solve decision. Prior to a correct response, we found a significant positive relationship 

between learning duration and neural similarity to the chosen object class (γ = .028, t = 

4.18, p < .001), in addition to a significant negative relationship between learning 

duration and similarity to the unchosen object classes (γ = -.011, t = -3.15, p = .002). 

Incorrect responses were not preceded by linear changes in similarity over the most 

recent five learning trials for chosen (γ = .008, t = .814, p = .416) or unchosen (γ = -.001, 

t = -.239, p = .811) object classes. Consistent with the model combined across correct and 

incorrect trials, including random slope parameters for n-back was not merited based on 
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AIC comparison. Taken together, these results suggest that when participants 

successfully solved the category rules, attention to the predictive object class increased 

more gradually leading up to a decision, accompanied by a similar decrement in attention 

to the two unpredictive object classes. Alternatively, no significant linear effects were 

observed for similarity to the chosen or unchosen object classes preceding incorrect solve 

decisions (Figure 4, right panel), suggesting that these choices may have been based on 

evidence accumulated over a shorter time course or possibly a single correct trial, 

consistent with the learning curve depicted in Figure 2. 

 We next sought to test whether trial-by-trial fluctuations in similarity to chosen 

class was predictive of stopping, using the binary decision to solve or continue 

immediately following each learning trial as the dependent variable. Indeed, a multi-level 

logistic regression revealed a significant positive relationship between similarity to 

chosen class on learning trials and the choice to solve the rule (γ = -.319, z = -2.99, p = 

.003), allowing each subject to have a random intercept. Including a random slope 

parameter for similarity to chosen class did not improve model fit based on AIC 

comparison, and the addition of the random parameter did not affect the statistical 

significance of this test. Additionally, we found a significant relationship between 

similarities to unchosen object classes and stopping decisions, with greater neural 

similarity to these stimulus dimensions predictive of decisions to continue learning (γ = 

.585, z = 2.84, p = .004). Again, adding a random slope parameter did not improve the 

model fit based on AIC, but its inclusion did not affect the statistical outcome of the test.  

In sum, our RSA findings for the learning phase are consistent with the hypothesis 

that learned selective attention to a perceived rule dimension will be reflected by changes 
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in the underlying neural similarity space, and that these attentionally-driven neural 

dynamics are predictive of stopping decisions in self-paced categorization. Moreover, 

differences in the time course of similarities to the chosen and unchosen object classes 

preceding correct, versus incorrect solves suggest that attentional changes over the course 

of learning may be strongly linked to participants’ learning strategies: correct solves were 

preceded by steady, linear increases in relative attention to the chosen feature, whereas 

incorrect solves were marked by greater relative attention to the chosen feature only on 

trials immediately preceding the solution. 

 

3.3.  Association Between Neural Similarity and Accuracy on Decision Trials 

 While the analysis of neural similarity to chosen and unchosen object classes 

during learning revealed trial-level differences in the attention to predictive cues for 

correct versus incorrect stopping decisions, another question of interest is whether overall 

task accuracy is related to the extent that participants activate the representations of 

predictive stimulus dimensions when considering whether to stop or continue learning. In 

contrast to alternative measures of visual attention such as eye tracking, a significant 

advantage of our MVPA measure is that the activation of each cue pattern may be 

compared to the relative activation of alternative cues on a single trial, regardless of 

whether the relevant stimuli are displayed on the screen at a given time (e.g., Zeithamova, 

Dominick, & Preston, 2012, Lewis-Peacock et al., 2012). We predicted that participants 

who were more accurate in their inferences would show a greater degree of neural 

similarity to the correct object class on decision trials, despite the fact that none of the 

stimuli were immediately available to the participants during these trials. To test this 
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prediction, we computed a Pearson correlation between subject-level accuracy and mean 

similarity to the correct object class across decision trials in the task. As hypothesized, 

rule solving accuracy was significantly associated with greater neural similarity to the 

correct object class on decision trials (r = -.510, t (23) = -2.84, p = .009), suggesting that 

individuals who performed more accurately on the task activated patterns associated with 

the predictive visual stimulus dimension to a greater extent than those who performed 

less accurately. The correlation between subject-level accuracy and similarity to the 

correct object class is depicted in Figure 5.  

 

 
 
3.4. Time-course of vmPFC Signal  

 Based on recent findings suggesting that the vmPFC tracks relative decision 

evidence in categorization (Davis, Goldwater, & Giron, 2017) and subjective confidence 

associated value-based decisions (Di Martino et al., 2013; Barron, Garvert, & Behrens, 

2015; Lebreton et al., 2015), we hypothesized that activation in this region would be 
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Figure 5. Association between 
subject-level rule solving 
accuracy and similarity to the 
correct object class on decision 
trials. The y-axis displays z-
scored mean multi-voxel pattern 
dissimilarity in ventral 
occipitotemporal cortex 
(Supplementary Figure A1). The 
y-axis is flipped for ease of 
interpretation, as decreasing 
values signify increasing neural 
similarity. 
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associated with stopping decisions in self-paced learning. A series of task-relevant 

questions pertaining to this prediction are how signal changes in vmPFC might covary 

with attention to relevant feature dimensions, the temporal distance from a solve decision, 

and individual differences in rule solving accuracy. In light of the strong relationship 

between neural similarity to chosen/unchosen object classes during learning and 

decisions to solve the rule, we first aimed to test whether similarity patterns during 

learning were predictive of vmPFC signal on the immediately following decision trial, 

and whether this relationship may be moderated by the temporal distance from a solve 

decision and subject-level accuracy. We thus computed a multi-level model over decision 

trials with trial-level vmPFC signal as the outcome variable, and learning similarities to 

the chosen/unchosen object classes, 5-trial n-back, and subject-level accuracy as predictor 

variables. The model tested three-way interactions between similarity to the 

chosen/unchosen object classes, n-back, and accuracy. Interaction effects related to 

vmPFC signal at the time of decision were not statistically significant, while main effects 

for similarity to the chosen (γ = -.981, t = -1.92, p = .056) and unchosen (γ = -1.92, t = -

1.92, p = .055) object classes during learning were found to be marginally significant. 

Given the direction of the relationships between similarity to chosen/unchosen object 

classes during learning and vmPFC signal on decision trials, our results suggest that 

vmPFC may be responsive to how strongly individual cues are attended during learning, 

irrespective of whether the cue is eventually chosen as the relevant rule dimension. 

 In Section 3.3, we show that participants’ overall accuracy is strongly associated 

with reactivation of correct cue patterns on decision trials. A related question of interest 

is how reactivation of chosen/unchosen object classes during the decision phase may 
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relate to trial-level activation of vmPFC. Accordingly, we conducted a multi-level 

regression with vmPFC signal as the outcome variable, using similarities to the 

chosen/unchosen object classes on decision trials, 5-trial n-back, and subject-level 

accuracy as predictor variables. Three-way interactions among similarity to the 

chosen/unchosen object classes, n-back, and accuracy were tested. Results of the multi-

level model revealed a significant two-way interaction between n-back and accuracy in 

predicting vmPFC signal (γ = -.154, t = -2.45, p = .014). Additionally, the main effect of 

similarity to the unchosen object class on decision trials was marginally significant (γ = -

1.79, t = -1.96, p = .05). The interpretation of the interaction effect between n-back and 

accuracy is that a stronger relationship exists between temporal distance from a solve 

decision and vmPFC signal among higher, versus lower accuracy participants: more 

accurate participants exhibited a steeper slope of vmPFC activation over time relative to 

less accurate participants. For illustrative purposes, this interaction effect is depicted in 

Figure 6 for the top and bottom 1/3 of task performers (all subjects were included in the 

statistical test).  

 Similar to the binary decision model based on learning similarities (Section 3.2), 

we tested whether trial-by-trial fluctuations in vmPFC signal during decision trials was 

predictive of stopping, where the dependent variable was whether the participant chose to 

solve the rule or continue learning on a given trial. Consistent with our findings for the 

RSA attention measure, a multi-level logistic regression revealed a significant positive 

relationship between vmPFC signal on decision trials and whether or not subjects chose 

to stop (γ = 0.274, z = 2.76, p = .006), allowing each subject to have a random intercept. 

The inclusion of a random slope parameter for the relationship between vmPFC signal 
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and stopping was found to be merited based on AIC comparison between model fits, 

suggesting significant subject-level variability in the relationship between vmPFC 

activation and stopping at the trial level. 

 
 
 
3.5. Neural Correlates of Stopping vs. Continuing on Decision Trials 

 It was hypothesized that decisions to stop learning and solve the rules would be 

more cognitively demanding than choices to continue learning, and would engage a 

network including prefrontal cortex, basal ganglia, and visual association cortices. 

Specifically, we expected that ventral occipitotemporal cortex would be activated 

because this region is associated with direct sensory or memory-based evidence for an 

object class (O’Craven & Kanwisher, 2000; Haxby et al., 2001), and that vmPFC would 

be engaged because of its association with high relative confidence and overall evidence 

for a decision (De Martino et al., 2013; Barron, Garvert, & Behrens, 2015; Lebreton et 

al., 2015; Davis, Goldwater, & Giron, 2017). We contrasted Solve > Continue on 
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Figure 6. Mean trial-level BOLD 
response in vmPFC for accurate and 
inaccurate participants. On the x-axis, 
4:0 represent the decision trials 
preceding a solve decision, with zero 
being the decision trial where 
participants opted to stop and solve the 
rule. The y-axis displays z-scored 
mean BOLD activation in 
anatomically-defined vmPFC as 
measured by the betaseries regression. 
“High Acc” (purple) corresponds to 
the top 1/3 of task performers (n = 8, 
M = 90.7% correct), while “Low Acc” 
(green) corresponds to the bottom 1/3 
of task performers (n = 8, M = 34.8% 
correct). 
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decision trials, finding a single, widespread cluster of activation (Figure 7A; Table 1). 

Within the cluster, the peak BOLD activity was located in medial PFC, spanning bilateral 

paracingulate gyrus, vmPFC, anterior cingulate cortex (ACC), and frontal pole. 

Additional regions exhibiting significant activation for Solve > Continue included (but 

were not limited to) bilateral ventral occipitotemporal cortex, anterior insula, and ventral 

striatum. No regions were significantly activated for the contrast Continue > Solve. Our 

findings support the prediction that stopping an information search, compared with 

decisions to continue learning, engages a broad network including regions that represent 

visual category information and accumulated decision evidence. Moreover, the co-

activation of dorsal ACC, ventral striatum, and insula within this contrast suggests that 

self-initiated stopping decisions involve a similar network of brain regions to those 

engaged for rule switching in matching and classification tasks (Simard et al., 2011; Liu 

et al., 2015). All final statistical maps are available at https://osf.io/ju9mz/ for further 

exploration.  

 

3.6. Moderation of Stopping vs. Continuing Activation by Solving Accuracy 

 As stopping, in the current task, is an inherently self-governed decision, it was 

predicted that regional engagement on decision trials would differ between subjects as a 

function of performance. Specifically, we examined mean rule solving accuracy as a 

subject-level moderator for the contrast Solve > Continue. It was predicted that 

individuals who were more accurate in rule solving would exhibit more sensitivity in the 

vmPFC and regions that discriminate between faces, objects, and scenes. Two clusters 

were positively correlated with accuracy on stopping trials (Figure 7B; Table 1). The first 
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cluster was located in right ventral visual cortex, with maxima in lateral occipital 

complex and occipital fusiform gyrus. The second included medial frontal pole, rostral 

anterior cingulate, and vmPFC. The engagement of our a priori ROIs in the moderation 

suggests that they are involved in successful stopping, as their activity during stop 

decisions is correlated with the likelihood of subjects knowing the correct rule. 

Consistent with the prediction that successful stopping decisions would require learned 

selective attention to predictive object classes, the activation of category selective regions 

suggests that rule solving accuracy is supported by greater relative consideration of the 

features associated with a rule when deciding whether to stop. In addition to our 

attentional predictions, we hypothesized that vmPFC would be associated with task 

accuracy, as high-performing participants are likely to accumulate more evidence for 

their decisions and, consequently, be more confident at the time of inference. The 

observed relationship between vmPFC engagement and task performance confirmed this 

prediction, and is consistent with recent findings implicating vmPFC in representing high 

relative decision evidence (Davis, Goldwater, & Giron, 2017) and the confidence 

associated with value judgments (De Martino et al., 2013; Barron, Garvert, & Behrens, 

2015; Lebreton et al., 2015) in decision making. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/169110doi: bioRxiv preprint 

https://doi.org/10.1101/169110
http://creativecommons.org/licenses/by-nc-nd/4.0/


THE NEURAL DYNAMICS OF SELF-PACED LEARNING 31 

 

Figure 7. Univariate fMRI results. A) Brain regions activated for Solve > Continue on decision 
trials. B) Regions where activation was positively correlated with mean solve accuracy within 
the Solve > Continue contrast. 
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3.7. PPI Results 

 A crucial question concerning the neurobiological basis of stopping an 

information search is whether there is a specific region responsible for integrating 

evidence from accumulator regions to precipitate a decision. To address this question, we 

conducted a PPI analysis to determine where the BOLD signal covaried with activation in 

vmPFC (Figure 8A) on stopping trials. Based on previous research illustrating its role as 

an integrator region that responds to inputs from vmPFC (Baumgartner et al., 2011; 

Rudorf & Hare, 2014), we predicted that dlPFC would play a critical role in the execution 

of stopping once a threshold is reached. Consistent with this hypothesis, the PPI analysis 

revealed activation in bilateral dlPFC that was functionally coupled with the vmPFC seed 

for Solve > Continue on decision trials (Figure 8B). In addition to dlPFC, signal in 

dorsomedial PFC, pre-SMA, and frontal pole displayed enhanced functional connectivity 

with vmPFC when participants chose to solve. With respect to the frontal pole, we 

specifically found that the primarily dorsal/lateral PFC cluster extended rostrally to a 

portion of right rostrolateral PFC (rlPFC) previously associated with metacognitive 

accuracy in value-based choice (Di Martino et al., 2013). This region often tracks rule-

evaluation processes when tasks encourage use of higher-level symbolic representations 

(Badre, Kayser, & D’Esposito, 2010; Davis, Goldwater, & Giron, 2017; Paniukov & 

Davis, 2017).  
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Figure 8. Results of the PPI analysis. A) The vmPFC seed region used in the PPI.          B) Regions where 
neural activation covaried with the BOLD time series in vmPFC on decision trials receiving a solve 
response versus a continue response. 
 
 

4. Discussion 

 In real-world decision environments, learners are responsible for regulating the 

amount of time they spend gathering information about a concept before making a 

choice. This regulation process is instantiated by people’s decisions to stop learning. To 

understand the neural mechanisms responsible for stopping of information search in 

humans, we used fMRI and a self-paced category learning task where participants learned 

unidimensional rules where a single visual feature was predictive of category 

membership. Our fMRI results show that compared with continuing to learn, decisions to 

stop engage a broad network of brain regions including PFC, basal ganglia, and visual 

association cortices. Behaviorally, the sample varied in desired learning length (time-to-

stop) and rule-solving accuracy. Higher task accuracy was predictive of greater activation 

in vmPFC, frontal pole, and right occipitotemporal cortex on stopping trials. Using 

MVPA, we tracked neural similarity to the features (face, object, or scene) during 

learning that were eventually chosen to be the predictive class. This analysis revealed a 
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significant linear increase of similarity to chosen classes over the five learning trials prior 

to a solve response, and further, that pattern similarities were predictive of choice on a 

trial-by-trial basis. Finally, a psychophysiological interaction analysis revealed that the 

dlPFC was more functionally coupled with the vmPFC when subjects chose to stop 

versus continue, consistent with its hypothesized role in monitoring accumulated 

evidence to determine whether a decision threshold has been reached. 

 In the context of our rule-based, multi-feature category learning task, individuals 

must learn to distinguish relevant from irrelevant information to accurately classify 

exemplars. Rather than measuring fluctuations in mean activation within our ventral 

visual ROI in response to varying task conditions, the use of MVPA allowed us to 

estimate the extent to which participants were focusing on each object class over the 

course of the task. Our analysis revealed that selective attention to object classes that 

subjects eventually chose as the rule dimension when solving a rule displayed an 

approximately linear ramping effect over the trials preceding correct solve decisions. 

Further, trial-by-trial estimates of representational similarity to chosen classes during 

learning were predictive of decisions to stop learning and solve the rule immediately 

following the trial. These findings extend previous research suggesting that neural 

representations of stimuli are modified over the course of category learning to facilitate 

optimal performance within a variety of task structures (Mack, Love, & Preston, 2013; 

Folstein, Palmeri, & Gauthier, 2013; Davis & Poldrack, 2014) by showing how learning-

dependent changes in the neural similarity space relate to subjective decision criteria. To 

our knowledge, this study is the first to examine the time course of dimensional selective 

attention in self-paced learning.  
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 The vmPFC is a region that we hypothesized would be more activated for 

stopping versus the choice to continue learning. Past research has thoroughly established 

a role of the vmPFC in reward prediction and subjective value assessment (Tom et al., 

2007; Bartra et al., 2013). Due to the absence of extrinsic rewards for correct responses or 

differing outcomes that were mapped on to each feature, in this study it was expected that 

the vmPFC would serve a more general function of tracking evidence for category rules 

(Davis, Goldwater, & Giron, 2017). Indeed, we found vmPFC to be one of the regions 

involved in stopping, and that activation in vmPFC covaried with task accuracy at the 

time subjects chose to stop. These results lend support to an emerging area of research 

that has implicated vmPFC in representing subjective confidence in parallel with value 

(De Martino et al., 2013; Barron, Garvert, & Behrens, 2015; Lebreton et al., 2015). It is 

important to note that the present study is unable to dissociate the neural signals 

associated with confidence from those associated with implicit value, given that the goal 

of correctly solving as many rules as possible necessarily correlates participants’ 

confidence with reward maximization. Accordingly, future studies may seek to address 

whether the vmPFC is particularly sensitive to confidence, value, or a combination of 

these factors in self-paced learning, perhaps by manipulating the reward associated with 

different rule dimensions. However, the present results suggest that in learning paradigms 

that demand varying attention to different visual features, accumulation processes in 

vmPFC are closely linked to absolute differences in the strength of competing feature 

representations. The possibility that vmPFC tracks the strength of signal in relevant 

perceptual regions when weighing a decision accords with our finding that greater task 

accuracy was associated with higher relative activation in both vmPFC and ventral 
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occipitotemporal cortex. From a learned selective attention standpoint, individuals who 

represent predictive features the most strongly should both be more confident in their 

decisions and more accurate in their inferences.  

 Our results extend recent research examining the neural correlates of decision 

evidence in categorization. Using a temporally extended classification task wherein 

probabilistic cues were presented to participants incrementally within a trial, Braunlich 

and Seger (2016) employed a model-based fMRI approach to isolate brain regions 

associated with parametric modulations in decision evidence that were independent of 

response- and urgency-related signals over time. Their results revealed that the absolute 

value of decision evidence accumulated over a trial correlated with activation in rostral 

and dorsolateral PFC, but surprisingly, was not associated with increased signal in 

vmPFC. One possibility for the divergence in results between this study and the current 

experiment regarding vmPFC is that this region is specifically engaged in relation to 

subjective appraisals of decision evidence, as opposed to reflecting the objective amount 

of evidence a person is exposed to. The regions engaged for stopping decisions in our 

study are not inherently tied to the objective evidence for a rule, as reflected in the high 

degree of variability in the average number of trials participants chose to view before 

opting to solve the rules. Rather, by their very nature, these stopping decisions are a 

reflection of participants’ subjective estimates of making a correct response. This idea 

accords with findings in the memory literature that implicate vmPFC in tracking 

metacognitive “feeling-of-knowing” judgments associated with retrieval attempts, but not 

retrieval accuracy itself (Schnyer, Nichols, & Verfaellie, 2005). Taken together, we 

suggest that while rostral and dorsal subregions of the PFC appear to be critical for 
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performing computations related to finite differences in decision evidence (e.g., Heekeren 

et al., 2004; Braunlich & Seger, 2016; Davis, Goldwater & Giron, 2017), vmPFC may 

uniquely represent more subjective decision variables such as confidence and the 

perceived costs and benefits associated with a decision (e.g., Basten et al., 2010).  

 Through a psychophysiological interaction analysis, we found that activation in 

vmPFC during stopping decisions is coupled with modulation of dlPFC. These findings 

are generally consistent with previous research showing that dlPFC interacts dynamically 

with vmPFC by comparing value signals represented in the latter region, and that dlPFC 

may precipitate responses based on this comparison process (Pochon et al., 2002; 

Baumgartner et al., 2011; Kahnt et al., 2011; Rudorf & Hare, 2014). When subjects chose 

to stop learning and respond to the rule, activity in vmPFC covaried with dlPFC to a 

greater extent than when they were not yet ready to solve. Accordingly, dlPFC may 

compute whether a decision threshold has been reached based on the relative evidence 

that has accumulated for a given category rule and participants’ meta-knowledge of the 

task structure. Our results regarding vmPFC-dlPFC interactions in self-paced category 

learning serve as a bridge between research focused on simple perceptual decisions and 

studies that primarily focus on the expected reward or monetary gains/losses incurred 

from a decision, and suggest that a common neural mechanism may support stopping in 

both category learning and value-based decision making. Because of the relatively 

indirect connection between dlPFC activity and stopping behavior in the present study, 

future research employing model-based fMRI may be useful for testing explicit 

predictions about the putative executive role of dlPFC in self-paced learning.  

 As an alternative to stopping per se, decisions to solve the category rule are 
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involve a switching process, whereby participants explicitly transition from hypothesis 

testing to solving the perceived category rule. Accordingly, contextualizing our findings 

in light of the extensive hypothesis testing/rule switching literature may be useful for 

understanding the various strategies participants may have employed to navigate our 

stopping task. Neurally, a subset of the regions engaged for Solve > Continue are 

consistent with those often implicated in rule switching, including the ventral striatum 

(Seger & Cincotta, 2006; Simard et al., 2011; Liu et al., 2015) and regions that comprise 

the salience network (dorsal anterior cingulate, anterior insula, and inferior frontal cortex; 

Dosenbach et al., 2006; Sridharan, Leviton, & Menon, 2008; Liu et al., 2015). 

Behaviorally, while an optimal observer may adopt a win-stay lose-shift strategy in 

matching tasks where correct feedback is fully correlated with knowledge of the correct 

rule, learners often rely on this strategy in multidimensional classification tasks despite 

the fact that a string of correct responses may fail to eliminate viable alternative rules 

(Shepard, Hovland, & Jenkins, 1961, Nosofsky, Palmeri, & McKinley, 1994, Niv et al., 

2015; Paniukov & Davis, 2017). We found subject-level rule solving accuracy to be 

strongly associated with the number of learning trials participants encountered before 

choosing to solve the rule, with less accurate participants choosing to solve after fewer 

learning trials and fewer instances of correct feedback than those with high accuracy. As 

such, it is possible that poorer task performers in the current study frequently adopted a 

suboptimal win-stay lose-shift strategy when deciding whether they were prepared to 

solve the rule, in some cases using a single correct trial as justification to move away 

from hypothesis testing and respond with the rule. Our attentional tuning results mirror 

this possibility, as incorrect solves were preceded by a marked increase in neural 
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similarity to the chosen object class on the final learning trial, as opposed to correct 

solves where similarity to the chosen class increased in a more gradual manner (Figure 

4).  

 

4.1. Conclusions 

 To balance accuracy and efficiency in decision making, learners must determine 

when their current knowledge state matches the knowledge that is required to achieve a 

particular goal. Using representational similarity analysis, we illustrate that such stopping 

decisions are preceded by greater activation of patterns consistent with perceived rule 

dimensions, consistent with theories of learned selective attention. Although stopping 

engaged a widely distributed network in the brain, our findings suggest that vmPFC and 

object-selective cortical regions are differentially engaged according to participants’ 

tendencies to accurately solve rules, and thus these regions may play unique roles in 

supporting accurate and timely stopping decisions in self-paced category learning. 

Finally, our results demonstrate that dlPFC is functionally coupled with vmPFC during 

stopping decisions, suggesting that this region may serve a similar criterion-setting 

function in self-paced learning to that observed across studies of perceptual and value-

based decision making. 
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