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Abstract

Whether humans are optimal decision makers is still a debated issue in the realm of perceptual
decisions. Taking advantage of the direct link between an optimal decision-making and the
confidence in that decision, we offer a new dual-decisions method of inferring such confidence
without asking for its explicit valuation. Our method circumvents the well-known
miscalibration issue with explicit confidence reports as well as the specification of the
cost-function required by ’opt-out’ or post-decision wagering methods. We show that observers’
inferred confidence in their first decision and its use in a subsequent decision (conditioned upon
the correctness of the first) fall short of both an optimal and an under-sampling behavior and
are significantly better fitted by a model positing that observers use no more than four
confidence levels, at odds with the continuous confidence function of stimulus level prescribed
by a normative behavior.

Significance statement
A normative decision behavior requires
that one’s confidence be a continuous
function of the difficulty of decision to
be made (the posterior probability that
the decision was correct given the evi-
dence). People however concede that they
could not discriminate between two indef-
initely close confidence states. Using a
new experimental paradigm that does not
require participants’ explicit confidence
evaluation nor knowledge of their utility
function, we show that people can dis-
criminate only two and at most four con-
fidence states, the implication of which is
that they are not optimal decision-makers.
This finding counters a plethora of studies
suggesting the contrary and also rejects
an alternative stand according to which
people’s decisions are based on a sample
of an available posterior function.

Introduction

How do organisms select behavioral responses when interacting with a given environment?
According to a popular theory – the rational choice theory – the organism evaluates, for each
decision to be taken, its expected utility and selects thereafter the one yielding the highest
rank. Despite the fact that the descriptive adequacy of rational choice theory has long been
challenged on empirical as well as on theoretical grounds, mainly questioning its
biological/psychological plausibility [14, 15, 17, 29], the debate is far from being settled [2, 3, 16].
In order to maximize expected utility, an organism has to be able to associate a subjective
probability to each possible consequence of its actions. The characterization of this process
requires (i) the quantitative assessment of the organism’s ability to attach probabilities to
events, and (ii) the appraisal of the measured subjective probabilities against those a Bayesian
observer, with the same prior knowledge as the organism, would assign to the same events. The
experimental instantiation of such comparisons has been hindered by serious methodological
problems with assessing subjective probabilities.

Subjective probability is tantamount to the organism’s confidence in the occurrence of an
event E [6]. It is formally defined as a marginal rate of substitution [6, 26], that is, the
organism’s subjective probability about the event E occurring or having occurred is p(E), if
the organism is indifferent to gaining one unit of utility contingent on E against gaining p(E)
units of utility for sure. Current methods of measuring subjective probabilities hence
confidence in, e.g., perceptual decisions (about the choice being correct) using opt-out or
post-decision wagering techniques are straightforward operationalizations of the above
definition. A major, well and long known (see, e.g., [26]), problem with these methods is that
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Figure 1. Experimental paradigm and results. Orientation-orientation (O-O) paradigm (A). In this task the participants had to make
two consecutive decisions on which of two Gabor-patches was more tilted from the vertical (hence the signal on which the participant had to
base the decision was the difference in orientation between the two Gabors). While the absolute difference in tilt between the two Gabors
(the discriminability) is drawn independently from a uniform distribution in each of the two Gabor-pairs , the location of the more tilted
Gabor in the second Gabor-pair (left/right; indicated by the small thick black arrows in the right-hand panel) was made depended on the
accuracy of participant’s first response. Faced with this task an ideal observer would assign a prior probability equal to its confidence – of
being correct in the first decision – that the more tilted Gabor in the second Gabor-pair was displayed in the right-hand (green) placeholder.
Performance (proportion of correct responses) plotted as a function of discriminability (measured in units of internal noise) separately for 1st
and 2nd decisions/Gabor-pairs in all tasks and conditions. B) Note how performance in the second decision is higher, especially for very small
orientation differences (where performance would be at chance in the absence of prior information). Performance is averaged over 6 equally
spaced discriminability bins. The thickness of the traces represents bootstrapped standard errors across participants.

they rely on unverifiable assumption about the utility function (which cannot be measured) of
the participant. Such methods cannot disentangle subjective probability from factors such as
opportunity cost in waiting-time paradigms. More frequently used, methods requiring explicit
confidence valuation by the decision-maker suffer from well-documented miscalibrations and
response biases (see, e.g., [10,11,21]).

Here, we present a novel approach of estimating subjective probabilities which overcomes
all the problems above. Human participants were presented with two consecutive signals and
asked to decide whether they were above or below some reference value. The key innovation
was that the statistics of the second signal was made contingent upon the decision-maker
having made a correct decision on the first signal (explicit feedback is not provided):
correct/incorrect first decisions resulted into signals above/below the reference value for the
second decision. Differences in performance between the second and the first decisions, at signal
parity, allow the estimation of the subjective probability of being correct on the first decision
(i.e., the confidence). Using this approach we show that humans are quite accurate in assessing
confidence, yet they exhibit systematic deviations from optimality, most commonly in the form
of under-confidence. These systematic deviations cannot be accounted for by a sample-based
approximation of the optimal Bayesian strategy (see Supplemental information). An alternative
non-Bayesian model, characterized by a finite number of discrete confidence levels, provides the
best and most parsimonious description of the empirical patterns of humans’ choices.

Results

The dual-decision paradigm

The paradigm is illustrated in Figure 1A with an example of the orientation discrimination
task (orientation-orientation or O-O condition, see Material and methods and Supporting
information for details), in which the participant is presented with two consecutive Gabor-pairs,
and for each pair must decide which of the two Gabors was more tilted from the vertical;
correct/incorrect first decisions result into displaying the more tilted Gabor in the right/left
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Figure 2. Bayesian and a class of non-Bayesian models of confidence and of sequential decision-making. (A) Internal beliefs
of the Bayesian (top panels) and non-Bayesian observer (bottom panels), for first and second decision (from left to right).The lower abscissae
represent the state of the world, i.e. the actual difference in tilt between the two Gabors in a pair, while the internal belief distributions about
the decision variable are referred to the upper two abscissae. The first stimulus in this ad-hoc trial (s1) evokes a noise contaminated internal
response (r1 = s1 + η, where η is Gaussian noise with variance σ2), which is the only information available to the participant. The Bayesian
observer has full knowledge about the statistics of the internal noise, and can accurately compute a likelihood function which provides the
probability of observing that specific r1 for each possible values of the stimulus. Because for the first decision the prior is flat (grey lines in the
upper panels), the likelihood (dashed curves) agrees with the posterior distribution (red continuous curves) about the real location of s1. The
Bayesian probability that represents the confidence c1 in the first choice (’right’, the correct response) corresponds to the area of the posterior
distribution filled in red (c1 = p (s1 ≥ 0|s1)). The decision variable for the second response is represented in the right upper panel. Note that
the prior distribution (grey line) now assigns a larger probability (equal to the confidence in the first choice) to the possibility that the more
tilted Gabor appeared in the right placeholder. Inasmuch as the response to the first task was correct, the true value of s2 for the second
decision is indeed positive (lower mid-panel). s2 being however very small (as illustrated), it evokes by chance (due to internal noise) a negative
internal response r2 that would (in the absence of prior information) lead to the erroneous conclusion that the more tilted Gabor was on the
left. Nevertheless, because of the asymmetrical prior distribution, the posterior distribution is still favoring the correct response. The lower
left panel illustrates how the non-Bayesian observer (who does not have knowledge about the statistics of the internal noise, and only ”sees”
point estimates) could reach the same response as the Bayesian observer by comparing the internal response r1 with an additional confidence
criterion (the two vertical blue lines symmetrically placed about the decision criterion, dashed vertical line). By means of this heuristic rule
the non-Bayesian observer discriminates ’confident’ decisions, from ’uncertain’ or ’non-confident’ decisions (without assigning a numerical
probability to his confidence). Only in trials where this observer is confident, he will shift the second decision criterion, with the result of
increasing the frequency of responses ’right’. It can be demonstrated that the Bayesian observer’s use of prior expectations for the second
decision also amounts to shifting its the decision criterion (see Supporting Information), and that the optimal criterion in the second decision is
a function of the confidence c1 in the first decision. The optimal criterion shift, plotted as a function of the confidence c is represented in panel
B (red curve), together with an example of criterion shift for the non-Bayesian observer (staircase blue line).

place-holder, respectively. The very same experimental format was applied to a duration
discrimination task (duration-duration or D-D condition) where participants had to decide
which of two Gaussian blob flashes (presented sequentially) was displayed for a longer duration.
These two conditions were tested both in a first experiment where the difficulties of first and
second decision were independently drawn from a uniform distribution (random-pairs
experiment) and, on a different group of subjects, in another experiment where these were not
independent (correlated-pairs experiment): more specifically difficult/easy first decisions were
more likely to be followed by easy/difficult second decisions, respectively (see Material and
methods). This correlation was introduced to encourage participants to exploit the statistical
dependance between the signal in the two decision. Additionally, we also tested a condition
where the two tasks were combined, duration-orientation or D-O condition, to test within our
paradigm the hypothesis that confidence may work as a ’common currency’ between different
perceptual judgments [8, 9].

Given the specific stimuli presented in the first decision and participant’s trial-by-trial
response, participant’s performance in the dual-decision paradigm can be compared with that
of a Bayesian ideal observer that accurately estimates the probability of being correct in the
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Table 1. Results of the logistic analysis that measured the influence of the correctness of the first
decision on the probability of choosing ’right’ in the second decision (after controlling for the stimulus).

Condition Experiment χ2 p β odds-ratio
D-D correlated-pairs 13.73 0.0002 2.26 9.59
D-D random-pairs 15.70 <.0001 3.54 34.53
O-O correlated-pairs 11.69 0.0006 1.85 6.34
O-O random-pairs 0.90 0.46 0.90 2.46
D-O correlated-pairs 13.30 0.0003 2.16 8.64

first decision and uses it as prior information for the second decision, according to the rules of
Bayesian decision theory (see Figure 2A). We have also compared human’s behavior with that
of two other classes of non-Bayesian models, one characterized by a finite number of discrete
confidence levels; see Figure 2A bottom), and another representing a sample-based
approximation of the Bayesian model (where the posterior distribution is approximated by
finite number of samples; see Supplemental information).

Model-free analyses

In figure 1B we plotted the proportion of correct responses as a function of discriminability
(measured in units of internal noise) in the first and second decision. As it can be seen, second
decision performance (darker traces) is higher than first decision performance, especially for
the most difficult trials (where the difference between the two stimuli in a pair was very small
and first decision performance was close to chance). Since the more tilted or longer stimuli
appeared more often in the right placeholder for the second decision (given that task difficulty
was adjusted so as to yield average first-decision performance above chance), an increase in
second-decision performance could be the result of a fixed bias (i.e., participants having chosen
a ’right’ response more frequently), without necessarily involving a trial-by-trial monitoring of
uncertainty. To control for this possibility we performed a logistic analysis to measure the
influence of the correctness of the first decision on the probability of choosing ’right’ on the
second decision. For each experiment (correlated- and random-pairs) and condition (O-O, D-D,
and D-O) we fitted a hierarchical (mixed-effects) logistic regression, using R [23] and the lme4
package [1], with the absolute difference between the two stimuli (in units of σ) and the
accuracy of the first response as fixed effect predictors, and the participant as a grouping
factor. We evaluated statistically the effect of the correctness of the first response with a
likelihood ratio test between the fitted model and a reduced model where the effect of the first
response was set to 0. This test resulted significant for all the experiments and conditions (see
Table 1), with the exception of the O-O condition in the random-pairs experiment. In order to
check whether a simpler fixed-bias model would really suffice to describe performance in this
latter case, we performed a Monte Carlo simulation. For each trial we estimated the expected
probability of a ’right’ second response on the basis of the stimuli presented and the
psychometric function fitted to the first decision responses. This results in a set of Bernoulli
trials with different probabilities of success, which we simulated 105 times in order to estimate
a 95% confidence interval (using the percentile method) on the expected proportion of second
responses ’right’ given the stimuli and the first response. The results revealed that after a
wrong first response none of the participants responded ’right’ more often than what would be
expected given the stimuli: all the observed proportions resulted within the confidence intervals
(which were calculated at the Bonferroni corrected alpha level 0.005). Instead, after a correct
response, the observed proportion of responses ’right’ exceeded the confidence interval for 4 out
of the 5 participants in this experiment. This result suggests that also in this condition, where
the fixed bias hypothesis could not be rejected at the group level, we find evidence that most
participants have monitored the confidence in their first response on a trial-by-trial basis.
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Model comparison

On average, the cross-validated log-likelihoods were higher for the non-Bayesian class of models,
regardless of the number of confidence levels (Figure 3). The log-likelihoods were computed on
the left-out samples, meaning that the non-Bayesian observer was better at predicting the
actual behavior of the participants. With very few exceptions (see Supporting Information,
Figure S2), the non-Bayesian class of models also outperformed the Bayesian models for each
individual subject. It must be noted that the cross-validated log-likelihoods show very little
change with the number of confidence levels (and thus of the number of free parameters). Still
some participants’ data were slightly better predicted by the models with 3-4 levels of
confidence (see Supplemental information, Figure S2). The finding that the cross-validated
log-likelihood did not decrease nor increase systematically with the increasing number of free
parameters is most likely due to the limited number of trials run in each experiment and
condition. Indeed, the variance of the estimated parameters increases drastically with the
number of implemented confidence levels (see Supplemental information, Figure S3).
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Figure 3. Cross-validation results. Log-likelihood differences (non-Bayesian minus Bayesian),
averaged across participants, are positive, indicating that the non-Bayesian class of models had a better
predictive performance. Error bars represent bootstrapped standard errors of the mean (SEM).

Given the results of the cross-validation, it is important to understand the differences
between the predictions of the Bayesian and non-Bayesian models. Figure 4 displays the
observed proportion of ’right’ second decision choices and the corresponding correct responses
(top and bottom panels, respectively) as a function of the difficulty of the first decision
averaged across observers (see Supporting Information, Figure S3 for individual data). It can
be seen that the easier the first decision, the more do subjects tend to choose a ’right’ in the
second decision, and the more correct are their responses. While both models, Bayesian and
non-Bayesian, capture the trend in participants’ responses, the non-Bayesian model (here with
2 confidence levels) is much closer to the empirical data. On average, the data show an
under-confidence bias (with respect to optimal): participants responded ’right’ in the second
decision less frequently than what would be expected given the stimuli presented, indicating
that they underestimated their probability of being correct (see Figure 4, upper panels). Based
on this observation we rejected also sampling-based approximations of the Bayesian model as a
viable explanation of the data, as such models predict systematic overconfidence biases (see
Supplemental information). Indeed individual data revealed an over-confidence bias (e.g. see
participant 4, D-D condition, Supplemental information, Figure S4B, or participant 8, D-O
condition, Supplemental information, Figure S4A) only in in few cases (5 out of 37
combinations of participant and condition).

Discussion

We developed a novel approach where in a sequence of two dependent perceptual decisions
humans could improve their second decision performance by taking advantage of the fact that
the statistics of the stimuli presented for this second decision depended on the correctness of
their first decision. This experimental protocol can be regarded as a laboratory proxy of more
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Figure 4. Comparison of model predictions and empirical data. See main text for details.
The grey bands represent the expected proportion of ’right’ (i.e. reporting s2 > 0) and correct choices
that should have been observed if the participants did not adjusted their criteria for the second decision.
Error bars, and the width of the bands represents ±1bootstrapped SEM.

complex environments in which confidence is used to guide behavior in cases where a current
decision depends on the unknown outcome of a previous one. We developed a normative
Bayesian observer model of this task, i.e., of an ideal observer who performs Bayesian inference
to estimate the posterior probability of being correct in the first decision (the confidence), and
use it optimally (i.e., maximizing the probability of correct second decision) as prior probability
distribution for the making the second decision. By comparing participants’ performance with
the predictions of the Bayesian model, we were able to test the hypothesis that human
observers are able to evaluate probabilistically their own uncertainty and make perceptual
decisions according to the rules of Bayesian inference. More specifically, our paradigm allows
the simultaneous test of two main tenets of Bayesian theories of perceptual decision-making,
namely whether humans: (1) can and do compute the posterior probability that their choice is
correct, and (2) use this posterior probability and combine it optimally as a prior for incoming
sensory observations. Previous studies have repeatedly supported the hypothesis that human
observers can combine prior information (e.g. due to environmental statistics) with sensory
observations optimally or nearly-optimally [18,27] and use this prior to adjust decision
criteria [12,13], even when these priors are learned on very short timescales [5]. These results
would suggest that any deviation from optimality in our tasks should be attributed to the
internal assessment of confidence, rather than to its use as a prior for the next perceptual
decision.

The present results revealed clearly that the participants engaged in this task exhibit
systematic deviations from the predictions of the normative Bayesian model. While they were
clearly able to take trial-by-trial uncertainty into account (a simple fixed bias model was not
sufficient to account for the observed behavior, see Results, Model-free analyses), their pattern
of second decisions revealed the presence of a global miscalibration of confidence, specifically
under-confidence, as indexed by lower rates of responses ’right’ in the second decision with
respect to ideal. These biases could be accounted for by our non-Bayesian class of models.
From a psychological point of view, the non-Bayesian class of models posits that confidence is
discretized in a number of distinct levels, as also suggested by previous work [31]. For example,
in the one-criterion variant of our model there would be two discrete confidence states:
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confident - i.e more likely that the response was correct - vs. non-confident - i.e., equally likely
that the response was correct or wrong (see Figure 2). This one confidence criterion variant of
our model provided the best and most parsimonious description of the empirical data (see
Results, Model comparison). Because the heuristic model does not assume any knowledge
about the variability of the internal decision variable, these levels are defined only on an
ordinal scale and do not convey a precise numerical information about the probabilities
involved. Taken together, our experimental and modelling results indicate that humans can use
sensory evidence to perform comparative probabilistic judgments, but ultimately cannot assign
numerically precise subjective probabilities to the two events. These comparative probability
judgments, not linked to precise numerical values, are the essence of qualitative probability
reasoning [25], a weakened but more pragmatic and intuitive counterpoint of classical
probability theory.

The notion of qualitative probability lies at the foundations of the notion of subjective (or
Bayesian) probability since its early formulation [7, 25]. Much of the early work on the theory
of Bayesian probability has been dedicated to identifying the conditions that allow the
departure from the qualitative probability toward the quantitative (numerically precise)
probability, defined according to the classical Kolmogorov axioms [20]. Several propositions
have been put forward, but all of them ultimately assume that the decision-maker’s knowledge
allows the partition the probability space associated with the event space into a uniform and
arbitrarily large collection of disjoint states or events [25]. While this assumption can be used
to provide a formal framework for exact reasoning under uncertainty, it may be too
fine-grained for a realistic, biological decision-maker. Indeed, in the real world assigning exact
numerical probabilities is often difficult or impossible, and the ability to compare the likelihood
of two events without having to provide exact probabilities may be sufficient. Our results
support this idea, as the performance of the heuristic observer show a marked increase in the
probability of correct second decisions relatively to a simpler model which does not consider
any prior information (compare the blue with the grey traces in the lower panel of Figure4,
while the ensuing performance benefit obtained by the Bayesian model may not be enough to
justify its increased computational complexity and costs.
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Material and methods
Participants (5 for the random-pairs experiment, and 9 for the correlated-pairs experiment) performed a
sequence of two decisions on each trial, with the statistics of the second decision stimuli being
conditioned on the correctness of the first decision. All experiments were performed in accordance with
French regulations and the requirements of the Helsinki Convention. The protocol of the experiments
was approved by the Paris Descartes University Ethics Committee for Non-invasive Research (CERES).

We describe here the general structure of the protocol, with the details of the implementation and
of the analysis being provided in the Supplemental information. At the beginning of each trial, two
stimuli were presented in two placeholders on the left and right of the fixation point. The two stimuli
differed along one physical dimension [orientation of the Gabor-patches – spatial frequency
1.5 cycles/dva (degrees of visual angle), standard deviation of the envelope 0.7 dva, contrast 25%, – or
duration – Gaussian blobs with a pick intensity of ≈ 25.3 cd/m2 and a standard deviation of 0.65 dva].
The participant was required to indicate which of the two stimuli was characterized by a higher value
along the given dimension by pressing the left/right arrow keys. The difference between the two stimuli
was uniformly distributed within 2 JNDs (just noticeable differences), measured in preliminary sessions
(see below). 400 ms after providing the first response, a second pair of stimuli was presented and the
participant was again asked to indicate which of the two has a higher value. The difference in value
between the stimuli in the second pair was also randomly sampled from a uniform distribution.
However the location of the higher-value stimulus depended this time on the correctness of the first
response: if the first response was correct, the higher-value stimulus was presented on the right, and on
the left otherwise. Participants were informed about this rule, and were asked to use it in order to
achieve the best possible second decision accuracy. Before starting the experimental trials, participants
were explained the rule and were familiarized with a version of the task where the difference between
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the two stimuli to be compared could go up to very high values (up to 45◦ in the orientation task, and
up to 1 second in the duration task, uniformly distributed). The large differences in the practice session
were intended to make the rule clear and unambiguous for all participants. In one first experiment
discrimination difficulties in the first and second decisions were drawn independently (random-pairs).
In a second experiment we biased the probability of association between discrimination difficulties in
the first and second decision (correlated-pairs, see Supplemental information, Figure S5). Specifically,
when the difference in intensity in the first pair was less than 1 JND, there was a 0.7 probability that
the difference in the second pair would be larger than 1 JND, and vice versa. This was intended to
encourage participants to make use of the rule. The random-pairs experiment was tested in two
conditions, run in different session on different days (order balanced), where the two decisions involved
both an orientation discrimination (O-O) or a discrimination of duration (D-D). Each of these sessions
comprised 500 trials. The correlated-pairs experiment was declined in three different conditions, O-O,
D-D and D-O (where the two decisions involved a duration discrimination followed by an orientation
discrimination). Each of the three sessions comprised 300 trials, each consisting of two consecutive
perceptual decisions. The different number of total trials in the correlated- and random- pairs
experiments was designed so that they resulted in similar number of easy (difficult) decisions followed
by difficult (easy) decisions. Each testing session was divided in 10 blocks of trials. At the end of each
block participants were given a feedback about the overall accuracy of their second decisions in that
block. Additionally, to help participants keep track of their performance, starting with the end of the
second block they were also informed on whether their accuracy had increased or decreased with respect
to the previous block.

Analysis

For each participant we estimated the standard deviation of the internal noise, σ, by fitting a
cumulative Gaussian psychometric function on proportion of ’right’ choices in the first decision
(individual psychometric functions are reported in Supporting information, Figure S6). Next, we used
the estimated σ to transform the values of s from raw units (e.g. degrees and seconds) to units of
internal noise. Finally, we fitted the non-Bayesian models using maximum likelihood estimation, and
compared the predictions of Bayesian and non-Bayesian models. Because these models differs in the
number of free parameters, in order to prevent overfitting we performed a leave-one-out cross-validation
procedure, and compared the models on the basis of the cross-validated log-likelihoods summed over all
the left-out trials. All analyses were performed in the open-source software R [23]; the data and the
code of the analysis are available upon request. The mathematical details of the computational models
are provided in the Supporting Information.
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Supplemental information

Material and methods

Apparatus

Participants sat in a quiet, dimly lit room, with the head positioned on a chin rest at a distance of
60 cm from the display screen, a gamma-linearized Mitsubishi Diamond Plus 230SB CRT monitor
(screen resolution 1600x1200, vertical refresh rate 85 Hz). Stimuli were generated by a computer
running Matlab (Mathworks) with the Psychophysics Toolbox [4, 22].

Stimuli and procedure

All experiments were run with the same visual display, consisting of a central fixation point and four
placeholders, continuously visible on a uniform gray background (luminance ≈ 13.6 cd/m2). The four
placeholders were circles measuring 2.8 dva (degrees of visual angle) in diameter, whose centers were
placed at 1.8 dva from the fixation point. Two placeholders were grey (≈ 15.5 cd/m2), and were placed
above the horizontal midline; the other two were placed below the midline and were colored in red the
one on the left, and in green the one on the right (their luminance was matched with the grey
placeholders, ≈ 15.5 cd/m2).

In the orientation (O-O) task the stimuli were two Gabor gratings (sinusoidal luminance
modulation presented within a Gaussian contrast envelope) of different orientations, presented for
200 ms. The spatial frequency of the Gabors was set at 1.5 cycles/dva, the phase was drawn randomly,
and the standard deviation of the Gaussian envelope was 0.7 dva. The Gabor displayed in the left
placeholder was always tilted to the left, and the one appearing in the right placeholder was always
tilted to the right. The task of the participants was to indicate which Gabor was more tilted from the
vertical; the less tilted of the two Gabors was always tilted by 15◦; the minimum difference was 0.1◦.

In the duration (D-D) task the two stimuli consisted of white Gaussian blobs (standard deviation
0.65 dva), presented sequentially in the two placeholders (left/right). The order of presentation
(left/right stimulus first) was balanced with respect to the longer/shorter duration of presentation.
Participants were asked to indicate the location (left/right) of the longer duration blob. The shorter
duration was always set to 600 ms, and the difference between shorter and longer durations was
discretized in bins determined by the vertical refresh of the monitor (≈ 12 ms). The minimum duration
difference was one single monitor refresh interval.

Pre-test JND measurement

Before the orientation and duration task, we measured individual JNDs using a weighted up-down
staircase procedure [19]. The purpose of this pre-test was to quickly obtain a measure of the JND in
order to adapt the range of stimuli in the main experiment to individual sensitivities. The staircase
procedure continued until 30 reversals were counted. The initial step size (the size of the
decrease/increase of the difference between the two stimuli) was 2◦ in the orientation task and 4 refresh
intervals in the duration task (≈ 50ms), and was diminished to 0.5◦ and 1 refresh after the second
reversal. Stimuli in these pre-test measurements were presented only in the top placeholders.

Participants

5 subjects (2 female; mean age 30.8, standard deviation 3.1) participated in both conditions of the
random-pairs experiment (D-D, and O-O; see Main text, Material and methods). 9 participants (4
female, 2 authors; mean age 33.9, standard deviation 9.6) participated in the 3 conditions of the
correlated-pairs experiment (D-D, O-O, D-O). All participants (except the author) were näıve to the
specific purpose of the experiment. All conditions were performed in separate session on different days.
The order of the D-D and O-O conditions was counterbalanced across subjects, while the D-O condition
was always performed in the last session. All participants had normal or corrected-to-normal vision and
gave their informed consent to perform the experiments.

Computational models
To model the performance in our task, we considered that the observer forms a decision variable based
on the difference in the intensity between the left and right stimuli, s =

∣∣sright∣∣− |sleft|, where sright
and sleft indicates the deviation from vertical of the two Gabor gratings in the orientation task, or the
duration of the two blobs in the duration task. Hence the task amounts to deciding whether the signal
s is greater or less than 0. We assumed that the observer has only access to a corrupted version of s,
r = s+ η, where η is Gaussian noise with variance σ2. In the first decision s is uniformly chosen from
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an interval centered around 0 (i.e., s1 will be above 0 with probability 1/2), and there is no prior
information about the sign of s1. The probability p(+|s1) of the observer reporting s1 > 0, is given by

p (+|s1) =
1

2

[
1 + erf

(
s1

σ
√

2

)]
= Φ

( s1
σ

)
(1)

where Φ is the cumulative distribution function of the standard normal distribution. We fitted this
function by maximum likelihood to estimate the value of σ, for each participant and task (duration and
orientation), taking into account only the first decisions (see Supplemental Figure S6).

Bayesian observer

The ideal Bayesian observer has full knowledge of the statistics of the internal noise. Because we
assumed the internal noise to be Gaussian, the likelihood function, that is the probability of observing
r1 given s1 is

p (r1|s1) =
1

σ
√

2π
e
− 1

2

(
r1−s1
σ

)2
(2)

In first decision, the prior probability of s1 is uniform with the range (−R,R), that is p(s1) = 1/(2R) if
–R ≤ s ≤ R and 0 otherwise. Taking the prior into account, the unconditioned probability of observing
r1 can be computed from

p (r) =
R
∫
−R

p (r1|s1) p (s1) ds1 (3)

=
1

4R

[
erf

(
R+ r1

σ
√

2

)
+ erf

(
R− r1
σ
√

2

)]
(4)

The posterior probability of s1 having observed r1 can be obtained applying Bayes rule

p (s1|r1) =
p (r1|s1) p (s1)

p (r1)
(5)

Finally, the decision variable c+1 (r1), corresponding to the probability that the signal s1 was greater
than 0 is given by

c+1 (r1) =
R
∫
0
p (s1|r1) ds1 =

erf
(
r1
σ
√
2

)
+ erf

(
R−r1
σ
√
2

)
erf
(
R+r1
σ
√
2

)
+ erf

(
R−r1
σ
√
2

) (6)

When c+1 (r1) ≥ 1/2 the observer reports that s1 > 0, otherwise he reports that s1 < 0. The probability
of being correct in the first decision, that is the confidence of the ideal observer, is given by

c1 = max
[
c+1 (r1) , 1− c+1 (r1)

]
. The ideal observer would use his confidence c1 to adjust prior

expectations for the second decision, specifically by assigning a prior probability equal to c1 to the
possibility that s2 is drawn from the positive interval

p (s2) =


c1
R
, if 0 < s2 ≤ R

1−c1
R

, if −R ≤ s2 < 0

0, otherwise

(7)

By applying the same calculation as above with the updated prior p(s2), one obtains the decision
variable c+2 (r2) for the second decision

c+2 (r2) =
c1
[
erf
(
r2
σ
√

2

)
+ erf

(
R−r2
σ
√

2

)]
(1− c1) erf

(
R+r2
σ
√
2

)
+ c1erf

(
R−r2
σ
√

2

)
+ (2c1 − 1) erf

(
r2
σ
√
2

) (8)

This equation reduces to the one for the first decision variable when c1 = 1/2, as it should. Note also
that the range R on which s1 and s2 takes values is immaterial. It is possible to simplify equations and
by taking the limit R→∞. In this limit one obtains

c+1 (r1) =
1

2

[
1 + erf

(
r1

σ
√

2

)]
(9)

c+2 (r2) =
c1
[
1 + erf

(
r2
σ
√
2

)]
1 + (2c1 − 1) erf

(
r2
σ
√
2

) (10)

The decision rules described by these equations amount to comparing the internal signal r to a criterion
θ, and decide accordingly (i.e., if r ≥ θ, chose s > 0, otherwise chose s < 0). The criterion for the first
decision, θ1, is given by

c+1 (θ1) =
1

2
⇒ erf

(
θ1

σ
√

2

)
= 0 (11)
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which is satisfied for θ1 = 0. Similarly, the criterion for the second decision, θ2, is given by

c+2 (θ2) =
1

2
⇒ erf

(
θ2

σ
√

2

)
= 1− 2c1 (12)

which indicates that θ2 is a function of c1 (see Main text, Figure 2B).

Non-Bayesian observer

As an alternative to the optimal Bayesian model we considered a class of models that do not assume
any knowledge about the nature of the internal stochastic process linking the stimulus s with the
internal observation r. These non-Bayesian models perform similarly to the Bayesian model for the first
decision, that is when r ≥ 0 they chose s > 0, otherwise s < 0. However, they cannot estimate a full
probability distribution over the values of s, and therefore can assess confidence only by comparing the
internal response r (which can be described as a point-estimate) to a set of one or more fixed criteria
(Main text, Figure 2). In the case of a single confidence criterion, the non-Bayesian observer is
confident in the response when the internal signal exceed the confidence criterion, and uncertain
otherwise. When confident about the first response, he shifts the decision criterion for the second
decision by a fixed amount (thereby increasing the probability of choosing s2 > 0). If only one criterion
is used, then the model has 2 discrete confidence levels (e.g., uncertain vs confident). In such a model,
if the confidence criterion is w1, the probability of the observer being confident about his first decision,
after having responded ’right’ (+), is

p (confident|s1,+) =
1− Φ

(
s1−w1
σ

)
1− Φ

(
−w1
σ

) (13)

Note that this probability do not denote the confidence of the observer about his choice, which instead
is assumed here to be a discrete binary state. The probability of the observer reporting s2 > 0 in the
second decision is then

p (+|s2) = p (confident|s1,+) Φ

(
s2 − θ2
σ

)
(14)

+ [1− p (confident|s1,+)] Φ
( s2
σ

)
where θ2 is the shift in criterion for the second decision applied by the observer when he is confident in
his first decision. w1 and θ1 are free parameters that we fit to the data by maximum likelihood
estimation. It is straightforward to extend the model in order to have more than two confidence levels.
In our analysis we considered models with 2, 3, 4 discrete levels of confidence, which had 2,4 and 6 free
parameters, respectively. The parameters w1, w2, w3 and θ2, θ3, θ4 were constrained so that
0 ≤ w1 ≤ w2 ≤ w3 and 0 ≥ θ2 ≥ θ3 ≥ θ4.

Sampling-based approximation of Bayesian observer
An interesting alternative to the models presented in the previous sections is represented by models
where the observer does not have access to the full probability distribution of his internal signals, but
bases his decision on a limited number of samples. In these models the posterior probability that the
choice is correct (the confidence) is approximated on the basis of a fixed number n of samples
x1, x2, ..., xn drawn from the posterior distribution p (s|r). The performance of these sampling-based
models will approach the optimal Bayesian model as n→∞, however they are expected to display
systematic biases and deviations from the optimal model for small number of samples [24]. Here we
show, and confirm by simulation, that the sampling-based approximation of the Bayesian observer will
display a systematic over-confidence bias, that is in the opposite direction with respect to what we
found for most of our subjects, and is thus inconsistent with our behavioral results.

Sampling bias and over-confidence

It has been shown that when a probability p is estimated from a small sample as the empirical
frequency of successes k out of n random trials, p̂ = k/n, the probability of overestimation, that is when
p̂ > p, or underestimation, p̂ < p, depends in a complex way on both the probability p and the sample
size n [28]. This is however for estimating a single fixed probability p. What would be instead the
predominant bias, over many estimations, when the probability p varies randomly within a given range?
In our experiments confidence is the posterior probability that a binary choice is correct, and as such it
varies from complete uncertainty, p = 0.5, to complete certainty, p = 1, hence p ∈ [0.5, 1]. We show here
that when a set of probabilities p1, ..., pm uniformly distributed in the interval [0.5, 1] is estimated using
a limited number of samples n, the predominant bias is one of over-estimation.
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For a given n and p the probabilities of over- and under- estimation are

p (p̂ > p|n, p) =

n∑
k=bnpc+1

(n
k

)
pk(1− p)n−k (15)

p (p̂ < p|n, p) =

dnpe+1∑
k=1

(n
k

)
pk(1− p)n−k (16)

Where d.e and b.c are the ceiling and the floor operators, i.e. functions that map a number to the
smallest following integer or the largest previous integer, respectively. Following Shteingart and
Loewenstein [28] we consider the difference between these two, denoted as probability estimation bias

∆p = p (p̂ > p|n, p)− p (p̂ < p|n, p) (17)

When ∆p is positive, it indicates that the probability p is more likely to be overestimated than
underestimated, and viceversa for negative values. Assuming that all values of p in the interval are
equally likely, the expected bias can be computed by integrating ∆p over the range of p (that is [0.5, 1])

E [∆p] =

1∫
0.5

∆p

0.5
dp (18)

A positive value of the expected probability estimation bias (that is E [∆p] > 0) indicates that, on
average, the probabilities in this interval are more frequently overestimated rather than underestimated.
This integral can be evaluated numerically, and in Figure S1A we plotted the expected probability
estimation bias as a function of the number of samples, for two different ranges. When p varies within
the range of confidence, [0.5, 1], the value of the probability estimation bias is always positive, although
modulated by the number of samples, indicating that in the range [0.5, 1] overestimation is more likely
than underestimation.

Fixed-n Bayesian sampler

Here we confirm by simulation the intuition developed in the previous paragraph. We consider a fixed-n
policy, where the observer draws a fixed number of samples for each decision. Although alternative
decision policies are possible (such as an accumulator policy, where the decision is taken after a
minimum number of samples is accumulated in favor of one of the options), these have been shown
elsewhere to result in very similar performances as the fixed-n policy [30].

We start by providing the mathematical details of the model. Similarly to the previous cases, we
assume that the observer has only access to r1, a corrupted version of the stimulus s, r1 = s1 + η,
where η is Gaussian noise with variance σ2. In the first decision the prior is flat and, taking the limit of
the stimuli range R→∞, the posterior distribution p (s|r) results in a Gaussian distribution centered
on the internal observation r1. The probability that a sample from this distribution is above 0 (the
criterion for the first decision) is therefore given by

p (xn > 0|r1) =
1

2

[
1 + erf

(
r1

σ
√

2

)]
= Φ

( r1
σ

)
(19)

The conditional probability that the observer chooses (+) after having observed r1 is obtained by
summing the probability of all the set of samples with at least

⌈
n
2

⌉
samples above 0 and is given by

p (+|r1) =
n∑

k=dn2 e

(n
k

)
p (xi > 0|r1)k[1− p (xi > 0|r1)]n−k (20)

where p (xi > 0|r) is the probability that a single sample xi is above 0. In other words the observer
respond (+) when the majority of samples is above 0. The observer’s confidence in his decision, c, is
given by the proportion of samples in favor of the choice made

c = max
[
c+ , 1− c+

]
(21)

where

c+ =
1

n

n∑
i=1

1xi>0 (22)

The probability that the observer chooses (+) with respect to s1 can be calculated by integrating the
probability p (+|r1) over all possible values of r1

p (+|s1) =

n∑
k=dn2 e

(n
k

) ∞∫
−∞

Φ
( r1
σ

)k[
1− Φ

( r1
σ

)]n−k
p (r|s1) dr1 (23)
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where

p (r1|s1) =
1

√
2πσ2

e
− (r1−s1)2

2σ2 (24)

is the likelihood function that gives the probability of the internal observation r1 given the stimulus s1.
In the second decision the prior probability of the stimulus s is different for stimuli above or below

0. From the point of view of the observer, the probability that the stimulus for the second decision s2 is
above 0 corresponds to the confidence c that the first decision was correct and, conversely,
p (s2 < 0) = 1− c. Updating the prior probability for the second decision amounts to a shift in the
decision criterion, as demonstrated for the full Bayesian model. The shift in criterion for the second
decision θ is a function of the confidence in the sampling model as in the full Bayesian model

θ = σ
√

2 · erf−1 (1− 2c) (25)

However, and differently from the full Bayesian model, the confidence is limited to a fixed set of values
determined by the number of samples n. The number of possible confidence levels is

⌈
n+1
2

⌉
, and each

of these corresponds to a value of θ. If the observer’s first decision was (+), then the probability of the
confidence level cj

p (cj |s1,+) =
(n
k

) ∞∫
−∞

Φ
( r1
σ

)k[
1− Φ

( r1
σ

)]n−k
p (r1|s1) dr1 (26)

where j ∈
(
1, ...,

⌈
n+1
2

⌉)
is an index linked to the number of samples above the criterion, k, according

to k =
⌊
n−1
2

⌋
+ j.

Conversely, if the observer’s first decision was instead (−), then the probability of the confidence
level cj is

p (cj |s1,−) =
(n
k

) ∞∫
−∞

{
1− Φ

( r1
σ

)k[
1− Φ

( r1
σ

)]n−k}
p (r1|s1) dr1 (27)

and the relation between the index of confidence level j and the number of samples above 0 k becomes
k = n−

(⌊
n−1
2

⌋
+ j
)
.

A level of confidence cj would result in a shift in decision criterion θj , calculated according to
equation 25. The probability of choosing (+) in the second decision is

p (+|s2, s1, cj) = (28)

n∑
k=dn2 e

(n
k

) ∞∫
−∞

Φ

(
r2 − θj
σ

)k[
1− Φ

(
r2 − θj
σ

)]n−k
p (r2|s2) dr2

Taking everything together, the probability of the observer choosing (+) in the second decision
conditioned on s2 and s1 (and on the first decision +/-, omitted here for simplicity) can be calculated as

p (+|s2, s1) =

⌈
n+1
2

⌉∑
j=1

p (cj |s1) ·p (+|s2, s1, cj) (29)

Simulation

We simulated the model for values of n ranging from 2 to 9. In order to compare the model with the
full Bayesian observer, the value of σ for each n are adjusted so as to obtain the same proportion of
correct responses in the first decision. For each value of n and for 5000 iterations we: (1) generated a
random set of stimuli for 500 trials; (2) simulated the Bayesian model on those trials; (3) estimated σ
for the sampling models based on the set of first responses produced by the Bayesian model (this was
done using maximum likelihood estimation and equation 23); (4) simulated the sampling model. The
average values of σ obtained are shown in table S1.

This approach ensured that all models resulted in similar proportion of first correct decisions, see
figure S1B. The proportion of responses ’right’ (+) in the second decision are plotted in Figure S1C. As
expected, they show a pattern of marked over-confidence: all sampling models tended to respond +
more often than the optimal model, despite similar accuracy in the first decision. The bias is larger for
models with smaller number of samples, and decreases approaching the optimal Bayesian model as n
increases. Importantly, this bias is incompatible with the observed behavioral data, which showed on
average an under-confidence bias (see Main text, Results).
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Table S1. Estimated values of σ (and their standard errors) that result in similar performance as the
Bayesian model with σ = 1.

n. of samples σ se
2 0.74 0.06
3 0.83 0.06
4 0.84 0.06
5 0.88 0.07
6 0.89 0.07
7 0.91 0.07
8 0.91 0.07
9 0.93 0.07
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Figure S1. Sampling-based approximation of the Bayesian model. Expected probability estimation bias ∆p plotted as a function of
the number of samples when the probability p varies randomly (uniformly) either in the range [0.5, 1], plotted in grey, or in the range [0, 1] (A).
It can be seen that when p varies within the range of confidence, from chance to certainty [0.5, 1] the predominant bias is one of over-estimation
(because ∆p is always positive, grey line). Only when p varis over the whole domain of probability, [0, 1], the expected bias is on average zero
and over-estimation and under-estimation are equally likely (black line). Proportion of correct first decision in the sampling model as a function
of the number of samples n; the horizontal black line indicates the average performance of the full Bayesian model; error bars represents SEM
(B). Proportions of responses ”right” (+) in the second decision as a function of the difficulty of the first decision, as predicted by the full
Bayesian model (black line) and the fixed-n Bayesian sampler model (C).
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Figure S2. Cross-validation results for individual participants. For clarity, we marked with a + symbol the models with highest
cross-validated likelihood for each participant and condition (the symbol is absent for conditions where the Bayesian model obtained the highest
likelihood;).
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Figure S3. Variance of the hold-one-out estimates of the parameters of the non-Bayesian models, averaged across partici-
pants. Error bars represents bootstrapped standard errors. Despite similar predictive performance, the variance of the estimated parameters
increase drastically in the model with more than 2 confidence levels, suggesting overfitting.
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Figure S4. Comparisons of individual participants’ data and model predictions.
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Figure S5. Distribution of absolute differences between stimuli (in units of noise, σ),in the random-
pairs experiment, on the left and in the correlated-pairs experiment, on the right (both plots represents the stimuli
for all participant and conditions of the respective experiments). It can be seen that there is a negative correlation
in the correlated-pairs experiment, so that for example easy first decisions (|s1| > 1σ), are more often associate
with difficult second decisions (|s1| < 1σ). Note that while we set the range of the stimuli to be within 2JNDs as
measured in the pre-test, the stimuli are plotted here in units of internal noise that were estimated taking into
account all experimental trials; the variability of the range as represented here reflect the variability of the initial
JND estimate.
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Figure S6. The psychometric functions for the first decisions,which were used to estimated, for each participant,
the standard deviation of the noise (σ). (A) Orientation task, correlated pairs. (B) Duration task, correlated pairs.
(C) Orientation task, random pairs. (D) Duration task, random pairs
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