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The traditional trade-off in biomolecular simulation between accuracy and computational effi-
ciency is predicated on the assumption that detailed forcefields are typically well-parameterized
(i.e. obtaining a significant fraction of possible accuracy). We re-examine this trade-off in the more
realistic regime in which parameterization is a greater source of bias than the level of detail in the
forcefield. To address parameterization of coarse-grained forcefields, we use the contrastive diver-
gence technique from machine learning to train directly from simulation trajectories on 450 proteins.
In our scheme, the computational efficiency of the model enables high accuracy through precise tun-
ing of the Boltzmann ensemble over a large collection of proteins. This method is applied to our
recently developed Upside model [1], where the free energy for side chains are rapidly calculated at
every time-step, allowing for a smooth energy landscape without steric rattling of the side chains.
After our contrastive divergence training, the model is able to fold proteins up to approximately
100 residues de novo on a single core in CPU core-days. Additionally, the improved Upside model
is a strong starting point both for investigation of folding dynamics and as an inexpensive Bayesian
prior for protein physics that can be integrated with additional experimental or bioinformatic data.

A major challenge in protein chemistry is to extract
the underlying interaction energies from a set of proteins
that capture the physiochemistry that lead to their folded
structures. We address this challenge by showing that a
strong connection exists between properties of the native
basin and the rest of the protein’s conformational land-
scape, and this connection is strong enough to train a
potential for de novo folding simulations. Furthermore,
the resulting potential is inexpensive enough to equili-
brate simulations of small proteins in CPU core-days on
a commodity computer.

Since Anfinsen’s original demonstration that a pro-
tein’s sequence determines its structure, multiple compu-
tational strategies have been developed to predict a pro-
tein’s structure from its sequence. An additional facet of
this challenge is to replicate the energy landscape that
defines both the folding process and other dynamical
properties. In the absence of other information, coarse-
grained models with one or a few beads per residue are
too simplistic for de novo structure prediction. Cβ level
models having authentic protein backbones with φ/ψ
dihedral angles, but lacking side chain rotamers, have
achieved some success [2–4]. Within the last decade, all-
atom, explicit solvent methods have become successful
for the folding of some small proteins, although the abil-
ity to replicate the properties outside the native basin
requires improvement [5]. For the folding process, it is
unclear which representation provides the optimal com-
bination of detail and computational expense to repli-
cate protein folding and dynamics. Integral to the choice
of representation is the choice of interactions to include,
such as hydrogen bonding, van der Waals interactions
and hydrophobic burial.

Another factor to consider is the need for the train-
ing algorithm to balance the influence of all interactions.
Protein thermodynamics reflects a delicate balance be-
tween the free energy of the folded and unfolded states.
If one interaction term in the potential is slightly too

large, the entire landscape can be severely distorted. For
example, if backbone hydrogen bonding energies are too
large compared to backbone-solvent interactions (which
includes hydrogen bonds between the backbone and wa-
ter), an excess of hydrogen bonding will ensue and path-
ways will be dominated by unrealistically stable native-
and non-native secondary structures. In an extreme sit-
uation, long helices involving all residues could be the
lowest energy structure.

The balancing of these various energies has been a ma-
jor effort, and the balance is continually being adjusted
as new forcefield biases are identified [6]. However, the
adjustment of some parameters to correct one deficiency
can inadvertently degrade performance for other quanti-
ties. In order to achieve the correct balance, all terms
in the model should be trained together, rather than ad-
justed with an ad hoc procedure to correct each identified
deficit.

To achieve this balance with a detailed interaction
model, we use our recently developed, extremely rapid
Upside implicit solvent molecular dynamics program [1].
In Upside, each residue is represented with a polypep-
tide backbone and a side chain interaction site or bead
which can adopt up to 6 positions representing up to
six different side chain χ1/χ2 states. The key advance
of the model is the smoothing of the energy surface by
approximate analytic integration of free energies for the
side chains’ discrete states. When trained to predict side
chain conformations from the Protein Data Bank (PDB),
the method can fold a few small proteins with moderate
accuracy in a core-day. The majority of speedup of the
algorithm is a result of a unique side-chain calculation
which directly calculates the side chain probability dis-
tribution and its free energy. This free energy calculation,
performed at every time step, avoids the steric rattling of
the side chains which can occur in the condensed phase
in all-atom simulations, and so allows the backbone to
move in a smoother energy landscape.
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Figure 1. Computational inner loop for Upside. The possible
positions of the protein side chains are added during each en-
ergy or force computation, then an approximate Boltzmann
distribution is estimated for the side chains, and the free en-
ergy of the side chains is computed using the approximate
Boltzmann ensemble. The resulting energy derivatives are
pulled back to the backbone coordinates to update the back-
bone momenta.

Here, we demonstrate that we can achieve de novo fold-
ing for a diverse collection of proteins by combining our
fast-equilibrating Upside model with a contrastive diver-
gence procedure that optimizes the accuracy of the native
well. The resulting parameters are sufficiently balanced
and accurate to achieve reversible folding for many pro-
teins in our validation set. Furthermore, we demonstrate
that gradient descent on energy terms using only data
from sampled trajectories is sufficient to parameterize
a protein model with tens of thousands of parameters.
In addition, the resulting model is an excellent starting
point for large scale protein simulations using more de-
tailed models as well as the integration of large quantities
of external information (such as contact predictions).

COARSE-GRAINED MODEL

In our recently-developed Upside model, only the N,
Cα, and C atoms for each residue undergo dynam-

ics. This simple representation of the protein allows
for molecular dynamics on a smooth landscape but also
makes it challenging to include the entirety of the protein
physics. To address this challenge, we build additional
layers of derived coordinates during the energy compu-
tation, much like virtual sites in a traditional force field.
These layers include amide hydrogens, carbonyl oxygens,
hydrogen bonding and residue burial scores, and the pos-
sible locations of protein side chains. All of the derivative
information required is backpropagated through these
layers of representation during the force computation for
molecular dynamics. The most challenging representa-
tion is the side chain positions because a side chain pack-
ing problem must be solved in order to determine the
distribution of their positions for a given backbone ge-
ometry. To pack the side chains probabilistically and
obtain a side chain free energy, we use a self-consistent
iteration as described in our recent work [1] (Fig. 1).

The majority of Upside interaction parameters define
the pairwise interactions between side chains, where each
side chain is represented by a single directional bead. All
of the pairwise interactions have the functional form

V = κ(unif(r) + ang1(θ1) ang2(θ2) dir(r)), (1)

where unif, ang1, ang2, and dir are arbitrary curves rep-
resented by cubic splines. The potential for each of the(
20
2

)
+ 20 = 210 types of amino acid pairs are described

with 62 spline coefficients per pair, giving 13020 parame-
ters. There are also five interaction sites on the backbone,
roughly representing the H, O, N, Cα, and C atoms, with
54 parameters per interaction due to a smaller cutoff ra-
dius. The total number of side chain-backbone interac-
tion parameters is 5400.

We add an additional term to capture desolvation ef-
fects by computing the number of side chains within a
hemisphere above the Cβ (a derived position from the
backbone positions). To handle the uncertainty of ro-
tameric states that can affect the count, the count for
different rotameric states are weighted by the prior prob-
abilities of the rotamer states, given by

Ni =
∑
j

|i−j|>2

∑
χi

p(χi)S(|yi(χi)− y
Cβ
i | − (8 Å), (1 Å))S(angle(yi(χi)− y

Cβ
i , d

Cβ
i ) + 0.1, 1), (2)

where S is sigmoid-like cutoff function, yCβ is the position
of the Cβ , and dCβ is the Cα–Cβ bond direction. High

values of Ni correspond to buried residues and low values
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correspond to exposed residues. The total energy is

Venv =
∑
i

venvai (Ni), (3)

which is the sum of the individual venvai potential curves
for each residue i. While more sophisticated solvation po-
tentials exist, our implementation is very fast and easily
optimized by the contrastive divergence procedure, while
remaining flexible enough to represent many of the solva-
tion effects omitted by the two-body side chain potential.

The backbone Ramachandran potential is∑
i V

rama
i (φi, ψi), where V rama

i depends on the chemical
identity of the i−1, i, and i+1 residues. The Ramachan-
dran potentials are based on the turn, coil, or bridge
(TCB) Ramachandran probability models in the NDRD
backbone library [7]. We introduce a single parameter
controlling extra stabilization of angles consistent with
β-sheet geometries to allow training to counteract an
observed tendency for our model to overstabilize helices.
The backbone non-bonded interactions are governed
by a distance- and angle-dependent hydrogen-bonding
potential whose magnitude (but not geometry) is chosen
by contrastive divergence. The backbone N, Cα, Cβ ,
and C feel a steric repulsive interaction at approximately
1.5 Å.

CONTRASTIVE DIVERGENCE METHOD

Our implementation of contrastive divergence consid-
ers two ensembles, one closely restrained to the native
(crystal) structure and another that is free to diffuse away
during simulations. In a perfect model, an unrestrained
ensemble would remain close to the native structure. For
an inexact model, differences will arise, such as an excess
of backbone-backbone hydrogen bonding in the free en-
semble. Reducing the hydrogen bond energy would shift
the free ensemble closer to the native ensemble. The pa-
rameter modification must be small, however, because
shifting the hydrogen bond energy may adversely affect
other parameters, e.g., by reducing the burial energy. Ac-
cordingly, after each set of simulations is run on a subset
of our training set, we modify all the parameters with
small updates to shift the simulation ensemble to better
match the native-restrained ensemble. The algorithm is
converged when no parameter can be altered to shift the
free ensemble closer to the native-restrained ensemble.

The free ensemble is generated using 5000 time units
of dynamics (approximately 10 wall-clock minutes), with
the first half being discarded as equilibration. Unless the
native state is particularly unstable, this time is insuf-
ficient for exploration of the conformational landscape
much beyond the native basin (RMSD within 6 Å) and
so produces only a locally-equilibrated ensemble.

The native ensemble is traditionally defined as a sin-
gle conformation with precise 3D coordinates. This δ-
function distribution is problematic for proteins because
they are dynamical molecules whose solution ensemble

may differ from the crystal structure for multiple rea-
sons, most importantly errors and packing artifacts in
crystallography. To reduce the impact of these issues, we
replace the exact ensemble structures with the ensemble
restrained to be near the crystal structure, within ap-
proximately 1 Å RMSD. This procedure is analogous to
the restrained equilibration of crystal structures required
to prepare systems for all-atom molecular dynamics. To
account for changing parameters, we apply the restrained
relaxation on every optimizer step.

After generation of the free and native-restrained en-
sembles, we change the energy parameters αi, where i
is the optimizer step, in proportion to the amount that
the change can differentiate the two ensembles. This pro-
cedure is a form of gradient descent to reduce the “dis-
tance” between the free and native-restrained ensembles,

αi+1 = αi +
ε

M

M∑
a=1

(〈
dV

dαi

〉
restrained

−
〈
dV

dαi

〉
free

)
,

(4)

where ε the step size, M is the number of proteins,
and a indexes the simulated proteins. The quantity〈
dV
dαi

〉
restrained

−
〈
dV
dαi

〉
free

represents a pseudo-derivative

of the free energy of restraining the simulation to be near
the crystal structure. In the limit that the simulation
duration is infinite, this difference is the exact derivative
of the free energy. In practice, this difference chooses a
suitable direction to improve the parameters.

The simulations use temperature replica exchange with
eight replicas to enhance barrier crossing [8], while the
temperature intervals of the replicas scale with 1/

√
Nres

to encourage efficient replica exchange for proteins of var-
ious sizes. The progress of the replica exchange is moni-
tored by the average RMSD-to-crystal structure over the
simulation for each minibatch (subset of training pro-
teins).

The initial parameters for the potential come from
optimizing side chain packing accuracy of the model.
The contrastive divergence training rapidly improves this
model as there is a quick decline in average RMSD over
a minibatch from 6 Å to 3 Å. This decline is accompa-
nied by rapid movement of the parameters. To reduce
parameter fluctuations and fine-tune the results, we re-
duce the optimizer step size by a factor of four after two
full passes through the training set. While the slope of
RMSD change with respect to the number of steps has
greatly decreased over the iterations, there are indica-
tions that the parameters have not yet converged. Earlier
tests, however, showed that continuing the contrastive di-
vergence until convergence does not necessarily produce
better results, as has been previously observed [9]. When
large barriers surround the native states, minimal relax-
ation of the conformation occurs, which in turn provides
little new information, and further fine-tuning may even
reduce the accuracy of the model. Additionally, early ter-
mination of optimization has been observed to function
as a regularizer that favors simpler models [10].
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Figure 2. Cartoon and time-series of contrastive divergence
training. In all plots, the blue curves indicate larger step-size
training and the green plots indicate smaller step-size (fine-
tuning). The upper left plot shows the decline in minibatch-
averaged RMSD over the course of the optimization. The
remaining plots show the convergence of the hydrogen bond-
ing and side chain-side chain interaction parameters over the
optimization. The larger step-size optimization of the side
chain parameters exhibits large oscillations that inhibit con-
vergence.

The hydrogen bond strength unexpectedly appears to
converge to a significantly smaller value during the late,
fine-tuning stage than during the early phase with larger
optimizer steps. We speculate that the extra noise in the
side chain interactions during the larger optimizer steps
may in aggregate cause stronger side chain interactions
for the protein. This effect would necessitate a large hy-
drogen bond energy to balance the increase in side chain
interactions.

ACCURACY OF STRUCTURE PREDICTION

Contrastive divergence training has been shown to
train models well for many machine learning problems
[11], even without having simulations that converge the
Boltzmann ensemble. To test the accuracy of contrastive
divergence on our protein model, we attempt de novo
folding of a benchmark set of small, fast-folding proteins
similar to those used in references [12, 13]. Before train-
ing, we remove homologous proteins from the training set
to help ensure that this would be a true de novo predic-
tion.

Two replica exchange simulations are run for each pro-
tein. The first set is initialized from the native configu-

ration to assess the stability of the experimental struc-
ture. The second simulation is initialized from an un-
folded state with Ramachandran φ and ψ angles chosen
at random. The range of temperatures were chosen to be
large enough to cover the unfolding transition.

We judge the accuracy and equilibration from the
histogram of best-fit RMSD deviations from the native
structure after discarding the initial third of the simu-
lation as equilibration (see Fig. 3). When the native-
initialized and unfolded-initialized structures have simi-
lar RMSD distributions, the simulations are likely con-
verged. Proteins such as α3d and WW are approximately
converged by this criterion but protein L and ubiquitin
are not.

The majority of the proteins show a small number of
well-defined and stable basins that represent the domi-
nant conformations with the current potential. While the
simulations often produce several conformations quickly,
equilibration of their populations takes longer (on the or-
der of CPU-days for some proteins, though still extremely
short in comparison to typical molecular dynamics sim-
ulations).

The Upside simulations tend to achieve the correct sec-
ondary structure with a small number of distinct tertiary
arrangements. This diversity in tertiary structures oc-
curs as mirrored three helix bundles for α3d and pro-
tein B, as well as the subtle re-arrangements of NuG2.
As these structures coexist with similar probabilities at
low temperature, we hypothesize that the short-time con-
trastive divergence we are using does not provide a suffi-
cient library of large changes in the tertiary structure to
enable the potential to properly distinguish the various,
similar conformations. This issue will be addressed in
future studies.

CHARACTERIZATION OF FOLDING
BEHAVIOR

In constant temperature simulations, we observe re-
versible folding to the native state for a number of pro-
teins in our test set in core-days, Figs. 4 and 5. The
time scales of folding indicated by these trajectories im-
ply that the time scales we employed in the contrastive
divergence simulations are far less (often a factor of 100
or more) than required to equilibrate these proteins, im-
plying that contrastive divergence is optimizing only over
fluctuations in or near the native well.

Note that conditional on low hydrogen bonding, the
radius of gyration (Rg) at high temperature and at the
peak of the heat capacity are quite similar. This suggests
the increase in Rg for the unfolded state as temperature
increases is driven by a reduction in backbone-backbone
hydrogen bonds rather than side chain effects.

Based on these results, two observations should be rec-
onciled. The first observation is the presence of a sharp
phase transition with a single peak for the heat capacity.
The shape of the phase transition, but not its ampli-
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tude, is consistent with a cooperative folding transition.
The second observation is the unrealistically large level
of residual hydrogen bonding in the denatured state at
temperature of the maximum in the heat capacity. Al-
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T=1.00, initialized from the native structure, with represen-
tative structures along the trajectory highlighted. The 2nd
and 4th structures are chosen for having a high Rg while the
last structure is chosen based on minimum RMSD (2.3 Å.)
after achieving full unfolding.

though the hydrogen bonding is less than that in the na-
tive state, the residual hydrogen bonding indicates that
the transition is not fully cooperative. These observa-
tions may be explained by the essential feature of the
contrastive divergence process, that it must balance the
competing energy terms of the model so that no one en-
ergy dominates. A small improvement to the contrastive
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for chemically-denatured proteins [14]. The brown points are
from high-temperature simulations, while the green and blue
points are taken from simulations at the peak of the heat
capacity for each protein — folded (blue) and unfolded states
(green).

divergence training may be able to push the temperature
of melting secondary structure lower so that the folding
is significantly more cooperative.

The Upside model exhibits concerted melting behavior
over a small range of temperatures (see Fig. 6). While
the temperature of the model in Upside is not exactly
comparable to a physical temperature, it is reasonable
to assume T = 1 corresponds roughly to a temperature
of 310 K. The ubiquitin transition occurs over a tem-
perature range of approximately 0.07 temperature units,
approximately a 20 K range, similar to that observed ex-
perimentally [15].

Furthermore, our temperature-denatured states have
high Rg near the midpoint of the transition, consistent
with experimental results and inconsistent with many all-
atom molecular dynamics folding simulations [5, 16]. At
the peak of the heat capacity, the Rg is ∼15% under the
predicted from experimental data while the Rg at high
temperature is ∼10% above. Both Rg values are sig-
nificantly larger than those in most atomistic molecular
dynamics simulations [5].

RELATED WORK

Contrastive divergence optimization has been applied
to Gō-like protein potentials sampled with crankshaft
Monte Carlo moves [17, 18]. These works optimized only
tens of parameters, and the resulting model was used to
fold protein G and 16-residue peptides.

Other studies have trained protein energy functions
using libraries of decoys [19]. Such efforts are challeng-
ing because atomic energy functions have rugged energy

landscapes where even small structural differences can
produce large energy differences. This ruggedness im-
plies that scoring decoys by energy without first relaxing
them is problematic for the sharply-defined forcefields
necessary to describe protein physics. This suggests that
the best decoy set may be obtained instead by sampling
trajectories of the protein energy function.

A distinction between contrastive divergence and tra-
ditional training methods, such as Z-score optimization
[20], relates to the goal and the source of the decoys. In
contrastive divergence, the critical task is to produce a
high population of low RMSD structures with the model.
Z-scoring training attempts to make the energy of the na-
tive state much lower than the average energy of of an
pre-constructed decoy library. This is problematic be-
cause the decoys may not have structures that exhibit
the pathologies of a poorly-trained model. Additionally,
we believe optimization should concentrate on the lowest
energies that have significant Boltzmann probability, not
the average energy which is dominated by highly-unlikely
structures. Furthermore, it is difficult to evaluate the
reliable energies of decoys without relaxing the decoys.
Methods based on simulation ensembles and the asso-
ciated probability density (such as maximum likelihood
and contrastive divergence) are well-defined and do not
need pre-constructed decoy libraries.

Podtelezhnikov et al. [21] apply contrastive divergence
to few-parameter protein models to optimize the param-
eters of hydrogen bond geometry. Their work is similar
to this paper but narrower in scope.

Maximum likelihood requires the computation of the
derivative of the free energy, which involves a summation
over an equilibrium ensemble. Such a requirement neces-
sitates a very long simulation to update parameters. Still,
this approach can be viable when used with very small
proteins on which the simulations converge quickly. A
variant of maximum likelihood is given in [22], where de-
coys are generated and a maximum likelihood model is
fit to adjust the parameters to distinguish between near-
native and far-from-native conformations. The potential
is trained on a single protein, tryptophan cage, and then
the resulting potential is applied to a number of α-helical
proteins with some success.

DISCUSSION

We have developed a procedure involving extremely
short simulations in the native energy well, coupled with
optimization using contrastive divergence, to parameter-
ize a sophisticated coarse-grain model. Underlying the
model is a re-evaluation of the common assumption that
increased detail is the path to greater accuracy. This re-
quirement for detail is mitigated with trajectory-based
training because less expensive models allow more ex-
tensive exploration leading to higher accuracy. We have
also shown that very large numbers of parameters (even
∼20000 in our case) are no obstacle to producing accurate
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proteins models using trajectory-based training. While
over-fitting is always a concern, the severity is greatly re-
duced because contrastive divergence is training against
the vast possibilities of alternative protein conformations
explored by conformational sampling. Additionally, con-
trastive divergence automatically obtains balanced pa-
rameters such that no particular interaction overwhelms
the others. We contend that this balance between param-
eters is more important than the accuracy of any partic-
ular term.

The precise time scale and temperature scale of the
Upside models is intentionally left arbitrary because the
coarse-graining process may leave us without a linear re-
lationship to physical time and temperature. The speed-
up of Upside simulation due to the smoothing of side
chain interactions is likely to have a disproportionate ef-
fect on time scales for collapsed structures as compared
to extended structures. Regardless, the equilibrium pop-
ulation distribution that determines the free energy is
expected to be approximately correct, as well as the or-
der of dynamical folding events. The precise relationship
of Upside time scales to physical time scales is left to
future work.

Using a proper representation for protein physics is a
key aspect of the Upside model. In particular, Upside
decouples the representation of the protein used for dy-
namics, an N–Cα–C backbone model, from the represen-
tation used for computing energies and forces, a sophis-
ticated representation that includes oriented side chain
interactions. This combination allows us to build up the
sophisticated coordinates needed to represent solvent ex-
posure of side chains, geometry of hydrophobic packing,
and side chain-backbone hydrogen bonding without pay-
ing the cost of running dynamical simulation on a com-
plex model with slow equilibrium in the condensed phase.
The largest improvement is the application of belief prop-
agation to the side chain degrees of freedom so that we
represent detailed side chain physics at the χ1/χ2-level
without incurring the roughening of the energy landscape
and slowing of the dynamics normally associated with
detailed sterics of side chain interactions. It is an open
question to determine how much molecular detail must
be retained for accurate protein energetics, but Upside
gives us a flexible framework to explore these issues with-
out compromising our simple backbone representation for
dynamics.

CONCLUSION

By employing a computationally fast yet detailed
model, we can use multiple trajectories to train tens
of thousands of parameters simultaneously to simulate
protein folding and dynamics. The training success-
fully produces low-energy, native or near-native struc-
tures with sharp folding transitions for most of our valida-
tion proteins. The strategy’s success argues that simpler
(in atomic representation) models that can be globally

parameterized can rival more detailed but slower mod-
els whose parameterization is more challenging. Future
work will address extending the timescale and size of the
training. Coupling large computational resources with
Markov state models [23] should improve training of the
Upside model by exploring a larger and more diverse
conformational landscape on each contrastive divergence
step.

The ready generation of Boltzmann ensembles allows
for a wide range of computational studies of protein
folding, dynamics, and binding. For example, compu-
tational screening of large numbers of proteins for fold-
ability should be tractable as is the study of hydrogen ex-
change and folding kinetics using computational alanine
scanning. Additionally, in studies that incorporate ex-
perimental or bioinformatics data, including contact pre-
dictions, Upside provides an inexpensive Bayesian prior
distribution over protein structures that may be updated
using experimental information. This provides accurate
predictions that make essential use of the totality of pro-
tein physics as encoded in the Upside model, while being
inexpensive enough to allow validation and iteration on
large numbers of proteins.

MATERIALS AND METHODS

Derivation of contrastive divergence

We derive the contrastive divergence method as a series
of approximations to the problem of best approximating
the probability distribution of observed PDB structures
using a forcefield of an imperfect, fixed form. The initial
part is a standard derivation of the maximum likelihood
method, adapted to make clear its connection to pro-
tein molecular dynamics, while the end of the derivation
makes clear the relaxation to obtain contrastive diver-
gence as an approximation to maximum likelihood.

We begin by assuming that we have a large collec-
tion of protein sequences {sa} and their associated Boltz-
mann distributions ptruesa (Xa) under physiological condi-
tions, where a represents an arbitrary label to enumerate
the proteins and Xa represents the configuration of the
protein. Note that the “true” Boltzmann distribution is
an unobservable idealization of the conformational en-
semble of a protein under physiological conditions, and
we further idealize that the true Boltzmann distribution
is derived from from an extremely-complicated true po-
tential V true

sa by statistical mechanics,

ptruesa (Xa) =
exp(−V true

sa (Xa))

exp(−Gtrue
sa )

(5)

Gtrue
sa = − log

∫
e−V

true
sa

(X) dX. (6)

The subscript sa indicates that both the potential V true
sa

and free energy Gtrue
sa depend on the sequence of the pro-

tein. We may think of this as an artifact of working
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in the coarse-grained coordinates of the backbone trace,
where the energy V true

sa really represents the free energy
of the backbone coordinates after integrating away the
solvent and side chain degrees of freedom. An analogous
situation occurs in parameterizing all-atom molecular dy-
namics, where the “energy” of the system really repre-
sents the free energy of the system after integrating over
the electronic degrees of freedom. Our goal is to define a
parametric V approx

s (X) that approximates the V true
s for

any sequence s. We drop the subscript s below where
there is no possibility for confusion.

For an approximate potential V approx, it is almost cer-
tain that V approx does not have enough flexibility in its
functional form to match all of the Boltzmann distribu-
tions pa for any sequence sa. We instead find a V approx

that is “close” to V approx. Defining the Boltzmann dis-
tribution of V approx in the same manner as that of V true,

papproxsa (Xa) =
exp(−V approx

sa (Xa))

exp(−Gapprox
sa )

(7)

Gapprox
sa = − log

∫
e−V

approx
sa

(X) dX, (8)

we may use the Kullback-Leibler (KL) divergence to mea-
sure the similarity of the associated Boltzmann distribu-
tions,

KL(ptrue, papprox)

=

∫
ptrue(X) log

ptrue(X)

papprox(X)
dX

= 〈− log papprox(X) + log ptrue(X)〉true
= 〈(V approx(X)−Gapprox)−

(V true(X)−Gtrue)〉true. (9)

In the last equation, we note that the KL divergence is
simply the average energy difference between the true
and approximate potentials (after subtracting the free
energies to normalize the probabilities), where the aver-
age is taken over the true Boltzmann distribution. The
key fact when minimizing KL divergence is that if the
approximate distribution lacks the freedom to exactly
match the true distribution, then the minimizing distri-
bution will be weaker than the true distribution (i.e. less
sharp) to avoid assigning highly unfavorable energy to
configurations that are likely in the true distribution.

Dropping constant terms, we may instead minimize

〈V approx(X)−Gapprox〉true, (10)

since the remaining term 〈V true(Xa)−Gtrue〉true is inde-
pendent of the approximating potential. This expecta-
tion value is still intractable since we do not know ptrue,
but we can approximate,

ptrue(X) ≈ pempirical(X) =
1

M

M∑
a=1

δ(X −Xa), (11)

where δ is the Dirac delta function and M is the number
of proteins. This gives the objection function,

〈V approx(X)−Gapprox〉empirical

=
1

M

M∑
a=1

∫
δ(X −Xa)(V approx(X)−Gapprox) dX

=
1

M

M∑
a=1

(V approx(Xa)−Gapprox). (12)

Minimize the expression [12] is exactly the method of
maximum likelihood. The derivation given above illus-
trates two points via the connection to KL divergences.
The first is that, if V approx is insufficiently detailed, the
model’s ensemble will be overly broad to ensure no ex-
perimental conformation has high energy under V approx.
The second point is that with only a finite number of
samples, pempirical may be a poor approximation to ptrue,
which would allow V approx to wrap itself tightly near the
δ-functions associated with each sample. This is the ori-
gin of overfitting in maximum-likelihood models.

We can now take the derivative with respect to an ar-
bitrary forcefield parameter αi in preparation to perform
gradient descent on [12]. The gradient is given by

d

dαi

1

M

M∑
a=1

(V approx(Xa)−Gapprox)

=
1

M

M∑
a=1

(
dV approx

dαi
(Xa)− dGapprox

dαi

)

=
1

M

M∑
a=1

(
dV approx

dαi
(Xa)−

〈
dV approx

dαi
(X)

〉
approx

)
,

(13)

where we have used the standard statistical mechanics
identity dG/dαi = 〈dV/dαi〉. While we have obtained a
concrete expression for gradient descent in [13], we still
have a major stumbling block. Computing the expecta-
tion of the derivative of the potential at Xa is straightfor-
ward given a functional form for V approx, but obtaining

even a reliable approximation for
〈
dV approx

dαi
(X)

〉
approx

is

extraordinarily difficult. To approximate the expecta-
tion value on a rough protein energy landscape, we would
need Boltzmann samples from our current approximating
potential. Even obtaining the single most likely config-
uration for our approximating potential is equivalent to
finding the native state of the model, and this is very
difficult for realistic pairwise potentials. Instead, we re-
quire the Boltzmann ensemble for all the proteins in our
training set, and must update those Boltzmann ensem-
bles as we use gradient descent to optimize the approx-
imating potential. This represents an extreme expense
and is unrealistic for anything but the simplest models
of proteins. Note also that we cannot simply construct a
large list of structures at some time and reweight those
structures according to the potential, since the potential
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is constantly changing. Reweighting ensembles is only
valid over very small neighborhoods of parameter space,
and this procedure would depend on being able to gen-
erate an exhaustive survey of candidate structures in an
exponentially large space.

The contrastive divergence method [24] approximates
the maximum likelihood procedure using an empirical
observation. We do not need an accurate approxima-
tion to [13], so long as the derivative points in direc-
tion of parameter space that improves the potential ac-
curacy (i.e. any direction is acceptable as long as it is
not uphill). Hinton proposes replacing Boltzmann aver-

age
〈
dV approx

dαi
(X)

〉
approx

with a finite-time Fokker-Planck

average over a very short period of time for a simulation
that originates at the data point Xa. In the Monte Carlo
(MC) dynamics that the original authors use, even one
MC step is sufficient to produce acceptable optimization
of their model. In our case, we replace their small number
of MC steps with a short time simulation using replica
exchange Langevin dynamics. As the duration of the
simulation is increased, our derivative estimate will con-
verge to the true derivative [13]. Our paper empirically
demonstrates that equilibrating each model within only
a local region around the crystallographic native state is
sufficient for a good folding model, so long as a large and
diverse collection of protein structures are jointly opti-
mized.

Handling crystallographic artifacts

The derivation of contrastive divergence presented
above makes the assumption that the conformations Xa

are equilibrium samples from the Boltzmann distribu-
tion of each protein, but in reality, we must work with
crystal structures of proteins. While it has been shown
that that the static diversity of crystal structures for dif-
ferent proteins conveys significant information about the
dynamic ensembles of individual proteins [25]. Crystal
structures deviate in a number of systematic ways from
equilibrium samples, but we are most concerned about
crystal packing artifacts, crystallizability bias, and errors
in published structures.

We expect that our bias in working only with crys-
tallizable sequences, thus missing intrinsically disordered
regions from training, likely biases the resulting poten-
tial to disfavor coil states. The loop-stabilizing effects
of crystal packing somewhat counteract this effect, as it
allows longer loop regions to exist in crystal structures.

Optimization and simulation details

The force is integrated using Verlet integration with
a time step of 0.009 time units. Temperature is main-
tained using a Langevin thermostat with a thermaliza-
tion timescale of 0.135 time units.

Simulation times in all figures are given in millions of
Upside time units (approximately 108 force evaluations).

The following temperature ranges are used for the
replica exchange simulations in Figure 3 with 16 repli-
cas per simulation. These temperatures are chosen to
use the minimal temperature range that approximately
span the thermal melting transition for each protein us-
ing information from an earlier set of replica exchange
simulations. The temperatures of the simulation initial-
ized from the crystal structure and those initialized from
extended structures use the same temperature range.

Protein Tmin Tmax

alpha3d 0.972 1.123

BBA 0.757 1.499

BBL 0.844 1.202

homeodomain 0.978 1.153

lambda 0.879 1.172

NTL9 0.776 1.139

NuG2 (Shaw) 0.886 1.229

protein B 0.885 1.172

protein G 0.776 1.295

protein L 0.883 1.109

ubiquitin 0.951 1.060

WW domain 0.704 1.295

Training data and optimization

The contrastive divergence training is conducted with
456 crystal structures from the Protein Data Bank. The
initial selection of structures uses the PISCES server [26]
to select proteins with X-ray resolution less than 2.2 Å
and pairwise sequence similarity less than 30%. In struc-
tures with multiple chains, a single chain is chosen by
the PISCES server. To avoid non-globular proteins or
proteins with strong interactions with other subunits in
the structure, random sample consensus linear regression
[27] is used to identify outliers based on the relationship
between logNres and logRg. Only chains with between
50 and 100 residues are used to encourage fast relaxation
during the contrastive divergence simulations. All pro-
teins homologous to proteins in the benchmark folding
set are eliminated from the training set. Additionally, all
proteins with backbone gaps, either missing residues due
to diffuse electron density or non-standard amino acids
that Upside does not handle, are also excluded from the
training set.

The final training set of 456 proteins is divided into
38 groups of 12 proteins each, called minibatches. The
Adam optimizer [28] is used to perform gradient de-
scent on the objective function, using the contrastive
divergence pseudo-gradient in place of the true maxi-
mum likelihood gradient. The Adam parameters used
are β1 = 0.8, β2 = 0.96 and ε = 10−6. The α parameter
is varied based on the type of term to ensure stability,
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αSC = 0.5, αenv = 0.1, αHBond = 0.02, and αsheet = 0.03.
The α parameters are multiplied by 0.25 for the fine-
tuning optimization.

Regularization and derivative propagation for con-
trastive divergence optimization are handled using the

Theano library [29].

Details of test proteins

Mutations from the listed PDB structures are indi-
cated in bold. The NuG2 sequence is from reference
[12].

Name PDB ID Length Sequence

alpha3d 2a3d 73 MGSWAEFKQRLAAIKTRLQALGGSEAELAAFEKEIAA

FESELQAYKGKGNPEVEALRKEAAAIRDELQAYRHN

BBA 1fme 28 EQYTAKYKGRTFRNEKELRDFIEKFKGR

BBL 2wxc 47 GSQNNDALSPAIRRLLAEWNLDASAIKGTGVGGRLTREDVEKHLAKA

homeodomain 2p6j 52 MKQWSENVEEKLKEFVKRHQRITQEELHQYAQRLGLNEEAIRQFFEEFEQRK

lambda 1lmb 80 PLTQEQLEDARRLKAIYEKKKNELGLSQESVADKMGMGQS

GVGALFNGINALNAYNAALLAKILKVSVEEFSPSIAREIY

NTL9 2hba 39 MKVIFLKDVKGMGKKGEIKNVADGYANNFLFKQGLAIEA

protein B 1prb 53 TIDQWLLKNAKEDAIAELKKAGITSDFYFNAINKAKTVEEVNALKNEILKAHA

protein G 1pga 56 MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE

NuG2 (Shaw) 1mi0 57 MDTYKLVIVLNGTTFTYTTEAVDAATAEKVFKQYANDAGVDGEWTYDAATKTFTVTE

protein L 2ptl 61 VTIKANLIFANGSTQTAEFKGTFEKATSEAYAYADTLKKDNGEYTVDVADKGYTLNIKFAG

ubiquitin 1ubq 76 MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPP

DQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG

WW domain 2f21 33 KLPPGWEKRMSADGRVYYFNHITNASQWERPSG
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czyńska, C. Omieczynski, T. Wirecki, et al., Journal of
chemical information and modeling 55, 2050 (2015).

[23] G. R. Bowman, K. A. Beauchamp, G. Boxer, and V. S.
Pande, The Journal of chemical physics 131, 124101
(2009).

[24] G. E. Hinton, Neural computation 14, 1771 (2002).

[25] A. K. Jha, A. Colubri, K. F. Freed, and T. R. Sosnick,
Proceedings of the National Academy of Sciences of the
United States of America 102, 13099 (2005).

[26] G. Wang and R. L. Dunbrack, Bioinformatics 19, 1589
(2003).

[27] M. A. Fischler and R. C. Bolles, Communications of the
ACM 24, 381 (1981).

[28] D. Kingma and J. Ba, arXiv preprint arXiv:1412.6980
(2014).

[29] Theano Development Team, arXiv e-prints
abs/1605.02688 (2016).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2017. ; https://doi.org/10.1101/169326doi: bioRxiv preprint 

https://doi.org/10.1101/169326

