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ABSTRACT		1 
Neurons	 in	 the	 lateral	 intraparietal	 area	 (LIP)	 of	 Macaques	 exhibit	 both	2 

sensory	and	oculomotor	preparatory	responses.	During	perceptual	decision	making,	3 
the	 preparatory	 responses	 have	 been	 shown	 to	 track	 the	 state	 of	 the	 evolving	4 
evidence	 leading	 to	 the	 decision.	 The	 sensory	 responses	 are	 known	 to	 reflect	5 
categorical	properties	of	visual	stimuli,	but	 it	 is	not	known	if	 these	responses	also	6 
track	 evolving	 evidence.	 We	 compared	 sensory	 and	 oculomotor-preparatory	7 
responses	 in	 the	same	neurons	during	a	direction	discrimination	task	when	either	8 
the	discriminandum	(random	dot	motion)	or	an	eye	movement	choice-target	was	in	9 
the	 neuron’s	 response	 field.	 Both	 configurations	 elicited	 task	 related	 activity,	 but	10 
only	the	motor	preparatory	responses	reflected	evidence	accumulation.	The	results	11 
are	consistent	with	the	proposal	that	evolving	decision	processes	are	supported	by	12 
persistent	neural	activity	in	the	service	of	actions	or	intentions,	as	opposed	to	high	13 
order	representations	of	stimulus	properties.		14 

	15 
	16 
	17 

SIGNIFICANCE	STATEMENT	18 
Perceptual	decision	making	is	the	process	of	choosing	an	appropriate	motor	19 

action	based	on	perceived	sensory	information.	Association	areas	of	the	cortex	play	20 
an	important	role	in	this	sensory-motor	transformation.	The	neurons	in	these	areas	21 
show	both	sensory-	and	motor-related	activity.	We	show	here	that,	in	the	macaque	22 
parietal	 association	 area	 LIP,	 signatures	 of	 the	 process	 of	 evidence	 accumulation	23 
that	 underlies	 the	 decisions	 are	 predominantly	 reflected	 in	 the	 motor-related	24 
activity.	 This	 finding	 supports	 the	 proposal	 that	 perceptual	 decision	 making	 is	25 
implemented	in	the	brain	as	a	process	of	choosing	between	available	motor	actions	26 
rather	than	as	a	process	of	representing	the	properties	of	the	sensory	stimulus.	 	27 
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INTRODUCTION		28 
The	life	of	animals	is	a	constant	process	of	deciding	what	to	do	next	based	on,	29 

among	 other	 things,	 the	 perception	 of	 the	 world	 around	 them.	 In	 primates,	30 
perceptual	decision	making	has	evolved	 into	an	efficient	mechanism	of	 translating	31 
the	perceived	state	of	the	world	into	possible	motor	actions	(Cisek	&	Kalaska	2005,	32 
Klaes	et	al	2011,	Kubanek	&	Snyder	2015).	The	motor	system	receives	continuous	33 
access	 to	 evolving	 perceptual	 decisions	 and	 maintains	 a	 graded	 level	 of	34 
preparedness	based	on	the	quality	of	the	incoming	evidence	(Gold	&	Shadlen	2000,	35 
Selen	 et	 al	 2012).	 This	 sensorimotor	 transformation	 is	 particularly	 evident	 in	 the	36 
parietal	 and	 prefrontal	 association	 cortices,	 where	 neurons	 encoding	 the	 motor	37 
actions	 associated	 with	 the	 choices	 on	 offer	 also	 represent	 evolving	 decisions	38 
(Bollimunta	 &	 Ditterich	 2011,	 de	 Lafuente	 et	 al	 2015,	 Ding	 &	 Gold	 2012,	 Kim	 &	39 
Shadlen	1999,	Roitman	&	Shadlen	2002).	Thus,	perceptual	decision	making	can	be	40 
framed	as	a	 choice	between	 available	motor	actions	 (Cisek	2007,	Cisek	&	Kalaska	41 
2010,	Shadlen	et	al	2008).		42 

Yet,	perceptual	decisions	do	not	feel	like	they	are	about	potential	actions	but	43 
about	propositions	or	stimulus	properties.	Indeed,	one	can	make	a	decision	without	44 
knowledge	 of	 the	 action	 that	will	 be	 required	 to	 act	 on	 it.	 In	 such	 situations,	 one	45 
might	 expect	 neural	 circuits	 involved	 in	 motor	 planning	 to	 be	 irrelevant	 to	 the	46 
decision	process	(Gold	&	Shadlen	2003).	However,	it	has	been	shown	that	even	then,	47 
neurons	in	the	parietal	association	areas	carry	a	representation	of	the	properties	of	48 
the	stimulus	that	will	be	relevant	for	future	actions	(Bennur	&	Gold	2011,	Freedman	49 
&	 Assad	 2006,	 Goodwin	 et	 al	 2012).	 It	 is	 possible	 that	 such	 an	 ‘abstract’	50 
representations	 of	 decision	 relevant	 information—independent	 of	 the	 possible	51 
motor	 actions—coexist	 with	 representations	 of	 decisions	 as	 intended	 actions	52 
(Freedman	&	Assad	2011).	Whether	such	simultaneous	representations	exist	in	the	53 
same	association	area	has	not	been	investigated	before.	Consequently,	it	is	also	not	54 
known	if	such	abstract	representations	play	a	role	in	the	decision-making	process.		55 

We	 used	 the	 random-dot	 motion	 (RDM)	 direction	 discrimination	 task	56 
(Newsome	 et	 al	 1989)	 to	 investigate	 these	 questions.	 In	 this	 task,	 the	 animals	57 
discern	the	net	direction	of	a	stochastic	motion	stimulus	and	report	 their	decision	58 
by	making	a	saccade	to	one	of	 two	choice	targets	 that	 is	along	the	direction	of	 the	59 
perceived	 motion.	 This	 task	 is	 particularly	 well	 suited	 for	 our	 purposes.	 First,	60 
optimal	 performance	 on	 this	 task	 demands	 integration	 of	 motion	 evidence	 over	61 
time.	This	prolonged	deliberation	time	allows	characterization	of	whether	a	neural	62 
population	is	participating	in	the	process	of	evidence	accumulation	or	not.	Second,	63 
there	exists	a	theoretical	framework—bounded	accumulation	of	noisy	evidence	to	a	64 
decision	threshold	(aka	drift-diffusion,	Palmer	et	al	2005,	Smith	&	Ratcliff	2004)—	65 
that	 accounts	 quantitatively	 for	 the	 speed	 and	 accuracy	 of	 decisions	 in	 this	 task.	66 
Third,	 it	 has	 been	 shown	 that	 responses	 of	 neurons	 in	 several	 areas	 of	 the	 brain	67 
involved	in	planning	saccadic	eye	movements	represent	the	evolving	decision	in	this	68 
task	 (Ding	 &	 Gold	 2010,	 Ding	 &	 Gold	 2012,	 Horwitz	 &	 Newsome	 1999,	 Kim	 &	69 
Shadlen	1999,	Shadlen	&	Newsome	1996).		70 

We	focused	on	the	parietal	sensorimotor	association	area	LIP.	Many	neurons	71 
in	 LIP	 respond	 to	 both	 the	 presence	 of	 a	 sensory	 stimulus	 in,	 and	 to	 a	 planned	72 
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saccade	into	their	response	fields	(Barash	et	al	1991b).	We	recorded	the	responses	73 
of	the	same	set	of	neurons	during	the	RDM	discrimination	task	in	two	configurations	74 
—	when	the	response	field	contained	the	RDM	stimulus	and	when	it	contained	one	75 
of	the	choice	targets.	We	show	that	the	neurons	represent	the	moment-by-moment	76 
accumulation	of	sensory	evidence	only	in	the	latter	configuration,	that	is,	when	they	77 
are	involved	in	the	planning	of	the	motor	action	required	to	report	the	choice.	78 

	79 
	80 

MATERIALS	AND	METHODS	81 
All	 training,	 surgery,	 and	 experimental	 procedures	 were	 conducted	 in	82 

accordance	 with	 the	 National	 Institutes	 of	 Health	 Guide	 for	 Care	 and	 Use	 of	83 
Laboratory	 Animals	 and	 were	 approved	 by	 the	 University	 of	 Washington	84 
Institutional	Animal	Care	and	Use	Committee	(IACUC	Protocol	#	2896-01).	85 
	86 
Experimental	Design	and	Statistical	Analysis	87 
Neural	recordings:		88 

We	recorded	activity	of	49	well	isolated	single	units	from	area	LIPv	(Lewis	&	89 
Van	Essen	2000)	of	two	adult	female	rhesus	monkeys	(Macaca	mulatta)	trained	on	90 
the	random-dot	motion	direction	discrimination	task.	MRI	was	used	to	localize	LIPv	91 
and	 to	 target	 recording	 electrodes.	 Within	 this	 putative	 LIPv,	 we	 screened	 for	92 
neurons	 that	 had	 both	 visual	 responses	 and	 spatially	 selective	 persistent	 activity.	93 
The	persistent	activity	was	assessed	using	a	memory-guided	saccade	task	(Gnadt	&	94 
Andersen	1988).	In	this	task,	a	target	is	flashed	in	the	periphery	while	the	monkey	95 
fixates	on	a	central	spot.	The	monkey	has	to	remember	the	location	of	the	target	and	96 
execute	a	saccade	to	that	location	when	instructed.	The	response	field	(RF)	of	each	97 
neuron	was	identified	as	the	region	of	visual	space	that	elicited	the	highest	activity	98 
during	 the	 interval	 between	 the	 target	 flash	 and	 the	 eventual	 saccade.	 For	 the	99 
majority	 of	 neurons	 in	 LIPv,	 this	 region	 also	 elicits	 the	 strongest	 visual	 response	100 
(Platt	 &	 Glimcher	 1998).	 During	 the	 recording	 sessions,	 visual	 and	 persistent	101 
activities	were	assessed	qualitatively.	We	confirmed	these	properties	by	analyzing	102 
the	 following	 responses	acquired	during	 the	experiment:	 (i)	 the	 response	 to	RDM	103 
presented	in	the	RF,	100-300	ms	after	onset	and	(ii)	delay	period	activity,	100-300	104 
ms	before	a	saccade	into	the	RF.	We	confirmed	that	both	proxies	were	greater	than	105 
baseline	activity,	0-200	ms	before	the	appearance	of	a	visual	stimulus	in	the	RF.	 	106 
Behavioral	Task:		107 

The	choice-reaction	time	direction	discrimination	task	is	similar	to	previous	108 
studies	(Roitman	&	Shadlen	2002).	The	animal	initiates	a	trial	by	fixating	on	a	point	109 
(fixation	point;	FP)	presented	on	an	otherwise	black	screen.	Two	choice-targets	then	110 
appear	on	the	screen.	After	a	variable	delay	(drawn	from	an	exponential	distribution	111 
of	 mean	 750	 ms),	 the	 random-dot	 motion	 (RDM)	 stimulus	 is	 displayed	 in	 an	112 
imaginary	aperture	(i.e.,	invisible	borders)	of	5°-9°	diameter	at	a	third	location.	The	113 
first	three	frames	of	the	stimulus	consist	of	white	dots	randomly	plotted	at	a	density	114 
of	16.7	dots	•	deg-2	•	s-1.	From	the	fourth	frame,	each	dot	from	three	frames	before	is	115 
replotted	—	 either	 displaced	 in	 one	 direction	 along	 the	 axis	 connecting	 the	 two	116 
targets,	or	at	a	random	location.	The	probability	with	which	a	dot	is	displaced	in	the	117 
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direction	of	one	of	the	targets	determines	the	stimulus	strength	(coherence)	and	on	118 
each	trial,	this	was	randomly	chosen	from	the	set	C	=	[0,	0.032,	0.064,	0.128,	0.256,	119 
0.512].	 The	 motion	 strengths	 and	 the	 two	 directions	 were	 randomly	 interleaved.	120 
Importantly,	the	monkey	was	allowed	to	view	the	stimulus	as	long	as	it	wanted	and	121 
indicate	 the	perceived	direction	of	motion	with	a	 saccade	 to	 the	 target	 that	 lay	 in	122 
that	direction	to	obtain	a	liquid	reward.	Rewards	were	given	randomly	(p=0.5)	for	123 
the	0%	coherence	motion	condition.		124 
	 During	recording	from	each	isolated	neuron,	the	choice-targets	and	the	RDM	125 
were	presented	in	two	configurations	(Figure	1).	In	the	‘Target-in-RF’	configuration,	126 
one	of	the	choice-targets	overlay	the	neuronal	RF.	In	the	‘RDM-in-RF’	configuration,	127 
the	RDM	stimulus	was	presented	in	the	RF.	The	two	configurations	were	alternated	128 
in	blocks	(median	block	size	90,	IQR	60-120).	The	order	of	blocks	was	randomized	129 
across	 neurons	 (23	 started	with	 Target-in-RF	 blocks;	 26	with	 RDM-in-RF	 blocks)	130 
and	each	neuron	was	recorded	with	at	least	one	block	of	trials	in	each	configuration.	131 
For	33	of	the	neurons,	the	targets	and	the	dot	stimuli	were	placed	120°	apart	on	an	132 
imaginary	 circle	 (as	 shown	 in	 Figure	 1).	 For	 the	 remaining	 16	 neurons	 (in	 one	133 
monkey),	 the	 targets	 and	 the	 dot	 stimulus	 were	 aligned	 linearly	 in	 both	134 
configurations.	 Since	 the	 directions	 of	motion	 varied	 across	 sessions,	we	 adopted	135 
the	following	conventions.	In	the	Target-in-RF	configuration,	the	direction	of	motion	136 
towards	the	target	in	the	RF	for	each	neuron	was	considered	the	‘positive’	direction.	137 
In	 the	RDM-in-RF	configuration,	 the	positive	direction	was	assigned	post	hoc	 from	138 
the	 neural	 recordings:	 the	 direction	 of	 motion	 that	 elicited	 the	 higher	 mean	139 
response.		140 
	 All	 statistical	 tests	 are	 described	 in	 the	 pertinent	 sections	of	Materials	 and	141 
Methods.		142 
	143 
Analyses	of	behavioral	data	144 
	 The	accuracy	and	reaction	times	(RT)	of	the	monkeys	were	fit	by	a	bounded	145 
evidence	accumulation	model	(Shadlen	et	al	2006).	In	the	parsimonious	application	146 
of	this	model	employed	here,	the	instantaneous	evidence	about	motion	at	each	time	147 
step	 is	 assumed	 to	 arise	 from	 a	 normal	 distribution	 with	 variance	 ∆t	 and	 mean	148 
𝜅(𝐶 − 𝐶%)∆𝑡,	where	C	 is	 the	signed	motion	coherence,	C0	 is	 a	bias,	 and	κ,	 a	scaling	149 
parameter.	This	instantaneous	evidence	is	accumulated	over	time	and	the	decision	150 
process	 terminates	when	 the	accumulated	evidence	 reaches	one	of	 the	bounds	±B	151 
leading	 to	 the	 choice	of	one	of	 the	 targets.	The	mean	RT	 is	 the	expectation	of	 the	152 
time	taken	for	the	accumulated	evidence	to	reach	the	bound	plus	a	constant	—	the	153 
non-decision	 time	 tnd	 comprising	 sensory	 and	 motor	 delays.	 To	 account	 for	154 
asymmetric	 reaction	 times	 in	 some	 configurations,	 we	 used	 two	 different	 non-155 
decision	times	(tnd1	and	tnd2)	for	the	two	target	choices.	In	this	framework,	the	mean	156 
RT	 for	 the	 correct	 choices	 (i.e.	 choices	 consistent	 with	 the	 sign	 of	 the	 drift	 rate,	157 
𝜅[𝐶 − 𝐶%]	)	is	described	by		158 
	159 

𝑅𝑇	 = /
0(1213)

	tanh	(𝜅(𝐶 − 𝐶%)𝐵) + 𝑡:;	 	 (1)		160 
	161 
Further,	the	choice	distributions	are	described	by		162 
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	163 
𝑃= = [1 + exp(−2𝜅(𝐶 − 𝐶%)𝐵)]2C				 	 (2)		164 

	165 
where	𝑃=	is	 the	 probability	 of	 choosing	 the	 target	 consistent	 with	 the	 ‘positive’	166 
direction	of	motion.	We	fit	Equation	1	to	the	RT	data	and	used	the	fitted	parameters	167 
to	predict	the	choice	functions	(Equation	2)	(Gold	&	Shadlen	2002,	Kang	et	al	2017).	168 
We	first	established	an	estimate	of	C0	 from	a	logistic	fit	of	the	choices.	Because	the	169 
parsimonious	model	 explains	 only	 the	 RT	when	 the	 choice	 is	 consistent	with	 the	170 
sign	 of	 the	 drift	 rate	 (Ratcliff	&	Rouder	 1998),	we	 used	 the	mean	RT	 for	 positive	171 
choices	at	C–C0>0	and	negative	choices	for	C–C0<0.	We	then	fit	κ,	B,	tnd1	and	tnd2	and	172 
used	the	values	of	κ	and	B	in	Equation	2	to	establish	predictions	of	choice	(Figure	2).	173 

We	evaluated	the	 fidelity	of	 these	predictions	by	comparing	the	predictions	174 
to	a	logistic	regression	fit	of	the	choice	data.	To	demonstrate	that	these	predictions	175 
were	 not	 a	 trivial	 result	 of	 monotonic	 ordering	 of	 RTs	 by	 motion	 strength,	 we	176 
compared	 them	 to	 predictions	 from	 10,000	 pseudorandomly	 generated	 RT	 vs.	177 
coherence	 functions	 that	preserved	 the	order	of	RTs.	To	generate	 these	 functions,	178 
we	retained	the	observed	RTs	for	the	minimum	(-51.2%),	maximum	(+51.2%)	and	179 
0%	 coherences	 and	 used	 ordered	 random	 values	 within	 this	 range	 for	 the	 other	180 
coherences.	We	quantified	the	magnitude	of	the	perturbation	as	the	average	of	the	181 
percentage	change	from	the	observed	RT	at	each	coherence.	We	then	performed	the	182 
steps	above	to	fit	these	perturbed	RTs	to	establish	a	new	predicted	choice	function.	183 
We	 estimated	 the	 probability	 of	 obtaining	 a	 predicted	 choice	 function	 as	 good	 or	184 
better	that	the	ones	derived	from	data	as	a	function	of	the	size	of	the	perturbation.	185 
We	report	the	minimal	perturbation	at	which	p<0.01.		186 

To	 obtain	 a	 more	 precise	 estimate	 of	 decision	 times,	 we	 fit	 an	 elaborated	187 
version	 of	 the	 bounded	 evidence	 accumulation	model	 (Extended	 data	 Figure	 2-1)	188 
simultaneously	to	both	choices	and	reaction	times	(including	both	correct	and	error	189 
trials).	In	this	model,	the	decision	bounds	(B)	collapse	with	time	(t)	such	that	190 
	191 

𝐵(𝑡) = 	𝐵% − 𝐵C(𝑡 − 𝐵;DE)F						𝑓𝑜𝑟	𝑡 > 𝐵;DE 	 	(3)		192 
	193 
where	B0	is	initial	bound	height,	B1	is	the	rate	of	collapse	and	Bdel,	the	delay	to	onset	194 
of	collapse.	The	non-decision	time	is	modeled	as	a	normal	distribution	with	mean	tnd	195 
and	 standard	 deviation	σtnd.	 A	 separate	 non-decision	 time	was	 used	 for	 decisions	196 
terminating	 at	 each	 of	 the	 two	 bounds.	 This	model	was	 fit	 by	maximizing	 the	 log	197 
likelihood	 of	 the	 observed	 responses	 (choice	 and	 RT)	 on	 each	 trial	 to	 numerical	198 
solutions	 for	 the	 probability	 densities	 of	 terminating	 at	 ±B(t)	 (Churchland	 et	 al	199 
2008,	Kang	et	al	2017).	The	mean	decision	times	were	obtained	from	these	fits	and	200 
their	 standard	error	estimated	 from	 fitting	 the	model	 to	 resampled	 trials	 (i.e.,	 the	201 
standard	deviation	of	the	means	from	100	iterations).		202 
	 	203 
Analyses	of	neural	data	204 
	 Population	 responses	 were	 computed	 as	 the	 average	 of	 all	 trials	 from	 all	205 
neurons	after	 smoothing	each	 trial	with	a	75	ms	wide	boxcar	 filter	 (Figure	3A-D).	206 
The	smoothing	was	only	 for	visualization	and	all	 analyses	were	 conducted	on	 the	207 
raw	spike	data	(1	ms	resolution).	To	visualize	the	coherence	dependent	buildup	of	208 
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activity	 (Insets	 of	 Figure	 3A,C),	 we	 detrended	 individual	 neuronal	 responses	 by	209 
subtracting	 the	 average	 responses	 across	 all	 coherences	 for	 the	 same	 neuron	210 
(separately	for	each	task	configuration).			211 

We	compared	the	strength	of	direction	selectivity	in	our	neural	population	to	212 
that	reported	in	Fanini	and	Assad	(2009),	using	their	direction	selectivity	index	(DI):		213 
	214 

𝐷𝐼 = 	 M∑ OPDQRPP M
∑ OPP

	 	 	 	 	 (4)		215 
	216 
where	Rn	is	the	mean	response	to	nth	direction	θn	in	the	time	window	190	ms	217 

after	RDM	onset	to	100	ms	before	saccade.	DI	was	computed	from	responses	to	the	218 
51.2%	 coherence	 motion	 trials	 in	 the	 two	 directions	 (π	 radians	 apart).	 We	219 
compared	 the	distribution	of	 the	DI	values	 in	our	population	 to	 those	 reported	 in	220 
Figure	3A	of	Fanini	and	Assad	(2009),	using	a	rank	sum	test	(Figure	3E).	221 

We	 used	 responses	 at	 the	 two	 strongest	 motion	 strengths	 (±51.2%	222 
coherence)	 to	 estimate	 the	 latency	 from	 motion	 onset	 to	 the	 time	 that	 direction	223 
selectivity	was	first	apparent	in	a	given	neural	population	(Figure	3F).	We	averaged	224 
the	responses	in	40	ms	bins	on	each	trial	at	these	coherences	and	derived	receiver	225 
operating	characteristics	(ROC)	from	these	response	distributions	at	each	time	bin.	226 
The	area	under	the	ROC	denotes	the	probability	of	the	neuron	responding	more	to	227 
the	positive	direction	of	motion.	For	each	time	bin,	we	applied	a	Wilcoxon	rank	sum	228 
test	and	estimated	the	response	latency	as	the	first	of	three	successive	bins	that	met	229 
statistical	 significance	 (p<0.05).	 We	 used	 a	 bootstrap	 procedure	 to	 estimate	 the	230 
distribution	of	 latencies	under	the	two	task	configurations.	For	each	configuration,	231 
we	resampled	trials	with	replacement,	matching	the	number	of	trials	in	the	original	232 
data	sets,	and	obtained	a	latency	using	the	same	procedure	as	on	the	actual	data.	We	233 
repeated	 this	 procedure	 1000	 times	 for	 each	 configuration.	 The	medians	of	 these	234 
distributions	recapitulated	the	latency	estimated	from	the	data	(180	and	190	ms	for	235 
the	Target-in-RF	and	RDM-in-RF	respectively).	We	report	the	p-value	of	a	rank	sum	236 
test	 (2-tailed)	 using	 the	 bootstrap	 derived	 distributions	 to	 evaluate	 the	 null	237 
hypothesis	that	the	latencies	are	the	same	for	the	two	configurations.	We	obtained	238 
the	same	result	by	sampling	neurons	(instead	of	trials),	with	replacement.	239 

We	quantified	the	effect	of	motion	strength	on	the	rate	of	increase	of	neural	240 
response	 (‘buildup	 rate’)	 during	 the	 decision-making	 epoch	 as	 the	 slope	 of	 the	241 
response	 in	 the	time	window	180	to	380	ms	after	stimulus	onset	(Figure	3G).	The	242 
start	of	the	time	window	was	chosen	based	on	the	latency	of	the	direction	selectivity	243 
of	the	responses.	To	exclude	pre-saccadic	activity,	we	discarded	from	each	trial,	the	244 
spikes	occurring	up	to	100	ms	before	saccade	onset.	We	computed	by	least	squares	245 
method,	 the	 slope	 for	 each	 neuron	 at	 each	 coherence	 from	 the	 mean	 detrended	246 
response	 in	10	ms	 time	bins	 in	 the	aforementioned	 time	window.	We	 then	 tested	247 
whether	 these	 buildup	 rates	 scaled	with	 coherence	 across	 the	 population	 in	 each	248 
stimulus	 configuration	 by	 fitting	 a	 linear	 model	 regressing	 these	 buildup	 rates	249 
against	 signed	coherence.	We	confirmed	 that	 the	 trends	shown	 in	Figure	3G	were	250 
preserved	when	the	analysis	was	performed	using	weighted	regression.	251 
	252 
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Leverage	of	neural	activity	on	behavior:	(Figure	4)	253 
	 We	measured	 the	 leverage	 of	 neural	 activity	 on	 the	 animal’s	 choice	 in	 two	254 
ways.	First,	we	fit	the	monkey’s	choices	with	logistic	regression		255 
	256 

𝑃= = [1 + exp−(𝛽% + 𝛽C𝐶 + 𝛽F𝑅)]2C		 	 	(5)		257 
	258 
where	P+	 is	 the	 probability	 of	 choosing	 the	 ‘positive’	 direction	 target,	C	 is	 signed	259 
coherence	and	R	 is	 the	z-scored	mean	neural	response	 in	 the	time	window	100	to	260 
300	ms	before	saccade.	If	the	variations	in	firing	rate	of	the	neurons	have	leverage	261 
over	choice	even	when	the	effect	of	motion	coherence	is	accounted	for,	then	β2	≠	0.	262 
We	 compared	 β2	 across	 configurations	 with	 a	 signed	 rank	 test	 on	 their	 absolute	263 
values.	We	also	quantified	the	additional	leverage	of	the	neural	responses	on	choice	264 
beyond	that	of	the	motion	strength,	by	measuring	the	difference	in	the	deviance	of	265 
the	 full	model	 and	 the	model	without	 the	R	 term	 (𝛬).	 Comparisons	 of	𝛬	provided	266 
similar	results	to	the	comparisons	of	the	β2	term	that	are	presented	in	the	results.	267 

Second,	 we	 quantified	 the	 trial-by-trial	 correlations	 between	 neuronal	268 
response	and	 the	animal’s	 choice	 in	 the	0%	coherence	 trials	by	 computing	 ‘choice	269 
probability’	 (CP,	 Britten	 et	 al	 1996).	 For	 each	 neuron,	 we	 computed	 the	 mean	270 
responses	on	the	0%	coherence	trials	in	a	time	window	100	to	300	ms	preceding	the	271 
saccade.	The	trials	were	separated	into	two	groups	based	on	the	animal’s	choice.	We	272 
used	the	distributions	of	responses	from	the	two	groups	to	calculate	the	area	under	273 
the	ROC,	termed	the	choice	probability.	We	evaluated	the	null	hypothesis	that	|CP-274 
0.5|=0	 using	 a	 permutation	 test.	We	 permuted	 the	 union	 of	 responses	 from	 both	275 
groups	 and	 assigned	 them	 randomly	 to	 the	 two	 choices	 (matching	 the	 number	 of	276 
trials	in	each	group)	and	computed	the	CP.	By	repeating	this	procedure	2000	times,	277 
we	established	 the	distribution	of	 |CP-0.5|	under	H0	 and	 report	 the	p	 value	as	 the	278 
area	to	the	right	of	the	observed	CP	minus	0.5.	279 

	To	evaluate	whether	the	CPs	from	the	two	configurations	were	different,	we	280 
first	 converted	 responses	 to	 z-scores	 (by	 neuron	 and	 configuration)	 and	 then	281 
combined	the	z-scores	across	neurons.	We	then	computed	two	CPs,	as	above,	for	the	282 
two	configurations.	To	evaluate	the	null	hypothesis	that	the	two	CPs	are	equal,	we	283 
performed	 another	 permutation	 test,	 this	 time	 preserving	 the	 association	 with	284 
choice	 but	 permuting	 the	 association	 with	 configuration.	 We	 obtained	 the	285 
distribution	of	 the	difference	 in	CP	 (|∆CP|)	under	H0	 from	2000	 repetitions	of	 the	286 
permutation	procedure	and	report	the	p	value	as	the	area	of	this	distribution	that	is	287 
greater	than	the	observed	|∆CP|	from	the	data.	288 

We	 also	 quantified	 the	 correlation	 between	 the	 buildup	 rates	 and	 RT.	We	289 
used	 trials	 in	which	 the	monkey	chose	 the	 ‘positive’	direction	 target,	 including	all	290 
such	 trials	 at	 0%	 motion	 strength	 and	 only	 correct	 trials	 at	 positive	 motion	291 
strengths.	For	each	trial,	we	computed	the	slope	of	the	response	between	180-420	292 
ms	 after	 RDM	 onset	 (using	 40	 ms	 time	 bins)	 from	 the	 detrended	 responses.	 To	293 
remove	the	effect	of	coherence	on	RT,	we	standardized	(i.e.,	z-scored)	both	the	RTs	294 
and	the	buildup	rates	within	each	coherence	and	computed	the	correlation	between	295 
them.		296 
		297 
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Variance	and	correlation	analysis:	298 
	 To	 evaluate	 if	 the	 neuronal	 firing	 rates	 on	 individual	 trials	 during	 the	299 
decision-making	 epoch	 reflect	 a	 process	 of	 accumulation	 of	 noisy	 evidence,	 we	300 
analyzed	the	pattern	of	variance	and	autocorrelation	of	the	responses	(Churchland	301 
et	al	2011,	de	Lafuente	et	al	2015).	We	were	interested	in	the	variance	attributable	302 
to	 such	 an	 accumulation	 process.	 For	 the	 ith	 	time	 bin,	 this	 variance	 (𝑠VWQX

F )	 is	 the	303 
fraction	 of	 the	 total	 measured	 variance	 (𝑠WQ

F )	 remaining	 after	 accounting	 for	 the	304 
point	process	variance	(PPV),	 that	 is,	 the	variance	expected	even	 if	 the	underlying	305 
rates	 were	 constant.	 We	 refer	 to	𝑠VWQX

F
	,	 which	 is	 a	 variance	 of	 a	 conditional	306 

expectation	 of	 the	 counts,	 hence	 the	 variance	 of	 the	 underlying	 rate,	 simply	 as	307 
‘variance’	in	the	main	text.	Assuming	the	PPV	is	proportional	to	the	mean	count,			308 
	309 

𝑠VWQX
F = 	𝑠WQ

F − 𝜑 < 𝑁\ >		 	 	 	 (6)	310 
	311 
where	φ	is	a	constant	that	must	be	estimated.		312 

Since	 our	 goal	 was	 to	 compare	 how	 well	 the	 firing	 rates	 conform	 to	 a	313 
diffusion	process,	we	allowed	φ	to	be	a	free	parameter	and	fit	it	to	obtain	the	best	314 
conformity	 to	 the	 autocorrelation	 pattern	 for	 a	 running	 sum	 of	 independent,	315 
identically	 distributed	 random	 numbers.	 Recall	 that	 the	 variance	 of	 the	 sum	 of	n	316 
independent	 random	 samples	 of	 variance	 σ2	 is	 nσ2.	 If	 the	 sum	 is	 extended	 for	317 
another	m	 samples,	 the	variance	 is	(n+m)σ2.	The	sum	out	 to	n	 shares	a	 fraction	of	318 
this	variance:	n/(n+m).	This	is	the	R2,	and	its	square	root	is	the	correlation, r.	So,	for	319 
an	unbounded	diffusion	process,	the	correlation	between	the	ith	and	jth	time	steps	is	320 

𝜌\^ = _`ab(\,^)
`de(\,^)

	 	 	 	 	 (7)		321 

Note	that	for	six	time	bins,	the	6	by	6	correlation	matrix	contains	15	unique	values	322 
of	ri≠j.	 	323 

We	characterized	the	variance	and	autocorrelation	from	six	60	ms	time	bins	324 
between	180-540	ms	after	stimulus	onset,	ignoring	any	time	bins	that	extended	to	325 
within	100	ms	of	the	saccade.	To	pool	data	across	neurons,	we	used	the	residuals	for	326 
each	trial	as	follows.	The	mean	response	of	a	trial	in	each	time	bin	was	subtracted	327 
from	 the	 mean	 of	 the	 responses	 from	 all	 the	 trials	 for	 that	 neuron	 for	 the	 same	328 
signed	 coherence	 in	 that	 time	 bin.	 We	 computed	 the	 covariance	 matrix	 from	 the	329 
residuals	for	the	six	time	bins.		330 

We	used	 an	 initial	 guess	 for	φ	 to	 calculate	 the	 variance	 attributable	 to	 the	331 
diffusion	 process	 (𝑠VW\XF ,	Equation	 6)	 and	 substituted	 the	 raw	 variances	 for	 the	332 
diagonal	of	the	covariance	matrix.	The	correlation	was	derived	from	this	covariance	333 
matrix	 by	 dividing	 each	 term	 by	√(𝑠VWQX

F 𝑠VWgX
F ).	 We	 used	 Nelder-Mead	 simplex	334 

method	 (MATLAB	 function	 ‘fminsearch’)	 to	 find	 the	φ	 that	minimized	 the	 sum	of	335 
squares	of	 the	difference	between	the	15	z-transformed	calculated	correlation	(rij)	336 
and	the	z-transformed	theoretically	predicted	correlation	(rij).	Note	that	the	values	337 
of	φ	were	not	constrained	to	be	the	same	in	the	Target-in-RF	(φ	=	0.42)	and	RDM-in-338 
RF	(φ	=	0.39)	configurations.		339 
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We	 report	 the	 variance	 (𝑠VWQX
F )	 in	 Figure	 5	 using	 the	 fitted	 φ	 values	 and	340 

estimated	the	standard	errors	from	a	bootstrap.	We	evaluated	the	effect	of	time	on	341 
the	variance	using	least	squares	regression.	We	also	performed	these	analyses	over	342 
a	range	of	plausible	values	of	φ	and	confirmed	that	only	the	absolute	values	of	the	343 
variances	 differed,	 whereas	 the	 shape	 of	 the	 variance	 function	 over	 time	 was	344 
unaffected.	We	similarly	computed	the	variance	and	its	standard	error	for	time	bins	345 
aligned	to	the	onset	of	the	saccade.		346 

We	used	 a	 combination	 of	Monte	 Carlo	methods	 and	 parametric	 statistical	347 
tests	to	analyze	the	decline	in	variance	preceding	the	saccade.	For	trials	in	which	the	348 
monkey	chose	the	target	in	the	RF,	we	compared	the	variance	in	the	two	time	bins	349 
immediately	 preceding	 the	 saccade,	 using	 the	 bootstrap	 derived	 standard	 errors.	350 
We	report	a	t-test.	We	made	the	same	comparison	for	each	of	the	other	conditions:	351 
(1)	unchosen	Target-in-RF,	(2)	preferred	direction	choice	with	RDM-in-RF,	and	(3)	352 
non-preferred	direction	choice	with	RDM-in-RF.	None	were	significant	(p>0.05).	We	353 
do	not	report	these	tests	in	the	results	and	instead	compare	directly	the	estimates	of	354 
variance	 decline	 in	 the	 four	 conditions.	 To	 do	 this,	 we	 computed	 the	 fractional	355 
difference	 in	variance	 in	 the	 two	time	bins	and	estimated	 its	 standard	error	using	356 
the	 same	 bootstrap.	We	 compared	 this	 difference	 statistic	 in	 the	 four	 conditions	357 
using	ANOVA.	We	 report	 the	maximum	p	 value	 for	 the	 comparison	 of	 the	 chosen	358 
Target-in-RF	condition	with	the	other	three	conditions,	using	Tukey’s	test.		359 

To	quantify	how	well	the	measured	correlation	values	conform	to	theoretical	360 
predictions,	we	formed	a	sum	of	square	(SS)	statistic	from	the	15	pairs	of	observed	361 
and	theoretical	correlations	(after	Fisher-z	transformation,	Figure	6D-E).	We	used	a	362 
bootstrap	procedure	 to	estimate	 the	distribution	of	 this	 statistic	by	sampling	with	363 
replacement	from	the	data	and	following	the	steps	above	(100	iterations).	We	used	364 
a	Kolmogorov-Smirnov	test	to	determine	the	significance	of	the	difference	between	365 
the	 distribution	 of	 the	 SS	 statistics	 between	 the	 RDM-in-RF	 and	 the	 Target-in-RF	366 
configurations.	367 

	368 
Model		369 

We	 simulated	 the	 spike	 rates	 of	 three	 neural	 populations	 during	 the	 RDM	370 
epoch	—	one	population	with	the	RDM	in	their	RF	and	two	with	targets	in	their	RF.	371 
We	devised	two	models	that	could	account	for	direction	selectivity	seen	in	the	RDM-372 
in-RF	population:	(1)	selectivity	is	inherited	by	means	of	divisive	suppression	from	373 
the	Target-in-RF	populations	that	are	accumulating	evidence	(‘divisive	suppression	374 
model’),	 and	 (2)	 selectivity	 arises	 from	 an	 evidence	 accumulation	 process	375 
transpiring	 in	 the	 RDM-in-RF	 population	 itself	 (‘parallel	 diffusion	 model’).	 Each	376 
model	 was	 implemented	 in	 two	 stages.	 In	 the	 first	 stage,	 our	 goal	 was	 to	377 
approximate	the	pattern	of	mean	responses	seen	in	the	data.	The	models	specify	the	378 
predicted	autocorrelation	matrices	for	both	neural	populations.	In	the	second	stage,	379 
we	 compared	 the	 two	 models	 by	 assessing	 their	 capacity	 to	 explain	 the	380 
autocorrelation	matrices	derived	from	the	neural	data.		381 

In	 the	 divisive	 suppression	 model	 (Figure	 7A),	 the	 RDM-in-RF	 population	382 
was	modeled	as	having	an	exponential	rise	 in	firing	rate	starting	50	ms	after	RDM	383 
onset	 and	 peaking	 at	 130	ms	 (Figure	 7C).	 The	 peak	 response	 varied	 from	 trial	 to	384 
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trial,	 independent	 of	 RDM	 direction.	 The	 population	 then	 maintained	 the	 peak	385 
response	 through	 the	 end	 of	 the	 simulated	 epoch	 (540	ms	 after	RDM	onset).	 The	386 
two	Target-in-RF	populations	were	modeled	as	maintaining	a	steady	response	(𝑅%)	387 
up	to	180	ms	after	RDM	onset	and	then	following	drift	diffusion	dynamics	(Figure	388 
7B).	The	responses	S	in	the	dynamic	epoch	evolved	at	each	time	step	∆𝑡	as		389 

	390 
∆𝑆 = 𝐾∆𝑡 + N{0, 𝛼√∆𝑡}	 	 	 	 (8)		391 

	392 
incorporating	a	deterministic	drift	component	(K)	and	a	diffusion	component	(N)	—	393 
a	 Normally	 distributed	 	 random	 number	 with	 mean	 zero	 and	 standard	 deviation	394 
𝛼√∆𝑡.	The	drift	component	was	positive	for	one	target	population	(T1)	and	negative	395 
for	 the	 other	 (T2).	 The	 parameter	 K	 was	 chosen	 so	 that	 the	 drift	 rate	 in	 the	 T1	396 
population	 of	 the	model	 after	 implementation	 of	 divisive	 suppression	 (see	 below,	397 
Equation	9)	matched	the	observed	buildup	of	the	neural	response	for	the	Target-in-398 
RF	neural	population	at	the	25.6%	coherence	condition	(solid	line	in	Figure	7F).	The	399 
parameter	α	was	chosen	such	that	the	slope	of	 the	variance,	after	 incorporation	of	400 
suppression,	mimicked	that	seen	in	data	(blue	curve	in	Figure	5A).	See	Table	2	for	401 
values	of	model	parameters.					402 

We	simulated	10,000	 trials	 and	 implemented	divisive	 suppression	between	403 
the	three	populations	of	the	form	404 

	405 
𝑅C =

Oop(q)
C=rsoOsp (q2∆q)=rtoOtp (q2∆q)

	 	 	 (9)		406 
	 	407 
where	R’	and	R	denote	the	unsuppressed	and	suppressed	responses,	respectively,	of	408 
the	population	 indicated	by	the	subscript,	and	𝜔\^ 	is	 the	weight	of	 the	 influence	of	409 
the	 ith	 population	on	 the	 jth.	 The	 suppressed	 responses	 at	 each	 time	 point	 (t)	was	410 
computed	based	on	the	unsuppressed	responses	in	the	time	window	preceding	it	by	411 
∆𝑡 = 10ms.		412 
	 We	first	estimated	the	suppression	of	 two	target	populations	on	each	other	413 
(𝜔vCvF 	and	𝜔vFvC)	 from	the	peak	and	steady	state	responses	of	 the	neurons	to	the	414 
appearance	 of	 a	 target	 in	 their	 RF.	We	 then	 estimated	 the	weight	 of	 suppressive	415 
influence	of	 the	RDM-in-RF	population	on	 the	Target-in-RF	populations	 (𝜔wvx ,	𝑥 ∈416 
{1,2})	using	the	firing	rates	at	the	trough	of	the	response	dip	following	the	onset	of	417 
RDM	(arrow	 in	Figure	7F).	The	 influences	of	 the	 two	Target-in-RF	populations	on	418 
the	RDM-in-RF	population	𝜔vxw 	were	adjusted	around	𝜔wvx 	to	mimic	the	observed	419 
separation	in	mean	responses	of	the	RDM-in-RF	population	to	the	two	directions	of	420 
motion.	Such	asymmetry	of	the	influence	of	the	two	Target-in-RF	populations	might	421 
arise	 from	 the	 different	 spatial	 relationship	 they	might	 have	with	 the	 RDM-in-RF	422 
population.	 Similar	asymmetries	are	 likely	 for	 the	other	pairs	of	𝜔	too,	but	we	 set	423 
them	to	be	equal	here	to	simplify	the	model.	We	used	the	weights	of	suppression	to	424 
estimate	 the	underlying	unsuppressed	mean	 responses	of	 each	of	 the	populations	425 
(Figure	7B-C).		426 
	 In	 the	parallel	diffusion	model,	we	 implemented	drift	diffusion	dynamics	 in	427 
the	 RDM-in-RF	 population	 as	 well	 as	 in	 the	 Target-in-RF	 population,	 and	 the	428 
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populations	had	no	suppressive	interactions	(Figure	9).	The	drift	component	in	the	429 
RDM-in-RF	population	(K	in	Equation	8)	was	set	to	mimic	the	observed	separation	430 
of	 responses	 to	 the	 two	directions	 of	motion	 in	 the	 data	 (Figure	 7G).	 The	 scaling	431 
factor	for	the	variance	of	the	diffusion	component	(a	in	Equation	8)	was	adjusted	to	432 
mimic	 the	 observed	 slope	 of	 the	 variance	 of	 the	 responses	 in	 the	 RDM-in-RF	433 
configuration	 (green	 curve	 in	 Figure	 5A).	 Because	 of	 the	 absence	 of	 divisive	434 
interactions	 in	 this	 model,	 K	 and	 a	 for	 the	 Target-in-RF	 populations	 were	435 
recomputed	to	bring	them	in	agreement	with	the	data	(Table	2).		436 

Up	 to	here,	 all	parameters	were	 established	 from	 the	neural	data,	 allowing	437 
both	models	to	approximate	the	mean	responses	in	the	data.	To	compare	how	well	438 
the	 two	 models	 can	 account	 for	 the	 pattern	 of	 autocorrelation	 in	 the	 data,	 we	439 
needed	to	consider	other	possible	sources	of	variance	and	autocorrelation.	In	both	440 
models,	 the	 variance	 of	 the	 non-directional	 sensory	 response	 of	 the	 RDM-in-RF	441 
populations	 was	 incorporated	 as	 a	 free	 parameter	𝑉Ow| .	 This	 parameter	 was	442 
constrained	to	not	exceed	the	variance	observed	at	 the	peak	of	 the	sensory	neural	443 
response	 in	 the	RDM-in-RF	configuration.	For	the	divisive	 suppression	model,	 our	444 
hypothesis	 is	 that	 the	 noisiness	 of	 the	 suppression	 causes	 the	 autocorrelation	445 
pattern	 of	 the	 RDM-in-RF	 population	 to	 deviate	 from	 theoretical	 predictions.	 We	446 
instantiated	 this	 noisy	 process	 by	 corrupting	 the	 interaction	 signals	 so	 that	 they	447 
were	 not	 perfect	 replicas	 of	 the	 responses	 of	 the	 three	 populations	 in	 the	model	448 
(Insets	in	Figure	7B,	C).	This	noise	term	was	proportional	to	the	square	root	of	the	449 
response.	We	set	the	scaling	term	𝛾=5	to	represent	a	modest	amount	of	noise	(R2=	450 
0.81	for	the	diffusion	paths	and	their	corrupted	versions).	 451 

We	attempted	to	achieve	the	best	possible	fit	to	the	30	correlations	observed	452 
in	 the	 data	 in	 the	 two	 configurations	 (15	unique	 values	 each	 for	 the	Target-in-RF	453 
and	 RDM-in-RF	 configuration)	 under	 each	 of	 the	models.	 The	models	 give	 rise	 to	454 
predicted	correlations	in	the	Target-in-RF	and	RDM-in-RF	populations	(varying	with	455 
the	free	parameter	VRDM).	As	above,	we	allow	for	uncertainty	in	the	PPV	in	the	data	456 
(φ	 in	 Equation	 6).	 So	 we	 compute	 the	 correlations	 in	 the	 neural	 data	 with	 two	457 
additional	 degrees	 of	 freedom	 (parameters,	φRDM	and	φTar	 for	 the	 RDM-in-RF	 and	458 
Target-in-RF	configurations,	respectively).	We	estimated	the	set	of	parameters	that	459 
maximized	 the	 log	 likelihood	 (𝐿�)	 of	 the	 30	 correlations	 in	 the	 data	 (Fisher	 z-460 
transformed)	 under	 the	 model	 predictions.	 It	 was	 not	 possible	 to	 fit	 𝛾 and	φRDM	461 
simultaneously	 without	 imposing	 additional	 constraints	 (e.g.,	φRDM=φTar).	 Instead,	462 
we	 fixed	𝛾 to	 establish	 a	modest	 perturbation	 of	 the	 interaction	 signals,	 as	 noted	463 
above.	 This	 is	 the	 model	 illustrated	 in	 Figures	 7-8	 (parameters	 in	 Table	 2).	 We	464 
compared	 models	 using	 the	 difference	 in	 Bayesian	 Information	 Criterion	 (𝐵𝐼𝐶 =465 
−2𝐿� + 𝑘	ln	(𝑛)	,	where	k	 is	 the	number	of	 free	parameters	and	n	 is	 the	number	of	466 
data	 points).	We	 explored	 a	 range	 of	 𝛾,	 to	 confirm	 that	 the	 suppression	model	 is	467 
favored	even	with	subtle	noise	perturbation	(e.g.,	ΔBIC>100	for	𝛾=1,	R2=	0.99).	BICs	468 
were	 calculated	 by	 conservatively	 assuming	 4	 degrees	 of	 freedom	 (d.f.)	 for	 the	469 
divisive	 suppression	 model	 {φRDM,	 φTar,	 𝛾,	 VRDM}	 and	 just	 two	 d.f.	 for	 the	 parallel	470 
diffusion	model	{φRDM,	φTar}	because	𝛾	should	be	regarded	as	a	free	parameter	and	471 
the	best	 fit	of	 the	parallel	diffusion	model	assigns	VRDM	≈ 0.	We	also	 fit	 to	a	model	472 
with	𝛾	as	a	free	parameter	under	the	constraint	φRDM=φTar.	This	implementation	also	473 
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favors	the	suppressive	interaction	model	(∆BIC>6x103;	best	fitting	𝛾=8.2). Note	that	474 
the	 implementation	 of	VRDM	 introduces	 autocorrelation	 of	 the	 rate	 that	 spans	 the	475 
duration	of	the	analysis	epoch	(360	ms).	Parametrization	of	the	sensory	responses	476 
with	exponentially	decreasing	autocorrelation	did	not	provide	a	significantly	better	477 
fit	to	the	data	in	either	model.	478 
	479 
RESULTS	480 
	481 
	 We	 recorded	 from	 49	 well	 isolated	 single	 neurons	 in	 area	 LIP	 from	 two	482 
monkeys	 (28	 neurons	 from	monkey	 N	 and	 21	 neurons	 from	 monkey	 B)	 as	 they	483 
decided	 the	 net	 direction	of	 a	 noisy	 random-dot	motion	 (RDM)	stimulus.	 On	 each	484 
trial,	two	choice	targets	indicated	the	two	directions	to	be	discriminated	(e.g.,	up	vs.	485 
down).	 The	 monkeys	 reported	 their	 decision	 by	 making	 a	 saccade	 to	 the	 choice	486 
target	 along	 the	 perceived	 direction	 of	 motion.	 They	 were	 free	 to	 indicate	 their	487 
decision	 whenever	 ready,	 thus	 providing	 a	 measure	 of	 reaction	 time	 (RT).	 The	488 
monkeys	 performed	 the	 task	 with	 the	 RDM	 and	 the	 targets	 arranged	 in	 two	489 
configurations	 (Figure	 1).	 In	 the	 ‘Target-in-RF’	 configuration,	 one	 of	 the	 choice	490 
targets	was	placed	in	the	response	field	(RF)	of	the	neuron	under	study.	In	the	‘RDM-491 
in-RF’	 configuration,	 the	RDM	was	placed	 in	 the	RF.	 In	 this	way,	we	obtained	data	492 
from	the	same	LIP	neuron	when	it	belonged	either	to	the	pool	representing	the	RDM	493 
stimulus	or	to	one	of	the	two	pools	representing	the	choice	targets.	494 
	 We	first	establish	that	the	animals	integrate	motion	information	over	100s	of	495 
ms	 to	make	 their	 choices	 in	both	 task	 configurations.	This	prolonged	deliberation	496 
time	offers	a	window	in	which	to	interrogate	how	the	neural	responses	relate	to	the	497 
process	of	decision	 formation.	We	show	 that	 the	 firing	rates	of	neurons	 represent	498 
the	 state	 of	 the	 accumulated	 evidence	 only	 when	 the	 neurons	 belong	 to	 a	 pool	499 
representing	the	targets.	500 
	501 
Behavior	in	the	two	task	configurations	502 
	 The	 behavior	 of	 both	 monkeys	 exhibited	 an	 orderly	 dependence	 on	 the	503 
strength	 of	 the	RDM	 in	 both	 task	 configurations.	 They	 took	 longer	 to	 report	 their	504 
decision	when	the	motion	strength	was	weaker	(Figure	2,	A-D),	and	their	decisions	505 
were	 less	 accurate	 (Figure	 2,	 E-H).	 The	 systematic	 relationship	 between	 reaction	506 
time	(RT)	and	accuracy	is	well	described	by	the	accumulation	of	noisy	evidence	to	a	507 
threshold,	which	 determines	 both	 the	 time	 it	 takes	 to	make	 a	 decision	 and	which	508 
alternative	the	monkey	chooses	(Gold	&	Shadlen	2002,	Smith	&	Ratcliff	2004).	We	509 
support	this	assertion	by	fitting	the	RTs	to	a	bounded	evidence	accumulation	model	510 
and	then	using	the	fitted	parameters	to	predict	the	choices	(Kang	et	al	2017,	Shadlen	511 
&	 Kiani	 2013).	 Specifically,	 the	 curves	 in	 the	 top	 row	 of	 Figure	 2	 are	 fits	 to	 a	512 
parsimonious	 symmetrically	 bounded	 drift	 diffusion	 model,	 which	 uses	 four	513 
parameters	to	account	for	the	effect	of	motion	strength	on	the	mean	RT	for	correct	514 
choices	(Equation	1;	see	Methods).	Two	of	 the	parameters—the	bound	height,	±B,	515 
and	the	sensitivity	coefficient,	κ—establish	predictions	for	the	proportion	of	choices	516 
as	a	function	of	motion	strength	(Equation	2).	The	dashed	curves	in	the	lower	panels	517 
of	Figure	2	depict	these	predictions.	They	are	only	slightly	worse	than	logistic	fits	to	518 
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the	 choice	 data	 themselves	 (gray	 curves),	 which	 are	 unconstrained	 by	 RT.	 To	519 
quantify	the	“goodness	of	prediction”,	we	compared	the	model	predictions	to	those	520 
obtained	from	random	perturbations	of	the	mean	RTs	which	preserve	their	orderly	521 
dependence	on	motion	strength.	Small	perturbations	of	the	RT	(mean	7.5%,	range	1-522 
12%	 or	 equivalently,	 mean	 48	 ms,	 range	 7-73	 ms)	 are	 sufficient	 to	 produce	523 
substantially	poorer	 predictions	 (p<0.01).	 The	 fidelity	 of	 the	 predictions	 supports	524 
the	 assertion	 that	 the	 choices	 result	 from	 the	 same	 process	 of	 bounded	 evidence	525 
accumulation	that	explains	the	decision	times.	Importantly,	this	conclusion	holds	for	526 
both	stimulus	configurations.	527 

From	 this	 exercise	we	 conclude	 that	 the	 decision	 times	 (i.e.,	 RT	minus	 the	528 
non-decision	 time)	 estimated	 from	diffusion	model	 fits	 can	 be	 used	 to	 identify	 an	529 
epoch	in	which	noisy	evidence	was	integrated	to	make	the	decision.	To	obtain	more	530 
refined	estimates	of	the	integration	times	for	the	different	task	configurations,	we	fit	531 
a	more	 elaborate	 bounded	 diffusion	model	 (Figure	 2-Extended	 data	 Figure	 1,	 see	532 
Methods	for	details	and	Table	1	for	fit	parameters).	The	small	differences	in	reaction	533 
times	between	the	two	configurations	for	Monkey	N	was	accounted	for	by	the	non-534 
decision	time	parameter.	For	Monkey	B,	a	combination	of	increased	sensitivity	and	535 
decreased	 bound	 height	 contributed	 to	 the	 faster	 RTs	 in	 the	 RDM-in-RF	536 
configuration.	 Importantly,	 the	 fits	 established	 that	 both	 monkeys	 integrated	537 
evidence	over	hundreds	of	ms	in	each	configuration.		538 
	539 
	LIP	neuronal	responses	in	the	two	task	configurations	540 
	 Neurons	 in	 area	 LIP	 can	 exhibit	 sensory-,	 memory-	 and	 saccade-related	541 
responses	 (Barash	 et	 al	 1991a,	 Gnadt	 &	 Andersen	 1988).	 For	 example,	 in	 a	 task	542 
where	 a	 monkey	 must	 remember	 a	 visually	 cued	 location	 and	 make	 a	 delayed	543 
saccade	to	it,	LIP	neurons	can	show	(1)	a	short	latency	response	to	the	visual	cue	if	it	544 
appears	in	the	RF,	(2)	a	persistently	elevated	response	during	the	delay	period	and	545 
(3)	a	burst	of	activity	preceding	a	saccade	to	the	remembered	 location.	Not	all	LIP	546 
neurons	 exhibit	 all	 three	 types	 of	 responses.	 Since	 our	 goal	 was	 to	 compare	 the	547 
decision	 related	 activity	 in	 the	 same	 neurons	 when	 they	 belonged	 to	 the	 pool	548 
representing	the	sensory	information	and	when	they	belonged	to	the	pool	involved	549 
in	planning	 the	motor	action,	we	 recorded	 from	neurons	 that	 responded	 to	visual	550 
stimuli	in	their	RF	and	also	showed	persistent	activity	in	association	with	saccadic	551 
motor	 planning.	 Each	 of	 our	 neurons	 increased	 their	 responses	 above	 baseline	 to	552 
the	appearance	of	a	visual	stimulus	in	their	RF	(responses	after	RDM	onset:	median	553 
5	 SD	 above	 baseline,	 interquartile	 range	 [IQR]:	 2.7	 to	 7.7).	 The	 strength	 of	 this	554 
sensory	 response	 was	 comparable	 to	 the	 highest	 responses	 observed	 during	 the	555 
delay	period	 (median	4.3	SD	above	baseline,	 IQR:	2.3	 to	9.2,	p=0.49,	Kolmogorov-556 
Smirnov	test).		557 

During	 the	 direction	 discrimination	 epoch,	 the	 pattern	 of	 activity	 of	 the	558 
recorded	 neurons	 varied	 according	 to	 which	 pool	 they	 belonged	 to.	 When	 the	559 
neurons	belonged	to	a	pool	with	one	of	the	targets	in	the	RF,	the	responses	largely	560 
recapitulated	observations	from	earlier	reports	(e.g.	Churchland	et	al	2008,	Roitman	561 
&	Shadlen	2002).	Figure	3	shows	the	average	population	response	of	all	neurons	in	562 
the	Target-in-RF	configuration,	aligned	to	either	the	onset	of	RDM	(Figure	3A)	or	to	563 
the	 saccade	 (Figure	 3B).	 The	 response	was	 elevated	 before	 the	 onset	 of	 the	RDM	564 
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reflecting	the	presence	of	a	choice	target	in	the	RF	of	the	neurons.	Following	motion	565 
onset,	 there	 was	 a	 stereotyped	 dip	 in	 activity	 before	 the	 responses	 began	 to	566 
separate	 by	 motion	 strength.	 The	 evolution,	 beginning	 ~180	 ms	 after	 stimulus	567 
onset,	 is	 best	 appreciated	 in	 the	 de-trended	 responses	 (Figure	 3A,	 inset).	 These	568 
features	 and	 those	 next	 described	 were	 evident	 in	 both	 of	 the	 monkeys,	 shown	569 
individually	in	Figure	3-Extended	data	Figure	1	and	2.	570 
	 The	same	neurons	also	exhibited	differential	responses	to	the	two	directions	571 
of	 motion	 being	 discriminated	 when	 they	 belonged	 to	 the	 pool	 representing	 the	572 
RDM.	 To	 combine	 responses	 across	 the	 population	 in	 this	 task	 configuration,	 we	573 
identified	the	preferred	direction	of	motion	for	each	neuron	as	the	one	that	elicited	574 
the	greater	response.	Figure	3C-D	shows	the	responses	of	the	population	averaged	575 
after	sorting	by	each	neuron’s	preferred	direction.	After	an	initial	rise	in	activity	due	576 
to	 the	 appearance	 of	 the	 RDM	 in	 the	 RF,	 the	 responses	 exhibited	 a	 direction	577 
dependent	 separation.	 Such	 modulation	 of	 LIP	 neuronal	 responses	 by	 motion	578 
direction	 has	 been	 previously	 reported	 in	 naïve	monkeys	 (Fanini	 &	 Assad	 2009).	579 
However,	 the	 direction	 dependent	modulation	was	 slightly	 stronger	 in	our	 neural	580 
population	 (median	direction	 selectivity	 index:	0.11	and	0.09,	 respectively	 for	our	581 
neurons	and	those	reported	in	Fanini	&	Assad;	p=0.06	rank-sum	test;	see	Figure	3E).	582 
Note	 that,	 our	 neural	 population	 displays	 this	 degree	 of	 direction	 selectivity	 at	 a	583 
lower	motion	strength	(51.2%	coherence)	than	that	used	by	Fanini	&	Assad	(100%	584 
coherence).	 This	 result	 is	 consistent	with	 previous	 reports	of	 stronger	 directional	585 
selectivity	 in	 LIP	 neurons	 of	 monkeys	 trained	 on	 tasks	 that	 rely	 on	 direction	586 
discrimination	(Sarma	et	al	2015).		587 

We	quantified	the	time	course	of	the	evolution	of	direction	selectivity	at	the	588 
highest	 motion	 strength	 (Figure	 3F)	 using	 an	 ROC	 metric	 (see	 Methods).	 The	589 
responses	to	the	two	motion	directions	were	significantly	different	starting	190	ms	590 
after	 the	 onset	 of	dot	 stimulus	 (p<0.05	on	Wilcoxon	 rank	 sum	 test).	 This	 is	much	591 
later	 than	 the	~50	ms	 latency	 of	 direction	 selectivity	 observed	 in	 naïve	monkeys	592 
(Fanini	 &	 Assad	 2009).	 This	 is	 also	 later	 than	 the	 ~100	ms	 latency	 for	 direction	593 
category	 selectivity	 reported	 in	 monkeys	 trained	 to	 categorize	 sets	 of	 motion	594 
directions	(Swaminathan	&	Freedman	2012).	As	discussed	below,	the	long	latency	in	595 
our	neuronal	pool	may	be	an	indication	that	the	directional	responses	we	observed	596 
in	 the	 RDM-in-RF	 configuration	 arise	 through	 a	 different	 mechanism	 than	 the	597 
direction-	and	category-selective	responses	previously	reported	in	LIP.		598 

The	 latency	 in	 the	RDM-in-RF	configuration	 lagged	 the	direction	 selectivity	599 
seen	 in	 the	 same	 neurons	 in	 the	 Target-in-RF	 configuration	 (180	 ms,	 p<10-3,	600 
bootstrap	analysis).	However,	the	similarity	of	the	latencies	suggests	that	the	RDM-601 
in-RF	population	might	also	reflect	the	formation	of	the	decision,	as	the	Target-in-RF	602 
population	has	been	shown	to	do	(Churchland	et	al	2008,	Roitman	&	Shadlen	2002).	603 
Consistent	with	 this	possibility,	 the	 rise	and	decline	of	neural	 activity	depends	on	604 
the	 strength	 of	 the	 RDM	 (Figure	 3C,	 inset),	 albeit	 with	 a	 smaller	 dynamic	 range	605 
compared	 to	 responses	 in	 the	 Target-in-RF	 configuration.	 Note	 that	 in	 this	606 
configuration,	directions	are	sorted	based	on	the	preferred	direction	of	each	neuron.	607 
The	 coherence	 dependent	 ordering	 of	 responses	 could	 have	 been	 accentuated	 by	608 
this	 post	hoc	procedure.	 To	 quantify	 this	 coherence	 dependence,	 for	 each	 neuron	609 
and	motion	 strength,	we	 estimated	 the	 slope	of	 the	 responses	 (buildup	 rate)	 in	 a	610 
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200	 ms	 epoch	 beginning	 at	 the	 time	 of	 response	 separation	 as	 identified	 in	 the	611 
preceding	 analysis.	 We	 then	 characterized	 the	 relationship	 between	 motion	612 
strength	 and	 buildup	 rates	 separately	 for	 the	 preferred	 and	 non-preferred	613 
directions	of	motion	(Figure	3G).	The	buildup	rates	of	neurons	 in	 the	Target-in-RF	614 
configuration	 showed	 a	 linear	 dependence	 on	 motion	 strength	 both	 when	 the	615 
motion	 direction	 was	 towards	 the	 RF	 (1.5±0.2	 spikes	 per	 s2	 per	 1%	 coherence,	616 
p<10-9)	 and	when	 the	motion	was	 away	 from	 the	RF	 (-1.2±0.2,	 p<10-5).	 A	 similar	617 
trend	was	observed	in	the	RDM-in-RF	configuration.	However,	this	relationship	was	618 
significant	only	for	the	non-preferred	direction	of	motion	(-0.7±0.2	spikes	per	s2	per	619 
1%	coherence,	p<0.002).	For	 the	preferred	direction,	 the	build-up	rates	 increased	620 
with	 coherence	 but	 not	 significantly	 so	 (0.6±0.4	 spikes	 per	 s2	 per	 1%	 coherence,	621 
p=0.13).	In	both	configurations,	these	trends	were	preserved	even	when	the	highest	622 
motion	strength	trials	were	excluded.	Thus,	neuronal	pools	in	LIP	representing	the	623 
saccade	targets	and	the	RDM	both	differentiate	the	discriminanda	during	an	epoch	624 
coinciding	with	decision	formation.	The	build-up	of	neural	activity	depended	on	the	625 
strength	of	the	stimulus	in	both	populations,	but	this	dependence	was	weaker	when	626 
the	RDM	was	in	the	RF.		627 

We	also	 compared	 the	 responses	at	 the	end	of	 the	decision	process	 for	 the	628 
two	task	configurations	(Figure	3B	&	D).	When	the	monkey	chose	the	target	in	the	629 
neuron’s	RF,	 the	responses	appear	to	coalesce	to	a	common	firing	rate	 just	before	630 
the	 saccade,	 irrespective	 of	 motion	 strength	 (Figure	 3B,	 solid	 curves),	 as	 shown	631 
previously	 (Churchland	 et	 al	 2008,	 Roitman	 &	 Shadlen	 2002).	 This	 pattern	 is	632 
thought	 to	 reflect	 a	 threshold	 level	 detected	 by	 another	 circuit	 to	 terminate	 the	633 
decision	 (Hanes	&	 Schall	 1996,	Hanks	 et	 al	 2014,	Mazurek	 et	 al	 2003).	When	 the	634 
same	 neurons	 contained	 the	 RDM	 in	 their	 RF,	 the	 responses	 to	 the	 different	635 
coherences	 remained	 separated	 until	 the	 saccade,	 and	 this	 held	 for	 either	 choice	636 
(Figure	 3D).	 This	 was	 also	 the	 case	 when	 the	 RF	 contained	 the	 unchosen	 target	637 
(Figure	3B,	dashed	curves).	Thus,	only	 the	 responses	of	 the	pool	 representing	 the	638 
target	 chosen	 by	 the	 animal	 contains	 a	 possible	 neural	 signature	 of	 decision	639 
termination.	 In	 the	 ensuing	 sections,	we	 support	 this	 qualitative	 observation	with	640 
other	 lines	of	evidence	that	show	that	 this	pool	alone	signals	decision	termination	641 
and	the	time	taken	to	reach	it.	642 
	643 
Correlation	between	neural	responses	and	behavior	644 
	 We	 examined	 whether	 the	 neural	 responses	 in	 the	 two	 stimulus	645 
configurations	were	predictive	of	 the	monkey’s	decisions.	 Specifically,	we	asked	 if	646 
the	trial	to	trial	variation	in	the	responses	correlates	with	the	trial	to	trial	variation	647 
in	the	monkey’s	choice	behavior.	To	test	this	for	each	neuron,	we	counted	the	spikes	648 
in	a	200	ms	 long	epoch	ending	100	ms	before	 saccade	 initiation	on	each	 trial	 and	649 
incorporated	this	count	in	a	logistic	regression	model	of	choice	(GLM;	see	Methods).	650 
To	 facilitate	 comparison	 across	 the	 two	 stimulus	 configurations,	 we	 standardized	651 
the	 responses	 across	 trials	 of	 each	 configuration.	 We	 included	 the	 strength	 and	652 
direction	 of	 the	 presented	 stimulus	 as	 confounders,	 thus	 asking	 whether	 the	653 
variation	 in	neural	 response	 tells	us	more	about	 the	upcoming	choice	 than	can	be	654 
ascertained	from	the	stimulus	itself.	This	was	indeed	the	case	for	61.2%	of	cells	in	655 
the	 Target-in-RF	 configuration	 and	 for	 35.4%	 of	 cells	 in	 the	 RDM-in-RF	656 
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configuration	 (30	 of	 49	 and	 17	 of	 48	 cells	 respectively;	 Equation	 5,	 H0:	 β2	 =	 0;	657 
p<0.05;	Figure	4A).	The	 leverage	of	 the	neural	 activity	on	 choice	was	 significantly	658 
stronger	in	the	Target-in-RF	configuration	(p=0.005,	signed	rank	test).		659 

In	a	complementary	analysis,	we	assessed	whether	the	neural	responses	on	660 
ambiguous	trials	(0%	motion	coherence)	differed	according	to	the	eventual	choice	661 
of	the	animal.	We	computed	choice	probability	(Britten	et	al	1996),	a	nonparametric	662 
statistic	 that	 quantifies	 the	 overlap	 between	 the	 distributions	 of	 responses	 of	 the	663 
neuron	 accompanying	 the	 two	 choices	 (see	Methods).	 A	 choice	 probability	 of	 0.5	664 
indicates	 that	 the	 two	 distributions	 are	 completely	 overlapping	 and	 therefore	665 
uninformative	 about	 the	 ensuing	 choice.	 At	 the	 single	 neuron	 level,	 choice	666 
probability	of	32.4%	and	25.8%	of	the	neurons	was	significantly	different	from	0.5	667 
in	 the	Target-in-RF	and	RDM-in-RF	configurations,	respectively	(12	of	37	and	8	of	668 
31	 cells	with	 at	 least	 10	 trials	 at	 0%	 coherence	 respectively,	 p<0.05,	 permutation	669 
test).	 In	both	stimulus	configurations,	 the	mean	choice	probability	of	 the	neuronal	670 
population	was	significantly	greater	than	0.5	(Figure	4B,	population	mean	±	SEM	of	671 
0.66±0.03	and	0.59±0.04	for	Target-in-RF	and	RDM-in-RF	respectively,	p<10-5	and	672 
p<0.02	 on	 t-test).	 For	 comparison	 between	 the	 two	 configurations,	 we	 calculated	673 
‘grand’	 choice	 probability	 from	 standardized	 responses	 of	 all	 neurons	 on	 the	 0%	674 
coherence	 trials	 (see	 Methods,	 Britten	 et	 al	 1996).	 This	 choice	 probability	 was	675 
significantly	 stronger	 in	 the	 Target-in-RF	 configuration	 (0.65	 vs.	 0.56,	 p<10-3,	676 
permutation	test).	From	the	analyses	of	choice	probability	and	firing	rate	 leverage	677 
on	choice	 (Figure	4A-B)	we	adduce	 that	LIP	neurons	 responsive	 to	both	 the	RDM	678 
and	 the	 choice	 targets	 are	 informative	 about	 the	 choice,	 but	 it	 is	 the	 latter	 set	 of	679 
neurons	(Target-in-RF)	that	covary	more	strongly	with	choice.			680 

Finally,	since	the	neurons	exhibit	time	dependent	changes	in	their	activity	in	681 
both	 stimulus	 configurations,	we	asked	whether	 the	variation	of	 the	buildup	rates	682 
were	 predictive	 of	 the	 variation	 in	 the	 RTs	 on	 a	 trial-by-trial	 basis.	 We	 used	 the	683 
trials	in	which	the	monkey	chose	the	target	in	the	RF	or	the	target	consistent	with	684 
the	 direction	 of	 motion	 preferred	 by	 the	 neuron	 (RDM-in-RF).	 For	 a	 majority	 of	685 
neurons	 recorded	 in	 the	Target-in-RF	configuration	 (36	of	49),	 the	 reaction	 times	686 
were	inversely	correlated	with	the	slope	of	the	neural	responses	(population	mean:	687 
-0.08,	p<0.01).	In	the	RDM-in-RF	configuration,	the	correlation	was	not	significantly	688 
different	from	0	(mean:	0.03,	p>0.33)	(Figure	4C)	and	significantly	weaker	than	the	689 
correlations	 seen	 in	 the	 Target-in-RF	 configuration	 (p<0.01,	 Kolmogorov-Smirnov	690 
test).	 This	 comparison	 suggests	 that	 only	 the	 pool	 of	 neurons	 that	 contain	 the	691 
chosen	target	in	their	RF	carries	information	about	the	time	the	animal	will	take	to	692 
report	its	decision.		693 
	694 
Signatures	of	noisy	evidence	accumulation	in	the	response	variance	695 
	 We	also	wished	to	ascertain	whether	the	responses	on	single	trials	conform	696 
to	 the	expectations	of	noisy	evidence	accumulation.	 If	so,	 the	variance	of	 the	 firing	697 
rates	across	trials	should	increase	linearly	as	a	function	of	time	(i.e.,	the	number	of	698 
samples	 accumulated).	 Also,	 the	 autocorrelation	 between	 firing	 rates	 at	 different	699 
times	within	a	 trial	 should	 conform	 to	 the	pattern	associated	with	 the	 cumulative	700 
sum	of	random	numbers.	Such	correlation	should	decay	as	a	function	of	separation	701 
in	 time	from	the	 first	sample	and	 increase	 for	equidistant	samples	as	a	 function	of	702 
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time	from	the	onset	of	accumulation	(see	Methods).	We	used	the	method	developed	703 
by	de	Lafuente	 et	 al	 (2015)	 (based	on	Churchland	et	 al	 (2011))	 to	estimate	 these	704 
quantities.	705 

The	 variance	 and	 autocorrelation	 patterns	 varied	 markedly	 based	 on	706 
whether	the	neurons	contained	the	target	or	the	RDM	in	their	RF.	In	the	Target-in-707 
RF	configuration,	 the	variance	 increased	 linearly	with	time	during	the	same	epoch	708 
that	the	mean	firing	rates	seemed	to	reflect	the	integration	of	evidence	(Figure	5A,	709 
shaded	 region).	 In	 the	 RDM-in-RF	 configuration,	 the	 rise	 in	 variance	 was	710 
significantly	 weaker	 (p<10-10,	 bootstrap	 analysis).	 Also,	 the	 observed	711 
autocorrelation	matrix	 for	 the	responses	 in	 the	Target-in-RF	configuration	(Figure	712 
6B,D,F)	resembled	the	theoretical	prediction	(R2	=	0.88).	In	contrast,	the	pattern	of	713 
autocorrelations	 (Figure	6C,E,G)	 for	 the	responses	 in	 the	RDM-in-RF	configuration	714 
diverged	 markedly	 from	 the	 predicted	 pattern	 (R2	 =	 0.2).	 A	 bootstrap	 analysis	715 
confirmed	 that	 the	 difference	 in	 R2	 values	 between	 the	 two	 configurations	 was	716 
statistically	reliable	(p<10-10;	see	Methods).	Later,	we	show	that	the	deviation	of	the	717 
autocorrelation	pattern	from	theoretical	prediction	cannot	be	attributed	to	a	muted	718 
drift	 diffusion	 process	 unfolding	 on	 the	 background	 of	 a	 strong	 non-directional	719 
sensory	response	(Figure	9).	720 
	 The	variance	of	the	neural	response	also	affords	a	more	refined	examination	721 
of	 the	 mechanism	 of	 decision	 termination.	 The	 firing	 rate	 averages	 in	 Figure	 3B	722 
suggest	the	possibility	that	decisions	terminate	when	the	firing	rate	of	the	neurons	723 
with	 the	 chosen	 target	 in	 their	 RF	 reach	 a	 threshold.	 A	 more	 stringent	 test	 of	 a	724 
threshold	 is	 that	 even	 for	 the	 same	 motion	 strength,	 the	 variance	 of	 the	 neural	725 
response	should	approach	a	minimum	just	before	the	saccade.	Indeed,	we	observed	726 
a	precipitous	decline	in	the	variance	in	the	~100	ms	preceding	the	saccade	for	the	727 
neuronal	 pool	 with	 the	 chosen	 target	 in	 the	 RF	 (Figure	 5B,	 solid	 blue	 line).	 The	728 
variance	 in	 the	 time	 bin	 preceding	 the	 saccade	 was	 significantly	 lower	 than	 the	729 
variance	 in	 its	 prior	 time	 bin	 (p<0.01,	 t-test).	 This	 decline	 in	 variance	 was	more	730 
precipitous	 than	 that	 seen	 for	 the	 other	 three	 conditions	 shown	 in	 Figure	 5B	731 
(ANOVA,	p<0.03,	see	Methods).		732 

Together,	 the	 analyses	 of	 time	 dependent	 variance	 and	 autocorrelation	733 
reveal	 that	 neurons	 in	 the	 Target-in-RF	 configuration	 exhibit	 firing	 rate	 patterns	734 
consistent	 with	 a	 process	 that	 represents	 the	 running	 sum	 of	 noisy	 samples	 of	735 
evidence	 to	 a	 criterion	 level.	 The	 analyses	 complement	 the	 observations	 made	736 
earlier	 on	 the	 mean	 firing	 rates	 by	 demonstrating	 conformance	 with	 the	 second	737 
order	statistics	of	diffusion	to	a	bound.	These	features	were	less	apparent	when	the	738 
same	neurons	were	studied	in	the	RDM-in-RF	configuration.	This	neural	population	739 
does	not	appear	to	represent	the	accumulation	of	the	noisy	evidence	that	supports	740 
the	monkey’s	decisions.	They	reflect	the	direction	of	motion	during	the	time	course	741 
of	decision	formation	but	not	the	state	of	the	accumulated	evidence	that	can	be	used	742 
to	 terminate	 the	 decision	 process.	 We	 next	 consider	 a	 possible	 account	 of	 their	743 
pattern	of	activity.	744 
	745 
A	model	of	interaction	between	populations		746 
	 How	could	the	responses	of	neurons	with	the	RDM	in	their	RF	correlate	with	747 
the	decision	outcome	without	 representing	 the	process	of	 evidence	accumulation?	748 
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One	 possibility	 is	 that	 the	 weaker	 decision-related	 signals	 observed	 in	 the	749 
population	with	the	RDM	in	their	RF	are	 inherited	 from	the	populations	that	have	750 
the	choice	targets	 in	 their	RF	and	are	 involved	 in	the	accumulation	process.	 It	has	751 
been	 shown	 that	 responses	 of	 LIP	 neurons	 to	 visual	 stimuli	 are	 suppressed	 by	752 
concurrently	presented	visual	stimuli	when	they	are	well	outside	the	RF	(Balan	et	al	753 
2008,	 Churchland	 et	 al	 2008),	 even	 by	 as	much	 as	 50°	 visual	 angle	 (Falkner	 et	 al	754 
2010,	 Louie	 et	 al	 2011).	 An	 asymmetrical	 influence	 of	 the	 two	 Target-in-RF	755 
populations	 could	 lead	to	the	appearance	of	direction	selectivity	and	a	 correlation	756 
with	the	animal’s	choices	in	 the	RDM-in-RF	population.	Moreover,	 the	noise	added	757 
through	 this	 additional	 step	 could	 explain	 the	 divergence	 of	 the	 variance	 and	758 
autocorrelation	of	 the	RDM-in-RF	population	 from	 the	 theoretical	predictions	of	 a	759 
diffusion	 process.	 Additionally,	 such	 an	 extra	 step	 could	 account	 for	 the	 timing	of	760 
direction	selectivity	in	the	RDM-in-RF	population,	which	lags	slightly	behind	that	of	761 
the	Target-in-RF	population.			762 

To	evaluate	the	plausibility	of	this	idea,	we	simulated	the	responses	of	three	763 
neural	 populations—one	 representing	 the	 motion	 stimulus	 and	 two	 representing	764 
the	choice	targets—during	the	motion	viewing	epoch	(Figure	7A).	In	the	model,	the	765 
RDM-in-RF	population	 receives	direct	 excitation	 from	 the	visual	 representation	of	766 
the	dynamic	random	dots.	This	direct	excitation	furnishes	a	constant	firing	rate	that	767 
varies	from	trial	to	trial,	but	importantly,	is	not	direction	selective	(Figure	7C).	The	768 
two	Target-in-RF	populations	start	off	at	a	steady	firing	rate,	simulating	the	steady	769 
state	sensory	response	to	the	target	already	present	in	the	RF.	The	responses	then	770 
follow	 drift-diffusion	 dynamics	 starting	 at	 180	 ms,	 simulating	 evidence	771 
accumulation.	 The	 drift	 rate	 was	 set	 to	 be	 directly	 or	 inversely	 proportional	 to	772 
motion	 coherence	 for	 the	 populations	 representing	 the	 correct	 and	 incorrect	773 
targets,	respectively	(Figure	7B).		774 

The	 three	 populations	 interact	 through	 divisive	 suppression	 (Carandini	 &	775 
Heeger	2011,	Louie	et	al	2011,	Sceniak	et	al	2001)	at	each	time	point,	parameterized	776 
by	the	ω	terms	 in	Equation	9	(Methods).	We	set	 these	parameters	 to	approximate	777 
the	 observed	 neural	 responses	 to	 the	 25.6%	motion	 strength	 RDM	 (illustrated	 in	778 
Figure	 7F-G).	We	 assumed	 that	 the	 early	 dip	 in	 the	 response	 of	 the	 Target-in-RF	779 
neurons	(arrow,	Figure	7F)	was	caused	by	suppression	from	the	neurons	activated	780 
by	 the	 appearance	 of	 the	 RDM	 (ωDT1=ωDT2).	 The	 suppression	 between	 the	 two	781 
Target-in-RF	 pools	 (ωT1T2=ωT2T1)	 was	 estimated	 from	 the	 onset	 and	 steady	 state	782 
responses	after	the	appearance	of	the	target	in	the	RF.	Suppression	of	the	RDM-in-783 
RF	pool	 from	the	Target-in-RF	pools	(ωT1D	and	ωT2D)	were	adjusted	around	ωDT	to	784 
approximate	the	separation	in	firing	rate	traces	shown	in	Figure	7G	(see	Methods).	785 
Such	 asymmetric	 influence	 of	 the	 two	 Target-in-RF	 populations	might	 arise	 from	786 
differences	in	their	spatial	relationship	(neuronal	connectivity)	with	the	RDM-in-RF	787 
population.	 These	 adjustments	 were	 sufficient	 to	 mimic	 the	 observed	 mean	788 
responses	of	the	neural	population	in	our	simulations	(Figure	7D-E).	In	addition,	we	789 
assumed	that	the	suppressive	interaction	signals	were	corrupted	by	a	small	amount	790 
of	noise	(see	Methods).	Importantly,	according	to	the	model,	the	direction	selectivity	791 
of	the	RDM-in-RF	population	is	derived	solely	from	the	suppressive	inputs	from	the	792 
Target-in-RF	populations.		793 

	This	simple	model	 reproduced	 the	main	 features	of	our	 results	 (Figure	8).	794 
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After	 the	 implementation	of	suppression,	 the	Target-in-RF	population	retained	the	795 
time	 course	 of	 the	 variance	 and	 the	 pattern	 of	 autocorrelation	 expected	 of	 a	796 
diffusion	 process.	 Notably,	 the	 variance	 and	 autocorrelation	 in	 the	 RDM-in-RF	797 
population	 also	 conformed	 to	 the	 patterns	 in	 the	 neural	 data:	 (i)	 the	 attenuated	798 
increase	 in	variance	as	a	 function	of	 time	and	(ii)	 the	divergence	 in	 the	pattern	of	799 
autocorrelation	from	the	theoretical	prediction	of	diffusion.	We	also	considered	an	800 
alternative	 model	 in	 which	 the	 RDM-in-RF	 population	 itself	 represents	 an	801 
attenuated	 evidence	 accumulation	 signal	 in	 parallel	 with	 the	 Target-in-RF	802 
populations	 (Figure	 9).	 To	 do	 this,	 we	 removed	 the	 lateral	 interactions	 and	803 
implemented	 the	 accumulation	 identically	 to	 the	 Target-in-RF	 population,	 but	804 
matching	 the	 observed	 firing	 rate	 dynamics	 and	 variance	 in	 the	 RDM-in-RF	 data	805 
(displayed	 in	Figures	7G	and	5A,	respectively).	This	model	was	significantly	worse	806 
in	accounting	for	the	pattern	of	autocorrelation	observed	in	the	data	(DBIC	>	5x103).	807 
We	thus	favor	the	model	with	divisive	suppression,	which	accounts	for	the	presence	808 
of	choice	related	activity	in	the	RDM-in-RF	population	and	the	absence	of	clear	signs	809 
of	noisy	evidence	accumulation.		810 

	811 
	812 

DISCUSSION	813 
	 	814 

We	 compared	 decision	 related	 activity	 in	 the	 sensory	 and	motor-planning	815 
responses	of	LIP	neurons.	We	conclude	 that	 the	process	of	 evidence	accumulation	816 
leading	to	choice	is	revealed	primarily	in	motor	preparatory	responses.	The	sensory	817 
responses	 exhibit	 a	weak	 relationship	with	 the	 animal’s	 behavior,	 but	 our	 results	818 
and	 simulations	 suggest	 that	 this	 relationship	 is	 likely	 inherited	 from	 the	 motor	819 
preparatory	 responses.	 We	 first	 discuss	 our	 results	 in	 the	 context	 of	 previous	820 
studies	of	area	LIP	and	then	consider	their	 implication	on	the	broader	question	of	821 
routing	of	information	in	the	cortex.	822 
	823 
Properties	of	neural	responses	in	area	LIP	824 
	 There	 has	 been	 a	 long	 debate	 about	 the	 relative	 importance	 of	 sensory	825 
salience-related	 signals	 and	 saccade	 preparatory	 signals	 in	 area	 LIP	 (Andersen	 &	826 
Buneo	2002,	Barash	et	al	1991a,	Bushnell	et	al	1981,	Colby	&	Goldberg	1999).	Many	827 
neurons	 show	 inherent	 selectivity	 for	visual	 features	 such	as	direction	and	shape,	828 
even	 in	monkeys	 that	 have	 never	 been	 trained	 to	 use	 such	 information	 (Fanini	&	829 
Assad	 2009,	 Sereno	 &	 Maunsell	 1998).	 In	 addition,	 training	 induces	 stimulus	830 
selectivity	 that	 can	be	distinct	 from	 intrinsic	selectivity	 (Sarma	et	 al	2015,	Toth	&	831 
Assad	 2002).	 LIP	 neurons	 also	 carry	 a	 rich	 representation	 of	 saccade	 plans.	 They	832 
display	spatially	selective	persistent	activity	when	the	animal	plans	a	saccade	to	a	833 
previously	 instructed,	 but	 no	 longer	 visible	 target	 (Barash	 et	 al	 1991a,	 Gnadt	 &	834 
Andersen	 1988).	 This	 persistent	 activity	 is	 dissociable	 from	 the	 sensory	 response	835 
evoked	by	the	target	(Mazzoni	et	al	1996)	and	can	encode	other	factors	that	bear	on	836 
the	saccade	plan,	such	as	the	probability	that	a	saccade	will	be	instructed	(Janssen	&	837 
Shadlen	2005)	and	the	expected	reward	(Platt	&	Glimcher	1999,	Sugrue	et	al	2004).	838 
The	 richness	 of	 saccadic	 planning	 is	 particularly	 evident	 in	 perceptual	 decision-839 
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making	tasks,	where	the	neuronal	activity	continually	tracks	the	current	state	of	the	840 
evidence	for	choosing	the	target	in	the	neuron’s	RF	(Bollimunta	et	al	2012,	Mazurek	841 
et	al	2003).		842 
	 			By	 recording	 from	 the	 same	 LIP	 neurons	 when	 they	 belonged	 to	 the	843 
population	 representing	 either	 the	 RDM	 or	 a	 choice	 target,	 we	 could	 directly	844 
compare	 the	 sensory-	 and	 saccade-related	 responses.	 While	 both	 populations	845 
modulated	their	activity	in	accordance	with	the	strength	and	direction	of	the	RDM,	846 
there	were	important	differences.	This	modulation	was	more	intense	when	a	choice	847 
target	was	 in	 the	RF.	While	 the	RDM	elicited	a	strong	response	when	 it	was	 in	 the	848 
RF,	the	dependence	on	direction	and	stimulus	strength	was	weaker.	This	is	unlikely	849 
to	be	explained	by	 saturation	of	 the	 response,	because	 the	 same	neurons	attained	850 
higher	firing	rates	before	saccade	onset	when	the	target	was	in	the	RF	(cf.	Figure	3B	851 
and	Figure	3C).	Further,	 the	variance	and	autocorrelation	patterns	of	 the	neuronal	852 
responses	were	consistent	with	the	predictions	of	noisy	evidence	accumulation	only	853 
when	 the	 neurons	 contained	 a	 target	 in	 their	 RF.	 Finally,	 a	 neural	 correlate	 of	854 
decision	termination	was	only	apparent	when	a	target	was	in	the	RF.		855 

Although	we	have	used	the	term	“sensory”	to	describe	the	direction	selective	856 
responses	of	neurons	with	 the	RDM	 in	 their	RF,	 the	gradual	build-up	of	 the	 firing	857 
rates	of	these	neurons	(Figure	3C)	differed	from	the	constant	firing	rates	reported	in	858 
naïve	 monkeys	 (Fanini	 &	 Assad	 2009).	 We	 suspect	 that	 the	 responses	 are	 not	859 
sensory	in	the	way	one	would	characterize	the	responses	of	neurons	in	visual	areas	860 
MT/MST	 or	 even	 the	 visual	 responses	 of	 LIP	 neurons	 to	 transient	 stimuli	 (e.g.,	861 
targets)	as	they	were	remarkably	slow,	emerging	190	ms	after	stimulus	onset	(at	the	862 
highest	coherence).	This	is	far	later	than	the	~50	ms	latency	of	direction	selectivity	863 
(Fanini	 &	 Assad	 2009)	 and	 the	 ~100ms	 latency	 for	 direction-category	 selectivity	864 
(Swaminathan	 &	 Freedman	 2012),	 and	 it	 is	 longer	 than	 the	 180	 ms	 latency	 of	865 
decision-related	signals	observed	in	the	neuronal	pool	representing	the	targets.		866 

Together,	 these	 considerations	 suggest	 that	 the	neuronal	pool	representing	867 
the	RDM	 inherits	 its	direction	 and	 choice	 related	 signals	 from	 the	 neuronal	 pools	868 
representing	 the	 targets.	 We	 demonstrated	 that	 a	 model	 of	 lateral	 interactions	869 
serving	the	general	purpose	of	gain	control	(Carandini	&	Heeger	2011)	is	sufficient	870 
to	produce	these	effects.	Such	lateral	interactions	are	well	established	in	upstream	871 
visual	areas	(Hunter	&	Born	2011,	Schein	&	Desimone	1990,	Shushruth	et	al	2009).	872 
In	 LIP,	 lateral	 interactions	 are	 thought	 to	mediate	 the	 suppressive	 effect	 of	 visual	873 
stimuli	presented	outside	a	neuron’s	RF	 (Balan	et	 al	2008,	Churchland	et	 al	2008,	874 
Zhang	et	al	2017),	even	from	distances	>50°	away	from	the	RF	(Falkner	et	al	2010,	875 
Louie	et	al	2011).	A	limitation	of	the	present	study	is	that	we	do	not	have	access	to	876 
two	classes	of	neurons	on	the	same	trials.	Recording	simultaneously	from	neurons	877 
that	represent	the	RDM	and	at	least	one	choice	target,	would	allow	for	a	direct	test	878 
of	the	lateral	interactions	that	we	modeled.	For	example,	we	would	predict	that	the	879 
weaker	 leverage	 of	 the	 RDM-in-RF	 neurons	 would	 be	 explained	 away	 (i.e.,	880 
mediated)	by	inclusion	of	Target-in-RF	responses	in	the	same	GLM.		881 
	882 
Routing	of	information	in	cortex		883 

We	do	not	know	how	the	momentary	evidence	represented	by	populations	of	884 
direction	 selective	 neurons	 in	 the	 visual	 cortex	 makes	 its	 way	 specifically	 to	 the	885 
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target-representing	neurons	in	LIP.	There	are	projections	from	areas	MT	and	MST	to	886 
area	LIP,	but	 it	 is	difficult	 to	reconcile	 this	direct	pathway	with	the	 long	latency	of	887 
the	 decision	 related	 activity	 in	 LIP.	 The	 delay	 of	 the	 decision	 related	 responses	888 
relative	to	 the	 latency	of	 the	visual	responses	in	LIP	(~50	ms),	suggests	a	role	 for	889 
some	form	of	memory	buffer	and/or	a	multisynaptic	chain	through	which	decision	890 
relevant	 information	 must	 pass	 before	 reaching	 the	 saccade	 planning	 neurons	 in	891 
LIP.	This	is	one	reason	to	suspect	that	apparently	simple	perceptual	decisions	may	892 
share	similarities	with	more	complex	decisions	that	derive	evidence	 from	memory	893 
and	other	evaluations	(Shadlen	&	Shohamy	2016).		894 

We	 must	 emphasize	 that	 area	 LIP	 is	 not	 the	 only	 region	 that	 receives	895 
decision-pertinent	signals	 in	 this	 task.	Other	areas	 involved	 in	 the	planning	of	 eye	896 
movements,	such	as	FEF/Area	46,	caudate	nucleus	and	superior	colliculus,	also	have	897 
access	 to	 such	 input	 (Ding	 &	Gold	 2010,	 Ding	 &	 Gold	 2012,	 Horwitz	 &	 Newsome	898 
1999,	Kim	&	Shadlen	1999,	Mante	et	al	2013).	However,	the	decision	related	activity	899 
in	 these	 areas	 arises	 with	 comparable	 latencies,	 so	 they	 do	 not	 furnish	 an	900 
explanation	 for	 the	 long	 latency	 in	 LIP.	 We	 favor	 the	 idea	 that	 the	 latency	 is	901 
necessitated	 by	 limitations	 in	 connectivity	 between	 the	many	 possible	 sources	 of	902 
evidence	 bearing	 on	 the	 salience	 of	 an	 item	 and	 the	 neurons	 that	 represent	 such	903 
items	 as	 potential	 affordances	 to	 the	 motor	 system.	 This	 connectivity	 constraint	904 
might	 necessitate	 active	 routing	 (Kastner	 &	 Pinsk	 2004,	 Olshausen	 et	 al	 1993),	905 
although	this	process	is	poorly	understood.		906 

Our	 results	 also	 invite	 caution	when	 interpreting	 trial-to-trial	 correlations	907 
between	 neural	 response	 and	 choice	 behavior.	 The	 neuronal	 pool	 in	 LIP	908 
representing	the	RDM	has	a	mean	CP	of	0.59,	larger	than	the	reported	CP	of	0.54	for	909 
neurons	in	area	MT	(Cohen	&	Newsome	2009)	that	are	known	to	play	a	causal	role	910 
in	affecting	choice	and	RT	in	this	task	(Ditterich	et	al	2003,	Salzman	et	al	1990).	One	911 
might	therefore	be	tempted	to	conclude	that	the	RDM-in-RF	population	plays	a	role	912 
in	 evidence	 accumulation	 leading	 to	 the	 decision,	 but	 this	 is	 at	 odds	 with	 our	913 
findings.	 In	 the	RDM	task,	 the	sequential	sampling	 framework	(e.g.,	drift-diffusion)	914 
provides	a	detailed	mechanistic	account	of	evidence	accumulation	both	at	the	level	915 
of	behavior	and	at	the	level	of	its	instantiation	in	the	neural	responses.	This	enabled	916 
us	 to	 show	 that	 only	 the	 neuronal	 population	 involved	 in	 planning	 of	 the	 motor	917 
action	reflected	the	computations	relevant	to	decision-making.	918 

If	 the	 neurons	 with	 the	 RDM	 in	 the	 RF	 do	 not	 represent	 the	 evolving	919 
evidence,	 a	 natural	 question	 is	 what	 do	 these	 neurons	 signify?	 One	 obvious	920 
possibility	 is	 that	 they	 simply	 represent	 an	 object	 that	might	 attract	 the	 gaze,	 as	921 
transient	lights	are	wont	to	do.	Another	possibility	is	that	they	represent	the	focus	of	922 
spatial	attention	(Colby	&	Goldberg	1999).	However,	this	focus	should	be	initially	on	923 
the	RDM	and	then	either	remain	stationary	through	the	decision	or	gradually	give	924 
way	 to	 the	 chosen	 target.	 This	 is	 inconsistent	with	 the	 dynamics	 observed	 in	 our	925 
data,	which	 look	 like	 a	muted	 version	of	 the	decision	 related	 signals	 exhibited	 by	926 
neurons	with	a	choice	target	in	the	RF.	The	same	objection	applies	to	the	proposal	927 
that	 these	neurons	represent	 the	salience	of	 the	RDM	(Bisley	&	Goldberg	2010).	A	928 
more	speculative	 idea	 is	 that	 the	neurons	that	contain	the	RDM	in	their	RF	confer	929 
information	bearing	on	the	spatial	origins	of	the	evidence—that	is,	they	help	to	bind	930 
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the	location	of	the	thing	we	are	deciding	about	to	the	decision	itself,	which	is	about	931 
what	to	do.	 	932 
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FIGURE	LEGENDS	1095 
	1096 
FIGURE	 1:	Behavioral	 task	 configurations.	The	monkey	 fixates	at	 an	 instructed	1097 
location	 (x)	 and	 then	 two	 choice	 targets	 (red	 dots)	 appear	 in	 one	 of	 two	1098 
configurations:(1)	 Target-in-RF:	 One	 of	 the	 targets	 is	 situated	 in	 the	 RF	 of	 the	1099 
neuron	being	recorded	from,	and	(2)	RDM-in-RF:	Both	targets	are	situated	outside	1100 
the	RF.	In	the	next	step,	the	RDM	is	presented	either	inside	(RDM-in-RF)	or	outside	1101 
the	RF	(Target-in-RF).	The	monkey	 is	 free	to	report	 its	decision	any	time	after	 the	1102 
appearance	of	the	RDM	by	making	a	saccade	to	one	of	the	targets.			1103 
	1104 
FIGURE	2:	Predicting	choices	 from	diffusion-to-bound	models	 fit	 to	RTs.	A-D:	1105 
RTs	 of	 the	 two	 monkeys	 as	 a	 function	 of	 motion	 strength	 in	 the	 two	 task	1106 
configurations	(see	Methods	for	convention	on	sign	of	motion	strength).	Solid	lines	1107 
show	the	 fits	of	a	diffusion-to-bound	model.	Data	 includes	the	trials	at	0%	motion	1108 
strength	in	which	the	monkey	chose	the	target	consistent	with	its	bias	(established	1109 
from	logistic	fits	to	the	choice	data)	and	correct	trials	at	other	motion	strengths.		E-1110 
H:	The	probability	 the	monkey	chooses	 the	 target	 consistent	with	positive	motion	1111 
direction,	plotted	as	a	function	of	motion	strength.	The	dashed	lines	are	predictions	1112 
from	the	corresponding	fits	of	the	RTs.	Gray	lines	are	fits	to	the	choice	data	(logistic	1113 
regression).		1114 
FIGURE	 2-EXTENDED	 DATA	 1:	 Simultaneous	 fit	 of	 RT	 and	 choice	 with	 a	1115 
diffusion-to-bound	 model.	 The	 probability	 of	 choosing	 the	 positive	 direction	1116 
target	(A,B)	and	the	mean	RTs	(C,D)	are	plotted	as	a	function	of	motion	strength	and	1117 
direction	(indicated	by	sign	of	coherence;	see	Methods)	for	the	two	monkeys	in	the	1118 
two	 stimulus	 configurations.	 The	 curves	 are	 fits	 to	 the	 data	 from	 a	 diffusion-to-1119 
bound	 model	 with	 nonstationary	 bounds	 (see	 Methods).	 The	 fit	 parameters	 are	1120 
shown	in	Table	1.	E,F:	Mean	decision	times	(solid	curves)	derived	 from	the	model	1121 
fits,	plotted	as	a	function	of	motion	strength.	Shading	is	±1	S.E.		1122 
	1123 
FIGURE	3:	Neural	population	responses.	Average	response	of	the	recorded	neural	1124 
population	 during	 Target-in-RF	 (A,B)	 and	RDM-in-RF	 (C,D)	 configurations.	 Panels	1125 
A,C	 are	 aligned	 to	 the	onset	of	 RDM	and	 include	 all	 trials	 sorted	 by	 direction	 and	1126 
strength	 of	 motion.	 Insets	 show	 average	 of	 detrended	 responses	 (i.e.,	 after	1127 
subtraction	of	the	mean	response	for	all	motion	strengths,	for	each	neuron).	Panels	1128 
B,D	are	aligned	to	the	saccade	and	includes	correct	trials	(and	0%	coherence	trials	1129 
sorted	 by	 the	 animal’s	 choices).	 E:	 Histograms	 of	 the	 distribution	 of	 Direction	1130 
Selectivity	 Index	 (DI)	 for	 the	 neural	 population	 recorded	 by	 Fanini	 and	 Assad	1131 
(2009)	and	for	the	neural	population	in	the	RDM-in-RF	configuration	of	the	present	1132 
study.	F:	Area	under	ROC	 for	 responses	 to	 the	 two	directions	of	motion	at	51.2%	1133 
coherence	computed	in	40	ms	bins.	The	colored	lines	at	the	bottom	indicate	the	time	1134 
bins	in	which	this	metric	was	significantly	>0.5	for	the	corresponding	configuration.	1135 
G:	 The	 relation	 between	 the	 response	 buildup	 rate	 and	 motion	 strength.	 Filled	1136 
circles	 are	 data	 from	 trials	 with	 motion	 in	 the	 neuron’s	 preferred	 direction	 and	1137 
unfilled	 circles	 for	 the	 opposite	 motion	 direction.	 Solid	 and	 dashed	 lines	 are	1138 
corresponding	linear	regression	model	fits.	1139 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2018. ; https://doi.org/10.1101/169219doi: bioRxiv preprint 

https://doi.org/10.1101/169219
http://creativecommons.org/licenses/by/4.0/


29	
	

FIGURE	 3-EXTENDED	 DATA	 1	 and	 2:	 Population	 responses	 of	 neurons	 in	1140 
individual	animals.	Neural	responses	that	were	shown	in	Figure	3,	panels	A-D	and	1141 
F	plotted	from	data	pooled	separately	for	each	individual	monkey.		1142 
	1143 
FIGURE	4:	Leverage	of	neural	activity	on	behavior.	Scatter	plot	and	histograms	1144 
for	 the	 two	 stimulus	 configurations	 showing	 the	 distribution	 of	 β2	 term	 (A)	 of	1145 
logistic	regression	(Equation	5),	choice	probability	(B)	and	coefficient	of	correlation	1146 
(C)	between	slope	of	response	buildup	and	RT.	Neurons	 for	which	the	metric	was	1147 
significant	are	shown	with	a	blue	fill	(significant	in	the	Target-in-RF	configuration)	1148 
and/or	 a	 green	 border	 (significant	 in	 the	RDM-in-RF	 configuration)	 in	 the	 scatter	1149 
plots	 and	 as	 darker	 colors	 in	 the	 histograms.	 Data	 points	 in	 B	 outside	 the	 axes	1150 
indicate	neurons	where	choice	probability	could	be	determined	for	only	one	of	the	1151 
two	 configurations.	 One	 and	 three	 such	 data	 points	 are	 not	 shown	 in	 the	 scatter	1152 
plots	of	A	and	C	respectively.		1153 
	1154 
FIGURE	5:	Variance	of	responses.	The	variance	of	neural	responses	aligned	to	the	1155 
onset	of	RDM	(A)	or	 to	 the	saccade	(B).	Total	variance	 is	computed	 in	60	ms	bins	1156 
and	the	point	process	variance	subtracted	from	it	(see	Methods).	In	B,	solid	lines	are	1157 
data	 from	 trials	 in	which	 the	animal	 chose	 the	preferred	 target	of	 the	neuron	and	1158 
dashed	lines	are	from	trials	with	the	opposite	choice.		1159 
	1160 
FIGURE	 6:	 Autocorrelation	 of	 responses.	 A:	 Theoretical	 prediction	 of	 the	1161 
autocorrelation	 matrix	 for	 six	 time	 bins	 (ρi,j)	 of	 a	 diffusion	 process.	 Only	 the	 15	1162 
unique	 values	 (upper	 triangular	 matrix,	 i<j)	 are	 shown.	 B,C:	 Estimated	1163 
autocorrelation	 for	 the	 neural	 responses	 in	 the	 two	 stimulus	 configurations.	D,E:	1164 
Deviation	 of	B,C	 from	 the	 theoretical	 predictions	 shown	 in	A.	F,G:	 Comparison	 of	1165 
correlation	values	in	A-C	between	theory	(black	lines)	and	data	(colored	lines).	Solid	1166 
lines	are	correlation	along	the	top	row	(between	first	and	jth	time	bins)	and	dashed	1167 
lines	 along	 the	 first	 juxtadiagonal	 (correlation	 between	 jth	 and	 its	 preceding	 time	1168 
bins).	Line	style	and	color	correspond	to	those	in	panels	A-C.		1169 
	1170 
FIGURE	 7:	 	 Divisive	 suppression	 model.	 A:	 Schematic	 of	 the	 three	 populations	1171 
simulated	 in	 the	 model	 –	 one	 population	 representing	 the	 RDM	 (D)	 and	 two	1172 
representing	the	targets	(T1	and	T2).	The	ω	terms	denote	the	suppressive	influence	1173 
of	 each	 population	 on	 the	 other	 two.	B:	 Average	 response	 of	 simulated	 T1	 (solid	1174 
cyan)	 and	 T2	 (dashed	 cyan)	 populations	 across	 trials	 in	 which	 the	 direction	 of	1175 
motion	 supported	 T1.	 Dark	 and	 light	 gray	 traces	 show	 responses	 to	 10	 example	1176 
trials	 for	 the	 two	populations.	C:	 The	mean	 and	 example	 trial	 responses	 of	 the	 D	1177 
population	 to	 the	 two	 directions	 of	 motion.	 Dark	 and	 light	 gray	 indicate	 motion	1178 
towards	 T1	 and	 T2,	 respectively.	 Solid	 and	 dashed	 cyan	 lines	 denote	 the	1179 
corresponding	average	response	traces,	but	they	overlap,	as	the	two	populations	do	1180 
not	 distinguish	 between	 directions	 of	 motion.	 Insets	 in	 B	 and	 C	 show	 the	 noisy	1181 
versions	of	the	corresponding	responses	that	furnish	the	divisive	suppression.		D,E:	1182 
The	 responses	 of	 the	 three	 populations	 after	 implementation	 of	 divisive	1183 
suppression.	 Color	 scheme	 is	 the	 same	 as	 in	 panels	 B	 and	 C.	 The	 simulated	1184 
responses	 in	 B-E	 are	 smoothed	 with	 a	 10	 ms	 boxcar	 filter.	 F,G:	 The	 average	1185 
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responses	of	the	recorded	neural	population	to	the	25.6%	motion	strength	stimulus	1186 
in	 the	 Target-in-RF	 and	 RDM-in-RF	 configurations	 that	 our	 simulations	1187 
approximated.	These	traces	are	the	same	as	the	cyan	traces	in	Figure	3A	&	C.		1188 
	1189 
FIGURE	8:	Variance	and	correlation	of	the	simulated	responses.	A:	Variance	as	a	1190 
function	of	time	in	two	of	the	simulated	suppressed	populations	(D	and	T1	for	trials	1191 
with	motion	supporting	T1	choice).	B:	Autocorrelation	in	the	simulated	suppressed	1192 
Target-in-RF	 population	 T1.	 Conventions	 as	 in	 Figure	 6B.	 C:	 Deviation	 of	 the	1193 
autocorrelation	 in	 the	model	 from	 the	 autocorrelation	 estimated	 from	 the	 data	 in	1194 
the	Target-in-RF	configuration.	D,E:	Same	as	B	and	C	for	the	RDM-in-RF	population.	1195 
F:	 Comparison	 of	 correlation	 values	 along	 the	 top	 row	 (solid	 lines)	 and	 first	1196 
juxtadiagonal	 (dashed	 lines)	 between	 the	model	 (see	 panels	B	 &	D)	 and	 the	 data.	1197 
Circles	 show	 the	 correlation	 estimated	 from	data.	 Filled	 circles	 correspond	 to	 the	1198 
values	along	the	top	row	and	open	circles	to	the	values	along	the	juxtadiagonal.	Gray	1199 
lines	show	the	correlation	expected	from	a	diffusion	process.		1200 
	1201 
FIGURE	 9:	 Alternative	model	 with	 the	 RDM-in-RF	 population	 showing	 drift-1202 
diffusion	dynamics.	This	model	assumes	that	 there	 is	no	 interaction	between	the	1203 
RDM-in-RF	 neurons	 and	 the	 Target-in-RF	 neurons.	 A-B:	 Responses	 of	 model	1204 
neurons.	Respectively	similar	 to	Figure	7B-C.	C-H:	Variance	and	autocorrelation	 in	1205 
the	model	and	the	data.	Conventions	as	in	Figure	8A-F	respectively. 	1206 
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TABLES	1207 
	1208 
Table	1:	Bounded	diffusion	model	best	fit	parameter	values	(±SE)	1209 

Parameter	 Monkey	 N	
(Target-in-RF)	

Monkey	 N	
(RDM-in-RF)	

Monkey	 B	
(Target-in-RF)	

Monkey	 B	
(RDM-in-RF)	

κ	 16.05	±	0.38	 13.86	±	0.44	 9.66	±	0.39	 12.00	±	0.70	
B0	 0.72	±	0.02	 0.78	±	0.02	 0.52	±	0.02	 0.47	±	0.04	
Bdel	 0.01	±	0.00	 0.00	±	0.01	 0.02	±	0.01	 0.02	±	0.01	
B2	 0.67	±	0.09	 0.97	±	0.08	 1.16	±	0.21	 1.26	±	0.38	
tnd1	 0.34	±	0.01	 0.29	±	0.01	 0.41	±	0.01	 0.45	±	0.01	
σtnd1	 0.13	±	0.00	 0.11	±	0.00	 0.07	±	0.00	 0.08	±	0.00	
tnd2	 0.38	±	0.01	 0.32	±	0.01	 0.47	±	0.01	 0.43	±	0.01	
σtnd2	 0.12	±	0.00	 0.12	±	0.00	 0.07	±	0.00	 0.06	±	0.00	
C0	 0.00	±	0.00	 0.00	±	0.00	 -0.02	±	0.00	 0.02	±	0.01	

	1210 
Table	2:	Parameter	values	for	simulations	1211 
Parameter	 Divisive	suppression	model	 Parallel	diffusion	model		
K	(T)	 80.4	 52.8	
α	(T)	 29.8	 23.7	
K	(D)	 N/A	 25.0	
α	(D)	 N/A	 9.6	
ωT2T1	=	ωT1T2	 2	x	10-3	 N/A	
ωDT1	=	ωDT2	 4	x	10-3	 N/A	
ωT1D	 6	x	10-3	 N/A	
ωT2D	 1	x	10-3	 N/A	

φRDM	 0.38	 0.39	
φTar	 0.43	 0.43	
VRDM	 4.17	 0	

 1212 
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