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Summary 

Anatomical tracing studies in non-human primates have suggested that corticostriatal connectivity is 

topographically organized: nearby locations in striatum are connected with nearby locations in 

cortex. The topographic organization of corticostriatal connectivity is thought to underpin many 

goal-directed behaviours, but these topographies have not been completely characterised in 

humans and their relationship to uniquely human behaviours remains to be fully determined. 

Instead, the dominant approach employs parcellations that cannot model the continuous nature of 

the topography, nor accommodate overlapping cortical projections in the striatum. Here, we employ 

a different approach to studying human corticostriatal circuitry: we estimate smoothly-varying and 

spatially overlapping ‘connection topographies’ from resting state fMRI. These correspond 

exceptionally well with and extend the topographies predicted from primate tracing studies. We 

show that striatal topography is preserved in regions not previously known to have topographic 

connections with the striatum and that many goal-directed behaviours can be mapped precisely 

onto individual variations in the spatial layout of striatal connectivity.  
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A large body of work in experimental animals has shown that corticostriatal connectivity mediates a 

wide repertoire of goal-directed behaviors.
1-10

 This repertoire  extends beyond the classical role of 

the striatum in planning and executing motor behaviour 
4
 and includes many other domains 

including reward processing,
5,6

 executive function,
7
 emotion

8
 and decision making. 

7,9
 This has 

contributed to an emerging view of the striatum as a crucial locus for functional integration 
10,11

 and 

as a key region implicated in many brain disorders including Parkinson’s disease, obsessive 

compulsive disorder, attention-deficit hyperactivity disorder and schizophrenia.12-14 

The striatum has extensive connections with virtually the entire cerebral cortex15 and an 

early influential theory of corticostriatal circuitry suggested that the multiple behaviours  it 

subserves can cleanly be segregated into parallel segregated circuits.
3
 However, anatomical tracing 

studies in non-human primates have suggested that this view is too simplistic.
1,2,4,10,16

 These studies 

involve injecting anatomical tracers into predefined regions in the striatum or prefrontal cortex and 

mapping their terminal projection fields. On the basis of these results, it is thought that the 

projections from cortex are topographically organized in a ventral-to-dorsal and medial-to-lateral 

gradient across the striatum1,2,10,16 such that neighbouring locations in the striatum are connected to 

neighbouring locations in cortex.1,2,4 This topography does not appear to respect anatomical 

boundaries; for example, there is no clear boundary between ventral and dorsal striatum11 and the 

distinction between the caudate and putamen is primarily anatomical, whereas the distribution of 

cortical projections varies smoothly across both structures.11,17 Moreover, the projection zones from 

different cortical regions overlap within the striatum10,16,18,19 such that only cortical areas separated 

by large distances have completely non-overlapping striatal projection zones.20 The anatomical 

tracing approach has been invaluable in helping to understand corticostriatal circuitry because it can 

precisely localize the terminal fields of a given injection site. However, it cannot be applied to 

humans due to its invasive nature and it does not provide a quantitative map of the underlying 

connection topography; instead this must be inferred post-hoc from the distribution of terminal 

fields and – most importantly – it is fundamentally an anatomical measure and does not directly 
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inform about function. This is particularly important in view of the broad relevance of corticostriatal 

circuitry to uniquely human behaviours and to brain function in health and disease. 

Topographic representations are hallmark features of brain organization21 and while they 

have been well-studied in some brain systems (e.g. vision), their function outside sensory regions is 

poorly understood21 and few methods have been proposed to study them directly.22  Instead, the 

predominant approach has been to estimate connectivity between hard parcellations that define 

regions of interest in the striatum, cortex, or both. Typically this is done either on the basis of 

diffusion tensor imaging (DTI),16,18,23-25 resting state fMRI26,27 or meta-analytic data.28 While this 

approach has provided qualitative evidence for homology with the topography predicted by studies 

in experimental animals, it suffers from limitations: first, it does not provide quantitative measures 

of the overall topological organization that can be related to behaviour in individual subjects. 

Second, the parcellation approach assumes that activity is constant across relatively large brain 

areas and is not well suited to studying topographic representations, where the connectivity varies 

gradually across space. Third, parcellations cannot – by definition – accommodate overlapping 

representations within the striatum. These problems are particularly acute in the striatum in view of 

the gradual connectivity pattern suggested by tracing studies, the convergence of projections from 

widespread cortical regions and the sheer breadth of behaviours that this circuitry underpins.  

In this work, we aimed to estimate quantitative representations of the functional 

topography of corticostriatal circuitry in humans and to determine the behaviours those 

representations map onto. First, we capitalize on a recent methodological development
29,30

 to 

accurately estimate smoothly-varying and overlapping topographic connection patterns (‘connection 

topographies’) in the striatum on the basis of connectivity of each striatal location with the rest of 

the brain. We estimate these connection topographies quantitatively in individual subjects from 

resting fMRI. We then re-map these topographies across the cortex to provide detailed topographic 

maps of human corticostriatal circuitry. Finally, we chart the behavioural determinants of individual 
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variations in these topographic representations across a battery that spans behaviours that depend 

on striatal function, including reward, executive function and psychopathology.  We aimed to 

address four key questions: (i) can connection topographies in the striatum be quantified in humans 

at the level of individual subjects?  (ii) How does the connection topography in the striatum and its 

remapping across the cortex differ from the topography predicted from experimental animals? For 

example, there is evidence from non-human primates that the temporal and parietal cortices project 

topographically to the striatum,
4,15

 but tractography studies in humans have not provided evidence 

for these projections;18,23,25 (iii) which behaviours do individual variations in these connection 

topographies map onto? and finally, (iv) do they map behaviour more reliably than parcellation-

based approaches?  

 

First, we employed resting-state fMRI from 466 subjects from the Human Connectome Project 

(HCP)31 to reconstruct connection topographies that map the connectivity of each striatal location 

with the rest of the brain. For this, we used an analysis approach29,30 that provides reproducible and 

parsimonious representations of overlapping connection topographies at the level of individual 

subjects (see Methods and Figure 4). Here, we restrict our analysis to two overlapping topographies 

but the approach can in principle be extended to capture further overlapping representations. This 

analysis approach is summarised in Figure 4 and described in the methods. Briefly however, it 

involves three main steps: first, we derive a similarity matrix that describes the similarity of the 

connection pattern (‘fingerprint’) of each striatal voxel with the rest of the brain. For this we choose 

the η
2
 coefficient.

29
 This step involves a lossless dimensionality reduction using singular value 

decomposition (SVD). Second, we feed this matrix into a manifold learning algorithm (Laplacian 

eigenmaps 32) to derive a set of connection topographies. Third, we fit a spatial statistical model (a 

‘trend surface model’ 33) to each topography. This yields a set of coefficients for each subject 

providing a low dimensional representation of the connection topography that can be used for 
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statistical analysis. Finally, we re-map connection topographies to the cortex to determine how the 

topographic connectivity pattern within the striatum is preserved across connections with the 

cortex. In our data, the trend surface models summarising the topographies were very accurate, 

explaining a mean (std. dev.) of 94.4% (2.2%) of the variance in the connection topographies across 

subjects and scanning sessions. These coefficients were also highly reproducible; we estimated 

separate models for each of the two repeated fMRI runs for each subject, which were highly 

correlated across runs (Left: mean (std. dev) ρ = 0.98 (0.05); Right ρ = 0.98 (0.04)). We illustrate both 

the variations across subjects and the reproducibility within subjects in Supplementary Figure 1. 

The dominant connection topography corresponded strongly to the underlying anatomy 

both in a continuous sense (Supplementary Figure 2a) and after applying K-means clustering 

(Supplementary Figure 2b) such that the resulting group-level parcellation recapitulated the 

anatomical boundaries of the caudate, putamen and nucleus accumbens (Supplementary Figure 4). 

In contrast, the second overlapping topography exhibited a more gradual pattern of connectivity 

change corresponding with the dorsal-to-ventral, medial-to-lateral and anterior-to-posterior 

anatomical gradient of connectivity within the striatum predicted from tracing studies in non-human 

primates 1,2 (Supplementary Figure 2c). For both topographies, this correspondence was also evident 

in the individualized topographies (Supplementary Figure 1). Because of the prominence of this 

gradual connectivity pattern in the animal literature, and the overwhelming focus on parcellation in 

the human literature, we focus the remaining analysis on the second topography. 

Next, we examined the connectivity profile of the second topography by remapping this 

representation from the striatum onto the cortex. We achieved this by color-coding each cortical 

vertex according to the striatal voxel that it correlates the most with.22,29 In experimental animals, a 

gradient of topographical connectivity in the striatum has been most frequently associated with 

reward, where the projections from many reward-related brain regions converge in the rostral 

striatum.5 Therefore, we examined the correspondence between the topographic representation in 
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the striatum and these reward related areas. The connectivity profile between the ventral rostral 

striatum and medial prefrontal cortex and midbrain showed a striking similarity to the connection 

topography predicted from invasive tracing studies (Figure 1a).  

Reward is a primary behaviour dependent on corticostriatal circuitry, through its 

connections with cortical areas involved in reward processing. However, the striatum has extensive 

connections with nearly all cortical areas. Therefore, we next investigated the broader topographic 

connectivity profile of the striatum. Again, the re-mapped topographic connectivity pattern shows 

an excellent correspondence with the pattern of projection targets that has been predicted from 

tracing studies in non-human primates (Figure 1b). Whilst this correspondence is reassuring, we 

emphasize that these re-mapped topographic representations were obtained from humans in vivo, 

extend across all cortical areas and in considerably more detail than is provided by the theoretical 

model. Most importantly, they are also quantitative and can therefore be related to human 

behaviours in a statistical manner. 

 

[Figure 1 about here] 

 

These results show that human corticostriatal connection topographies extend beyond the known 

pattern of topographical connectivity derived from studies of non-human primates and span 

multiple spatial scales. Studies of corticostriatal circuitry in experimental animals have mostly 

focused on prefrontal cortex
11

 although some studies have provided evidence that the striatum is 

topographically connected with the parietal and temporal lobes.
15

 The remapping of the striatal 

connection topographies across the cortex shows that the topography in the striatum was 

recapitulated across many cortical regions (Figure 1b, arrows), which suggests that many cortical 

regions have topographically organized connections with the striatum. Some of these connections 
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are expected from animal studies, for example: the amygdala, hippocampus and ventromedial 

prefrontal cortex showed a strong correspondence to ventromedial striatal regions, which in 

monkeys is the only area of the striatum that receives input from these structures
11

 Similarly, 

cortical regions associated with motor function (e.g. primary- and supplementary motor areas) 

showed the expected correspondence to the lateral putamen.  On the other hand, other features 

have not been described in the animal literature. For example, the posterior cingulate cortex was 

strongly connected with the ventromedial striatum and lateral prefrontal cortex showed a strong 

correspondence to dorsal and posterior caudate. Also in contrast to the non-human primate 

literature, we also found that the gradient of connectivity within the striatum could be traced onto 

rostral-to-caudal gradients within connected brain regions. For example, we detected connectivity 

gradients within the anterior cingulate, posterior cingulate and temporal cortices (Figure 1b). 

Finally, we were interested in determining the correlates of these connection topographies 

across a wide range of goal-directed behaviours.
11

  Therefore, we employed a unified multivariate 

analysis approach to find associations between the full set of trend surface model coefficients from 

each hemisphere and the extensive battery of behavioural measures derived from the HCP dataset. 

This battery includes measures of many aspects of cognition, reward, language, emotion, personality 

and clinical scales across multiple diagnostic categories.34 Specifically, we used canonical correlation 

analysis (CCA), a multivariate analysis technique that seeks patterns of covariation between datasets 

(see Methods). In both hemispheres, we detected a highly significant association between inter-

individual variations in the second topography and the behavioural battery (left hemisphere: ρ = 

0.74, p < 0.002 (permutation test), Wilk’s Lambda = 0.0094, p < 0.005; right hemisphere: ρ = 0.73, p < 

0.01, Wilk’s Lambda = 0.009, p < 0.002). Since we considered it to be unlikely that this association 

could be cleanly partitioned into orthogonal components (an inherent feature of the CCA 

decomposition), we mapped the behavioural domains underlying this association across the entire 

decomposition (Figures 2 and 3). These figures show structure coefficients corresponding to all of 

the 9 canonical components from the CCA decomposition (9 because the optimal statistical model 
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was a polynomial of model order 3). These provide a measure of importance of each brain voxel 

(Figures 2a and 3a) or behavioural score (Figures 2c and 3c) in maximizing the correlation between 

brain topography and behaviour. Successive components show additional contributions to 

maximizing the correlation orthogonal to the other components (see Methods for details). This 

showed that the association in the left hemisphere was driven principally by: (i) delay discounting, 

consistent with the known role of the striatum in reward and delay valuation
7
 (ii) relational 

processing
34

 which is relevant because the task they were derived from was designed to precisely 

localize rostrolateral prefrontal cortex34,35 and (iii) psychological wellbeing, which is also plausibly 

related to corticostriatal function.34 In the right hemisphere, the association was driven by: (i) social 

cognition, derived from a task that elicits robust activations in brain areas associated with theory of 

mind34 (ii) sustained attention, which is known to depend on corticostriatal circuitry7 and is 

consistent with its role in the pathophysiology of attention deficit/hyperactivity disorder12 and (iii) 

personality, which also depends on corticostriatal connectivity.24 To assess reproducibility, we 

repeated the entire pipeline on the second fMRI run. The pattern of results was largely consistent 

with that derived from the first fMRI run: associations were detected for both hemispheres (left: ρ = 

0.74, p < 0.001, Wilk’s Lambda = 0.013 (not significant); right: ρ = 0.75 p < 0.001, Wilk’s Lambda = 

0.009, p < 0.004). Note that although the entire decomposition did not reach significance for the left 

hemisphere, individual predictive gradients did. The particular behavioural domains underlying these 

associations were also similar (Supplementary Figures 4 and 5), where again delay discounting and 

relational processing were strongly associated with the connection topography in the left 

hemisphere, and sustained attention was dominant in the right hemisphere. However, there were 

also some differences in the behavioural measures associated with the connection topographies; for 

example, emotional processing scores from the fMRI task were associated with the connectivity 

gradients in the second fMRI run but not the first (see below).  
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[Figure 2 about here] 

[Figure 3 about here] 

 

To determine whether these behavioural associations were better captured by a gradual connection 

topography relative to piece-wise constant parcels, we performed additional analyses, where we 

repeated the CCA analysis after applying K-means to generate an individualized parcellation for each 

subject (i.e. similarly to the group-level parcellation in Figures S3a and S4) then averaging the 

principal gradient across each parcel. In both cases, we detected some associations between 

behaviour and connectivity, but these were slightly less reproducible across fMRI runs. More 

specifically, significant associations were detected for both left and right hemisphere, but each in 

only one of the fMRI runs (first run, left hemisphere: ρ = 0.64, Wilk’s Lambda = 0.27, both not 

significant; first run, right hemisphere: ρ = 0.80, Wilk’s Lambda = 0.14, both p < 0.001; second run, 

left hemisphere: ρ = 0.70, p < 0.007, Wilk’s Lambda = 0.21, p < 0.002; second run, right hemisphere: 

ρ = 0.67, Wilk’s Lambda = 0.21, both not significant). Note that this approach provides an optimistic 

estimate of the association achievable through parcellation because the parcellation is applied after 

employing manifold learning which provides the advantage of separating the signal attributable to 

overlapping representations and is not typically done for parcellation approaches. 

 

To summarise these results: we estimated smoothly varying patterns of corticostriatal connectivity 

non-invasively from humans, which: (i) show that connection topographies can be reliably identified 

at the level of individual subjects; (ii) provide quantitative topographic maps of human corticostriatal 

circuitry that show an excellent correspondence to the topography predicted from animal tracing 

studies1,2,5,11 whilst also showing that striatal topography is preserved in brain regions that have not 

been shown to have topographic connections with the striatum either in humans (e.g. temporal and 
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parietal lobes) or experimental animals (e.g. posterior cingulate cortex). They also allowed us to 

demonstrate that: (iii) individual variations in these topographic connectivity patterns predict 

specific behaviours in a way that is (iv) more reproducible than a parcellation-based approach.  

The unique feature of our approach is that we shift away from hard parcellation and instead 

perform inferences directly on the basis of spatial connection topographies. This is particularly well-

suited to studying corticostriatal function because it provides inferences at the level of overlapping 

and spatially distributed connectivity patterns across the striatum, not at the level of piece-wise 

constant parcels. Our results challenge the dominance of the parcellation view of brain connectivity, 

and our approach overcomes several methodological problems it entails: our topographic approach 

accommodates multiple connectivity patterns that overlap in the same structure, it does not require 

defining the number of parcels or the parcellation strategy in advance, which is important because 

the parcel is the fundamental unit of most network-based approaches to connectivity, and therefore 

any errors in parcel definition are propagated through the entire analysis. This provides important 

advantages over existing methodology because: (i) the number of parcels is often not well-defined
28

 

and (ii) purely anatomical parcellations often do not map well onto function36 whereas (iii) there are 

wide range of data-driven parcellation strategies, which often show only a moderate 

correspondence with one another.27,28 These problems notwithstanding, our approach is 

complementary to parcellation strategies; in the striatum, parcellation is a useful approach for 

detecting segregated parallel circuits18 or identifying their projection zones16 but do not lend 

themselves naturally to making inferences about convergent processing because they do not easily 

accommodate the overlapping representations that are fundamental to corticostriatal circuitry.1,5 In 

our data, we were also able to detect behavioural associations with an individualized parcellation of 

the striatum, but these were less reproducible than the continuous connection topographies. This 

suggests that the parcellation may coarsely approximate the underlying continuous topography. 
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Similar to other studies that have employed functional connectivity to investigate corticostriatal 

circuitry,
26,27

  our results should be interpreted in the context of the use of a functional connectivity 

method that is sensitive to both direct (i.e. monosynaptic) and indirect (polysynaptic) connections. 

This provides advantages and disadvantages relative to the predominant approach to studying 

structural corticostriatal connectivity in humans on the basis of DTI.
16,18,23-25

 The advantage of 

structural connectivity methods is that they provide a means to directly identify monosynaptic 

connections between brain regions, but there is no guarantee that the presence or absence of a 

given structural connection is functionally relevant. It is also well-known that DTI-based methods 

require myelinated connections and can have difficulties in following fibres through areas with 

extensively crossing fibre bundles. On the other hand, an advantage of the present approach is that 

it provides a means to identify functionally connected brain regions even if they are not connected 

monosynaptically or if tracts between them cannot be identified. In some settings, functional 

connectivity can be used to identify monosynaptic connections on the basis of partial correlations 

between brain regions. However, this requires that the relevant brain area first be subdivided into 

atomic units (e.g. via parcellation). This is a reasonable approach in many cases, but partial 

correlation is not directly applicable here because we assess the similarity of connectivity patterns at 

the level of individual voxels and data within the striatum and within cortical areas are inherently 

smooth such that neighbouring voxels are highly correlated. 

Our results that validate and extend the literature based on experimental animals in three ways: 

first, ventromedial striatal areas were strongly connected to networks that subserve reward (e.g. 

ventromedial and orbitofrontal cortex, dorsal anterior cingulate, amygdala and hippocampus). This is 

in line with studies that have shown that projections from reward-related brain regions overlap most 

extensively in the rostral striatum5 and with studies in experimental animals that suggest that the 

amygdala and hippocampus are important nodes in the extended reward network.5,37 Behaviourally, 

this was reflected in an association between the connectivity patterns and delay discounting, which 

extends studies that have principally demonstrated a group-level association between delay 
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discounting and mean activity in the ventral striatum.38 Second, dorsal and caudal striatal regions 

were strongly connected to lateral prefrontal regions, which is in line with evidence from non-

human primates showing that terminals from the motor and premotor striatum do not extend into 

rostral striatum.
11

 In humans, this is also consistent with the involvement of the dorsal striatum in 

executive function and decision making
7
 and with observations that lesions in the dorsal caudate 

nucleus cause impairments in working memory.
39

 Third, lateral striatal regions (e.g. mid putamen) 

were strongly connected with motor regions, as would be expected based on the well-documented 

role of the putamen in motor circuitry.4  

Our data also provide evidence for the existence of topographic connections that would not 

have been predicted on the basis of the existing literature, which has predominantly focused on 

projections that pass through prefrontal cortex.
3
 For example, the posterior cingulate cortex was 

topographically connected with ventral striatum. The posterior cingulate cortex has a well-

documented role in brain’s default mode network (DMN) which shows reduced activity during many 

goal-directed behaviors.
40

 This is of particular relevance to the associations we detected with delay 

discounting and sustained attention because there is increasing evidence that the striatal dopamine 

system modulates the DMN37,41 and failures in suppression of DMN activity have been associated 

with momentary lapses in attention.42  

Another key finding was evidence for a topographic gradient of connectivity within the temporal 

and parietal lobes. This is consistent with evidence of topographically organized patterns of 

connectivity between striatum and temporal and parietal cortices in experimental animals.
19,43,44

 

However, these gradients have not, to date, been reported in studies that have studied human 

corticostriatal circuitry.18,23,25 This may be because these human studies all used structural 

connectivity methods (e.g. tractography). This is particularly relevant because fibres from parietal 

and temporal cortices need to pass through areas of complex fibre crossings to reach the striatum.25  
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In our data, connectivity with the temporal lobe may be related to some of the other behaviours 

associated with the striatal connection topographies (e.g. social functioning).  

Our results are broadly consistent with other studies which have employed functional 

connectivity approaches to identify the connectivity of the striatum.26,27 Di Martino and colleagues 

used seed-based connectivity to identify cortical voxels correlated with each of a set of anatomically 

defined regions of interest.26 Choi and colleagues applied a parcellation approach to divide the 

striatum into subregions by assigning each striatal voxel to its most strongly correlated cortical 

network.27 These studies provided evidence for the existence of a seed-location dependent 

functional difference in striatal organization. Our approach is complementary to these studies and 

enabled us to: (i) quantify the functional topography in the striatum directly and in a smoothly 

varying manner; (ii) provide a low-dimensional representation of this topography that can be related 

quantitatively to behaviour and (iii) disentangle overlapping representations within the striatum. 

Here, this was reflected as a gradient of functional connectivity superimposed on the underlying 

anatomy (Supplementary Figure 2). This latter property is particularly important in the striatum 

given the sheer number of behaviours that corticostriatal circuitry underpins in humans. 

While our results suggest that the association with delay discounting was lateralized in that the 

association was most prominent in the left hemisphere, we are cautious of such an interpretation 

because there was weak evidence of an association between delay discounting and the dominant 

connection topography after parcellation that did not achieve statistical significance. An avenue for 

further study is to investigate the stability of the behavioural associations over repeated 

measurements. Although the most important behavioural associations were reproducible across 

runs (e.g. the association with delay discounting), there was also some run-to-run variability in the 

particular behavioural variables underlying the brain-behaviour correspondence. The most salient of 

these was that measures derived from the fMRI emotional processing task were associated with the 

connection topographies in both hemispheres from the second resting fMRI run but not the first. 
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This may be because the emotional task was acquired in the same scanning session as the second 

fMRI run. According to the HCP protocol 

(https://www.humanconnectome.org/documentation/data-release/Q1_Release_Appendix_I.pdf), 

three of the fMRI tasks were acquired after the first resting fMRI run and four were acquired after 

the second run (including the emotion processing task). Emotion processing is dependent on 

corticostriatal circuitry
8
 and emotional task performance is correlated with dopamine release in the 

striatum.
45

 Therefore, we speculate that state-dependent effects related to corticostriatal circuitry 

were related to emotion processing. If correct, this hypothesis underscores the importance of 

considering multiple measurement timepoints to detect state-dependent effects. In future work we 

will also investigate methods to infer directionality of the connection topographies, which remains a 

challenging problem for most approaches to estimation of functional connectivity.46 Finally, another 

open question is determining the model order for overlapping connection topographies. Here we 

considered the first two overlapping topographies, but it is also likely that higher order topographies 

could provide information at finer levels of detail. 

In summary, we mapped topographic connectivity between striatum and cortex in humans. Our 

results simultaneously correspond with and extend the connection topographies predicted from 

studies in experimental animals. We demonstrate that topographic connectivity with the striatum in 

humans extends more widely than previously thought and we precisely map the behaviours that 

these topographies predict across an extensive behavioural battery.  Our results lend support to the 

notion that the striatum functions as a hub for integrating information from cortical networks 

subserving many human goal directed behaviours and our approach provides a means to estimate 

continuous connection topographies at the level of individual subjects and to relate individual 

variations in these topographies quantitatively to behaviour.  
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Methods 

Neuroimaging data  

Resting state fMRI data were derived from the Human Connectome Project (HCP), which aims to 

acquire exceptionally high-quality neuroimaging data from more than 1000 twins and non-twin 

siblings.31 Full details surrounding the sample, data acquisition, ethical and preprocessing procedures 

have been reported previously,31,34,47 but in brief, our sample (N=466, aged 22-26, 293 females) 

included all subjects from the ‘500 subjects’ release who completed all resting fMRI scanning runs 

and for whom sufficient data were available to determine familial relationships. This was necessary 

to avoid introducing bias in the non-parametric statistical inference procedures we employ (below). 

We anticipated that this sample would be sufficient to identify salient multivariate brain-behaviour 

relationships based on previous results using a similar analysis approach.48 Participants were 

scanned on a customized 3 Tesla Siemens Skyra scanner (Siemens AG, Erlanger, Germany) using 

multi-band accelerated fMRI four times over two days, with each run comprising 15 min. Resting 

fMRI data were preprocessed according to the HCP minimal processing pipeline47 then denoised 

using advanced artefact removal procedures based on independent component analysis49 before 

being smoothed with an 6mm kernel that respected the geometry of the brain. Specifically, 

subcortical structures were treated volumetrically, while cortical structures were projected onto the 

cortical surface according to the documented HCP procedures.
47

   

 

Estimation of connection topographies 

We estimated connection topographies from the HCP resting state fMRI data separately for each 

subject, hemisphere and fMRI scanning session. For this, we used an emerging approach that 

enables the dominant modes of functional connectivity change within the striatum to be traced on 

the basis of the connectivity between each striatal voxel and the rest of the brain. This procedure is 
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described elsewhere29,30 and is summarized in Figure 4. Briefly, we rearranged the fMRI time series 

data from the both the striatum and all grey-matter voxels outside the striatum into two time-by-

voxels matrices. Since the latter is relatively large, we losslessly reduced its dimensionality using 

singular value decomposition (SVD). We then computed the correlation between the voxel-wise 

striatal time series data and the SVD-transformed data from outside the striatum, then used the η
2
 

coefficient to quantify the similarities among the voxel-wise fingerprints (see 
29

). Then, we applied 

the Laplacian eigenmaps manifold learning algorithm
32

 to the resulting similarity matrix, resulting in 

a series of vectors that represent the dominant modes of functional connectivity change (i.e. 

connection topographies). Note that this can be done at the group-level by using the average of the 

individual similarity matrices (as in Supplementary Figure 3) or individually for each subject (as used 

for statistical analysis). In the latter case, the resulting connection topographies were highly 

consistent across fMRI runs (Supplementary Figure 2), in line with what we have demonstrated 

previously for other brain regions.29 Finally, to enable statistical analysis over these connection 

topographies we fit a spatial statistical model that provides an accurate representation of the 

topography in a small number of coefficients. For this, we use a ‘trend surface modelling’ approach33 

which involves fitting a set of polynomial basis functions defined by the coordinates of each striatal 

location to predict each individual subject’s connection topography. We fit these models using 

Bayesian linear regression,50 where we employed an empirical Bayes approach to set model 

hyperparameters. Full details are provided elsewhere50 but this essentially consists of finding the 

model hyperparameters (controlling the noise- and the data variance) by maximizing the model 

evidence or marginal likelihood. This was achieved using conjugate gradient optimization. For fixed 

hyperparameters, the posterior distribution over the trend coefficients can be computed in closed 

form which, in turn, enables predictions for unseen data points to be computed. We used the 

maximum a posteriori estimate of the weight distribution as an indication of the importance of each 

trend coefficient in further analyses. To select the degree of the interpolating polynomial basis set, 

we fit these models across polynomials of degree 2-5 then compared the different model orders 
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using the Bayesian information criterion. This criterion strongly favoured a polynomial of degree 3, 

which was taken forward for further analysis. Note that this decision was not strongly dependent on 

the choice of criterion because the Akaike information criterion resulted in identical conclusions.  

 

[Figure 4 about here] 

 

To determine the preservation of each striatal topography across its connections with other brain 

regions we performed a simple approach whereby we color-coded each cortical vertex or subcortical 

voxel according to the striatal voxel that it correlates the most with.
22

 This is ideal for our purposes 

because it is constrained to directly estimating corticostriatal interactions. 

 

Behavioural data 

We evaluate the behavioural correlates of the connection topographies across an extensive battery 

of behavioural measures. This battery has been described elsewhere
31,34

 and includes demographic 

data (e.g. age, sex), psychometric data across multiple domains of functioning (e.g. cognition, 

emotion, personality, sensory processing and life functioning) plus clinical assessments spanning 

multiple psychiatric domains and diagnostic categories (e.g. substance use, impulse control, mood, 

anxiety and eating disorders).34 We also include behavioural measures from a set of fMRI tasks 

measuring working memory, incentive processing, motor function, language processing, relational 

processing, social cognition and emotion processing.34 In our analysis, we aimed to include the most 

extensive set of measures possible and therefore select variables using a similar strategy to a prior 

report using these data.48 Specifically, from the complete HCP battery34 

(https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-
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+500+Subject+Release) we included all psychometric data, clinical assessments and behavioural 

measures derived from the fMRI tasks but excluded basic demographic information, fields related to 

the data acquisition, and fields containing cortical thickness estimates derived from structural MRI. 

We also excluded physical motor variables (e.g. endurance and grip strength) and sensory processing 

variables (e.g. audition and olfaction), which we did not expect to be associated meaningfully with 

striatal function. We then removed data items with > 50% missing data or with a severe imbalance 

such that >95% of the subjects had the same value and used median imputation for the remaining 

missing data. Finally, we collected these variables into a matrix and ensured that this matrix was not 

rank deficient using Gaussian elimination. This procedure finds a basis for the range of the matrix by 

excluding a small number of variables (5-7 items in our data). This matrix was then used as input to 

the multivariate analysis described below. The final list of measures we employed is reproduced in 

the supplementary Methods. To assist interpretation, after analysis we grouped these into 14 

categories, eight derived from established behavioural instruments (clinical, executive function, 

delay discounting, spatial orientation processing, sustained attention, emotion regulation, 

psychological wellbeing and personality), and six derived from behavioural measures recorded 

during the fMRI tasks (emotional processing, incentive processing, language, relational processing, 

social processing, working memory). See supplementary Methods for details. 

To group the resulting scores for these variables (i.e. CCA structure coefficients – see below) 

into these categories, we used a simple Bayesian averaging approach that accommodates 

differences in the number of variables included in each category. This was desirable because the size 

of the categories was highly variable and some of the categories were very small. For a given random 

variable �, this average is computed simply as �� � ��� �∑ ��
�
��� 
/�� � �
, where � is the total 

number of data points, � is the prior mean and � is a constant equal to the average dataset size. 

Here, the mean was taken to be relatively non-informative and was set to 1/�. Although this yielded 

similar results to the ordinary arithmetic mean, it provides a more robust estimate of the 
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contribution of the category as a whole because it reduces the chance that a category with a small 

number of variables scores highly because it contains (for example) a single informative variable. 

 

Statistical analysis 

To test for an association between the behavioural battery and the connection topographies, we 

performed a single unified statistical analysis using canonical correlation analysis (CCA). CCA is a 

standard multivariate statistical approach that aims to learn a set of projection weights for each 

dataset that maximize the correlation between datasets. More concretely, given two data matrices, 

���� and ���� that have the same number of samples (�) but possibly different numbers of 

variables (� and �), CCA seeks canonical vectors � and � such that the projections ��� and ��� are 

maximally correlated. These projections are referred to as the first pair of canonical variables. After 

this, CCA seeks each additional pair of canonical vectors which maximize the correlation between 

canonical variables, subject to the constraint that they are uncorrelated with the other pairs of 

canonical variables. Prior to analysis, we standardized the data in both datasets separately, which 

also ensured that the polynomial coefficients derived from the trend surface analysis were 

orthogonal. In contrast, the behavioural data exhibited strong multicollinearity which is known to 

cause problems with the interpretation of coefficients in linear models. Therefore, we inferred the 

association of each behavioural measure with the connection topography using structure 

coefficients. These are widely used in multivariate statistics to solve this problem51 and are defined 

as the univariate Pearson correlation between each measure and the predictions made by the CCA 

model. To infer the association of the connection topography with the behavioural scores, we 

compute forward maps52 for the canonical vectors. If the data are standardized as they are here, 

these are equivalent to structure coefficients. 
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To test the significance of the canonical correlation, we employed a permutation testing 

procedure that accounts for correlations induced by the familial relationships between subjects in 

the HCP sample.
53

 Specifically, we permuted the rows (i.e. subjects) of one of the data matrices 1000 

times in a way that accommodates their familial relationships, computing the canonical correlation 

for each permutation. We then tested for significance by computing the centile of the non-permuted 

canonical correlation against an empirical null distribution derived from fitting a Gauss-Gamma 

mixture distribution to the permuted correlations
54

 This was necessary because in preliminary 

testing we found evidence that the reported familial structure did not fully account for the nuisance 

covariation structure between subjects. For each CCA decomposition, we used this procedure to test 

both the principal correlation coefficient and Wilk’s Lambda statistic. These statistics provide 

complementary information about the underlying CCA distribution: the principal correlation 

coefficient tests the magnitude of the dominant (or successive) mode(s) of canonical correlation, 

while Wilk’s Lambda tests the significance of the whole distribution. 

 

Data availability 

All data used in this study are available to download from the Human Connectome Project website 

(http://www.humanconnectomeproject.org/).  

 

Code availability 

The computer code that support the findings of this study are available from the corresponding 

author upon reasonable request.   
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Figure Legends: 

Figure 1: Panel a: The striatal connection topography estimated here from resting state fMRI in 

humans (Left) shows an excellent correspondence with the theoretical pattern of connectivity 

between reward-related brain areas and the striatum based on invasive tracing studies in animals 

(Right, reproduced from 5). Panel b: The pattern of connectivity between the connection topography 

in the striatum (centre) and the cerebral cortex. Arrows indicate examples of cortical regions for 

which topographic connectivity with the striatum is preserved. The inset shows the theoretical 

connectivity pattern derived from invasive tracing studies in non-human primates (modified from 1). 

Note that the colour scheme in panel b has been changed relative to panel a to match the existing 

non-human primate literature1,2,11 

Abbreviations: dPFC: dorsal prefrontal cortex; DL-PFC = dorsolateral prefrontal cortex; vmPFC = 

ventromedial prefrontal cortex; OFC = orbitofrontal cortex; SN/VTA = substantia nigra/ventral 

tegmental area; Hipp = hippocampus; Amy = amygdale; STN = subthalamic nucleus; OMPFC = 

orbitomedial prefrontal cortex; Raphe = Raphe nucleus; PPT = penduclo-pontine tegmentum; Hypo = 

hypothalamus; Thal Midline MD = mediodorsal thalamus; VP = ventral pallidum; LHb = lateral 

habenula. 

  

Figure 2: Relative importance of different variables in driving the multivariate correspondence 

between the topography from the left striatum and the behavioural battery (derived from all 466 

subjects used in the analysis). Panel a: Importance of connectivity gradients in predicting the 

behavioural scores. The top left panel (G1) shows structure coefficients corresponding to the 

principal predictive gradient estimated by CCA. These are rescaled such that the maximum in the 

image is equal to one and can therefore be considered to be in arbitrary units (a.u.). The remaining 

panels show differences between the rescaled principal CCA gradient and each successive rescaled 

predictive gradient (a.u. delta). For example, G2-G1 is the difference between the second gradient 
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and the first. This helps to highlight the differences between the predictive gradients. Panel b: 

Predictive pattern of measures contributing to the CCA predictions. These are the structure 

coefficients aggregated across behavioural domains (see Methods) and are also rescaled such that 

the maximum behavioural domain has a value of 1, here represented by a point on the outermost 

circle. The top three domains are indicated by red, yellow and blue bars. Panel c: Structure 

coefficients for all of the 174 individual behavioural items. Behavioural domains are indicated by the 

bar at the bottom and a full list of individual items is provided in the supplementary Methods. 

Coloured bars indicate the top three domains (see panel b). 

Abbreviations: CCA = canonical correlation analysis; DD = Delay discounting; EF = executive function; 

fEP = emotion processing (fMRI); fIP = incentive processing (fMRI); fL = Language (fMRI) fRP = 

relational processing (fMRI); fSP = social processing; fWM = working memory (fMRI); ER = emotion 

regulation; PW= psychological wellbeing; SA = sustained attention; P = personality. 

 

Figure 3: Relative importance of different variables in driving the multivariate correspondence 

between the topography from the right striatum and the behavioural battery (derived from all 466 

subjects used in the analysis). Panel a: Importance of connectivity gradients in predicting the 

behavioural scores. The top left panel (G1) shows structure coefficients corresponding to the 

principal predictive gradient estimated by CCA. These are rescaled such that the maximum in the 

image is equal to one and can therefore be considered to be in arbitrary units (a.u.). The remaining 

panels show differences between the rescaled principal CCA gradient and each successive rescaled 

predictive gradient (a.u. delta). For example, G2-G1 is the difference between the second gradient 

and the first. This helps to highlight the differences between the predictive gradients. Panel b: 

Predictive pattern of measures contributing to the  CCA predictions. These are the structure 

coefficients aggregated across behavioural domains (see Methods) and are also rescaled such that 

the maximum behavioural domain has a value of 1, here represented by a point on the outermost 
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circle. The top three domains are indicated by red, yellow and blue bars. Panel c: Structure 

coefficients for all of the 174 individual behavioural items. Behavioural domains are indicated by the 

bar at the bottom and a full list of individual items is provided in the supplementary Methods. 

Coloured bars indicate the top three domains (see panel b). 

Abbreviations: CCA = canonical correlation analysis; DD = Delay discounting; EF = executive function; 

fEP = emotion processing (fMRI); fIP = incentive processing (fMRI); fL = Language (fMRI) fRP = 

relational processing (fMRI); fSP = social processing; fWM = working memory (fMRI); ER = emotion 

regulation; PW= psychological wellbeing; SA = sustained attention; P = personality. 

 

Figure 4: Summary of the analysis pipeline. The fMRI time-series data from a pre-defined region-of-

interest (ROI) are rearranged into a time-by-voxels matrix A, as are the time-series from all 

vertices/voxels outside the ROI (matrix B). For reasons of computational tractability, the 

dimensionality of B is losslessly reduced using singular value decomposition (SVD), yielding B�. For 

every voxel within the ROI, its connectivity fingerprint is computed as the Pearson correlation 

between the voxel-wise time-series and the SVD-transformed data, yielding matrix C. Then similarity 

between voxels is computed using the η� coefficient. Manifold learning using Laplacian eigenmaps is 

then applied to this matrix, yielding a set of connection topographies, which can remapped to other 

regions by taking the maximum correlation. Then, trend surface modelling is applied to summarize 

these connection topographies by fitting a set of trend coefficients (β) that optimally combine a set 

of spatial polynomial basis functions. Finally, canonical correlation analysis (CCA) is used to find 

associations with these behavioural measures. See Methods for further details 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2017. ; https://doi.org/10.1101/169151doi: bioRxiv preprint 

https://doi.org/10.1101/169151


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2017. ; https://doi.org/10.1101/169151doi: bioRxiv preprint 

https://doi.org/10.1101/169151


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2017. ; https://doi.org/10.1101/169151doi: bioRxiv preprint 

https://doi.org/10.1101/169151


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2017. ; https://doi.org/10.1101/169151doi: bioRxiv preprint 

https://doi.org/10.1101/169151


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2017. ; https://doi.org/10.1101/169151doi: bioRxiv preprint 

https://doi.org/10.1101/169151

