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ABSTRACT 19 

Background. Volatile carboxylic acids, alcohols, and esters are natural fermentative products, 20 

typically derived from anaerobic digestion. These metabolites have important functional roles to 21 

regulate cellular metabolisms and broad use as food supplements, flavors and fragrances, 22 

solvents, and fuels. Comprehensive characterization of toxic effects of these metabolites on 23 

microbial growth under similar conditions is very limited.  24 

Results. We characterized a comprehensive list of 32 short-chain carboxylic acids, alcohols, and 25 

esters on microbial growth of Escherichia coli MG1655 under anaerobic conditions. We 26 

analyzed toxic effects of these metabolites on E. coli health, quantified by growth rate and cell 27 

mass, as a function of metabolite types, concentrations, and physiochemical properties including 28 

carbon chain lengths and associated functional groups, chain branching features, hydrophobicity, 29 

and energy density.  Strain characterization reveals these metabolites exerted distinct toxic 30 

effects on E. coli health. We find that higher concentrations and/or longer carbon lengths of 31 

metabolites cause more severe growth inhibition. For the same carbon lengths and metabolite 32 

concentrations, alcohols are most toxic followed by acids then esters. We also discover that 33 

branched chain metabolites are less toxic than linear chain metabolites for the same carbon 34 

lengths and metabolite concentrations. Remarkably, shorter alkyl esters (e.g., ethyl butyrate) are 35 

found to be less toxic than longer alkyl esters (e.g., butyl acetate) for the same carbon lengths 36 

and metabolite concentrations. Regardless of metabolite types, longer chain metabolites are less 37 

soluble and have higher energy densities but are more toxic to microbial growth.  38 

Conclusions. Metabolite hydrophobicity, correlated with carbon chain length, associated 39 

functional group, chain branching feature, and energy density, is a good quantitative index to 40 

evaluate toxic effect of a metabolite on microbial health. The results provide better 41 
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understanding of degrees of toxicity of fermentative metabolites on microbial growth and further 42 

help selection of desirable metabolites and hosts for industrial fermentation to overproduce them. 43 

 44 

Key words: Escherichia coli, toxicity; alcohols; carboxylic acids; esters; growth inhibition; 45 

energy density; partition coefficient; hydrophobicity 46 
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BACKGROUND  48 

During anaerobic digestion of organic matters, organisms naturally produce volatile 49 

organic acids and alcohols to balance cellular redox states. These molecules, along with esters 50 

generated from condensation of alcohols and acids, are of particular interest for not only 51 

fundamentally studying their functional roles to regulate cellular metabolisms and microbiomes 52 

[1] but also harnessing them as food supplements, natural flavors and fragrances, solvents, and 53 

fuels [2].  54 

A diverse class of microbes can naturally produce these volatile metabolites, and some 55 

being harnessed for industrial-scale production. For instance, Escherichia coli, a facultative, 56 

gram-negative bacterium found in lower intestine of animals, is widely used as an industrial 57 

workhorse microorganism for biocatalysis. E. coli possesses a native mixed acid fermentative 58 

metabolism that has been metabolically engineered to produce many of fermentative metabolites 59 

including alcohols (e.g., ethanol [3, 4], isopropanol [5], butanol [6], isobutanol [7], pentanol [8], 60 

and hexanol [9]), diols (e.g., 1,3-propanediol [10], and 1,4-butanediol [11]), acids (e.g., pyruvate 61 

[12], lactate [13], and short-medium chain carboxylic acids [14]), diacids (e.g., succinate [15], 62 

adipate [16]), and esters (e.g., acetate esters [17], propionate esters [18, 19], butyrate esters [18-63 

20], pentanoate esters [18, 19], and hexanoate esters [18, 19]).   64 

Fermentative metabolites, however, can become inhibitory to microbial growth by 65 

directly interfering with cell membrane and/or intracellular processes [21-29]. Currently, data on 66 

toxic effects of a comprehensive set of fermentative metabolites on microbial growth under 67 

similar growth conditions is very limited. Availability of this data can help identify and better 68 

understand most toxic metabolites to microbes during fermentation. It also provides design 69 

criteria for selecting desirable metabolites and microbes for industrial production as well as 70 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2017. ; https://doi.org/10.1101/169482doi: bioRxiv preprint 

https://doi.org/10.1101/169482
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

effective engineering strategies to alleviate toxicity. For instance, various strategies of targeted 71 

engineering have been implemented to enhance microbial tolerance against some fermentative 72 

metabolites including increasing the ratio of saturated and unsaturated fatty acid compositions 73 

[30], raising  the average chain length of fatty acid moieties in cell membrane [31], enhancing 74 

the ratio of trans- and cis-unsaturated fatty acids of cell membrane [32], and expressing efflux 75 

pumps [33] or chaperones [34]. Genome and evolutionary engineering have also been explored 76 

to enhance tolerance [24, 35-37]. 77 

In this study, we characterized toxic effects of a comprehensive set of 32 fermentative 78 

metabolites including 8 carboxylic acids, 8 alcohols, and 16 esters on E. coli health. We analyzed 79 

toxic effects of these metabolites as a function of metabolite types, concentrations, and 80 

physiochemical properties including carbon chain lengths and associated functional groups, 81 

chain branching features, hydrophobicity, and energy density.   82 

 83 

RESULTS AND DISCUSSION 84 

To study toxic effects of fermentative metabolites on E. coli health, growth kinetics were 85 

generated for each metabolite using standard concentrations (0, 2.5, 5.0, and 7.5 g/L) and 86 

additional concentrations as needed for certain metabolites. Both maximum growth rate and 87 

optical density (OD) during the first 24 h period were extracted to evaluate E. coli health. For the 88 

reference growth condition without supplementation of a toxic chemical, wildtype E. coli 89 

MG1655 grew at a rate of 0.6134 ± 0.0337 1/h and OD of 1.3982 ± 0.0554 (Figure 1).  90 

 91 

Toxic effects of alcohols 92 
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The first alcohol of interest, ethanol, was found to be essentially non-toxic up to 7.5 g/L 93 

(Figure 1A). At 10 g/L ethanol, specific growth rate and OD decreased by only 12% and 25% 94 

each as compared to the reference (without supplementation of the toxin) (Figure 2). At the 95 

highest measured concentration of 15 g/L, growth rate was further reduced by only 18%, but OD 96 

was nearly 40% lower at 0.8240 ± 0.0130.  97 

Propanol toxicity at concentrations up to 7.5 g/L was similar to that of ethanol, but at 15 98 

g/L it was significantly more toxic (Figure 1B). Specific growth rate was 0.3955 ± 0.0278 1/h 
99 

(nearly 50% lower than the reference) and OD was 0.5337 ± 0.0271 (~60% lower than the 100 

reference) (Figure 2). Isopropanol toxicity exhibited relatively similar trends like propanol 101 

toxicity but with slightly higher growth rate and OD at most concentrations tested (Figures 1C, 102 

2). 103 

Butanol is the first alcohol to display strong toxic effects before 10 g/L (Figure 1D). At 104 

7.5 g/L, growth rate (0.2932 ± 0.0302 1/h) and OD (0.5927 ± 0.0454) were reduced more than 105 

50% as compared to the reference (Figure 2). Growth was entirely inhibited in butanol at 15 g/L. 106 

Our data presented for butanol toxicity is consistent with a previous study reporting that growth 107 

of E. coli DH5α in YPD medium was reduced by 80% in 1% v/v (~8.1 g/L) butanol and stopped 108 

at 2% v/v (~16.2 g/L) [38]. Isobutanol was less toxic than butanol at all concentrations, with the 109 

exception of 15 g/L, where no growth was observed for both compounds (Figure 1E). At 7.5 g/L, 110 

isobutanol was less inhibitory than butanol for E. coli growth, with higher specific growth rate 111 

and OD by approximately 25% (Figure 2). Findings of isobutanol toxicity presented here are 112 

consistent with the Atsumi et al.’s report [24]. The difference in toxic effects of isobutanol and 113 

butanol is consistent with the data by the Huffer et al. report [25]. Remarkably, based on the 114 
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Huffer et al.’s data, microbial health is less inhibited in isobutanol than butanol for not only E. 115 

coli but also some other bacterial, eukaryotic, archaeal species. 116 

For pentanol and isopentanol, no growth was observed at any studied concentrations 117 

above 5 g/L (Figures 1F, 1G). Pentanol terminated all growth at 5g/L, and at 3.75 g/L specific 118 

growth rate was just 0.2818 ± 0.0438 1/h (Figures 1F, 2). Unlike pentanol, isopentanol at 5 g/L 119 

allowed for growth, with a significantly reduced specific growth rate of 0.2017±0.0388 1/h and a 120 

OD of 0.2703 ± 0.0241 (Figures 1G, 2). At 2.5 g/L, isopentanol suppressed specific growth rate 121 

and OD by 12% and 8% less than did pentanol.  122 

Hexanol is the most toxic among alcohols used in this study. It eliminated all growth at 123 

only 2.5 g/L. A far reduced concentration of 0.625 g/L still cut specific growth rate by over 45% 124 

and OD by nearly 60% as compared to the reference (Figures 1H, 2). 125 

Overall, alcohols are toxic to microbial growth, and degrees of toxicity depend on alcohol 126 

types and concentrations. Increasing alcohol concentrations decrease both specific growth rate 127 

and OD. Shorter chain length alcohols (ethanol, propanol, isopropanol) require higher 128 

concentrations in order to impact growth significantly. 129 

 130 

Toxic effects of carboxylic acids 131 

Acetic acid was marginally toxic up to 7.5 g/L, at which specific growth rate (0.4392 ± 132 

0.0320 1/h) and OD (0.9050 ± 0.0131) were each reduced by ~20% compared to the reference 133 

(Figures 3A, 4). Propionic acid at an identical concentration was found to be much more toxic 134 

than acetic acid, with specific growth rate (0.2374 ± 0.0253 1/h) and OD (0.3542 ± 0.0142) 135 

decreased ~60% and ~75%, respectively (Figures 3B, 4).  136 
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Butanoic acid at 7.5 g/L was seen to be slightly more inhibitive of specific growth rate 137 

and OD than propionic acid whereas concentrations of 2.5 g/L and 5 g/L appeared similarly toxic 138 

like propionic acid (Figures 3C, 4). Isobutanoic acid was found to be less toxic than butanoic 139 

acid, following the chain branching trend seen in alcohols (Figures 3D, 4). At 2.5, 5.0, and 7.5 140 

g/L, cells grew 6%, 5%, and 15% faster in isobutanoic acid than butanoic acid.  141 

The pair of pentanoic and isopentanoic acid was also used. At each concentration, 142 

isopentanoic was less toxic than pentanoic acid. Pentanoic and isopentanoic acids sustained 143 

growth at 7.5 g/L to ODs of 0.3017 ± 0.0504 and 0.3417±0.0213, respectively, and specific 144 

growth rates reached 0.2262 ± 0.0395 and 0.3041 ± 0.0170 1/h, respectively (Figures 3E, 3F, 4). 145 

The next acid studied was hexanoic acid. Growth with this compound was sustained at 146 

7.5 g/L, but specific growth rate was reduced by �70% and OD just reached 0.2448 ± 0.0283 147 

(Figures 3G, 4).  Octanoic acid was even more toxic, eliminating all growth at 5 g/L (Figure 3H, 148 

4). At 2.5 g/L, specific growth rate (0.3741 ± 0.0598 1/h) and OD (0.4328 ± 0.0219) was 149 

decreased by about 40% and 65% as compared to the reference, respectively. Octanoic acid is 150 

the most toxic organic acid studied here, and the only acid that prevented all growth above 2.5 151 

g/L.  152 

Like alcohols, acid toxicity on microbial growth depends on exposed concentrations and 153 

acid types. Increasing acid concentrations enhances toxicity for all compounds, reducing growth 154 

rates and cell concentrations. Longer chain acids cause more severe growth inhibition 155 

 156 

Toxic effects of esters 157 

Cells can produce a combinatorial library of esters by condensing organic acids and 158 

alcohols [18-20]. In this study, we investigated the toxic effects of a comprehensive list of 16 159 
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common short-chain esters on E. coli health. For comparison, we classified these esters into 3 160 

categories: ethyl esters, propyl esters, and butyl esters. 161 

Ethyl esters. Ethyl acetate was not strongly toxic until concentrations of 10 g/L or greater 162 

(Figure 5A). At 10 and 15 g/L, specific growth rates observed were reduced to 0.4246 ± 0.0089 163 

1/h and 0.2664±0.0073 1/h, respectively. OD followed similar trends, being reduced to 0.8677 ± 164 

0.0311 at 10 g/L and 0.3490± 0.0255 at 15 g/L (Figure 6). Ethyl propionate was more toxic than 165 

ethyl acetate at identical concentrations (Figure 5B). At 10 g/L, specific growth rates between 166 

growth in ethyl acetate and ethyl propionate were not significantly different, but OD was more 167 

than 20% lower in ethyl propionate than in ethyl acetate (Figure 6). No growth occurred with the 168 

addition of 15 g/L ethyl propionate, making ethyl acetate the only ester that allowed for any 169 

growth at 15 g/L (Figure 5). 170 

Ethyl butyrate was the most toxic among the characterized ethyl esters, with a specific 171 

growth rate of 0.3592 ± 0.0050 1/h and OD of 0.5437 ± 0.0151 at 5 g/L (Figures 5C, 6). The 172 

toxic effect of ethyl butyrate was still noteworthy at 5 g/L, slowing growth rate by over 25% and 173 

lowering OD by over 40% as compared to the reference. The branched chain isomer of ethyl 174 

butyrate, ethyl isobutyrate, was also studied (Figure 5D). It was less toxic than ethyl butyrate at 175 

all concentrations, most notably at 5 g/L, where observed growth rate was approximately 20% 176 

higher than the growth rate with ethyl butyrate (Figure 6). Cultures with 7.5 g/L of both ethyl 177 

butyrate and ethyl isobutyrate were unable to grow (Figures 5C, 5D).  178 

Propyl esters. Both propyl acetate and isopropyl acetate inhibited growth at 7.5 g/L, but 179 

isopropyl acetate was far less toxic (Figures 5E, 5H). Cultures containing propyl acetate at 7.5 180 

g/L reached an OD of 0.2372 ± 0.0241, doubling only once in 24 h of characterization. However, 181 

the cell culture with isopropyl acetate at 7.5 g/L displayed a higher OD than the cell culture with 182 
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propyl acetate by 3 folds (Figure 6). Cells (0.3749 ± 0.0148 1/h) also grew 3.5 times faster in 183 

isopropyl acetate than propyl acetate at this concentration.  184 

The addition of propyl propionate at any concentration 5 g/L or higher prevented all 185 

growth (Figure 5F). A strong toxic effect was seen at the addition of 2.5 g/L of the compound, 186 

reducing both specific growth rate (0.4689 ± 0.0234 1/h) and OD (0.7962 ± 0.0168) by ~25% 187 

and ~40% as compared to the reference, respectively (Figure 6). On the other hand, cultures 188 

exposed to 2.5 g/L isopropyl propionate displayed much healthier growth (Figures 5I, 6), with a 189 

specific growth rate of 0.5332 ± 0.0329 (1/h) and OD of 0.9837 ± 0.0209. Like propyl 190 

propionate, no growth occurred in cultures at 5 g/L isopropyl propionate. 191 

The final pair of propyl esters characterized here is propyl butyrate and isopropyl 192 

butyrate. Both compounds prevented any growth from occurring at 2 g/L, but growth was 193 

sustained at concentrations of 1.25 g/L or lower (Figures 5G, 5J). Propyl butyrate at 1.25 g/L 194 

decreased specific growth rate (0.3527 ± 0.0077 1/h) and OD (0.5670 ± 0.0277) about 2 folds. 195 

Isopropyl butyrate was less toxic, with 7% higher growth rate and 15% higher OD than propyl 196 

butyrate at this concentration (Figure 6). 197 

Butyl esters. The addition of butyl acetate reduced both specific growth rate and OD by 198 

half at a concentration of 2.5 g/L (Figures 5K, 6) while all previously discussed acetate esters 199 

(ethyl acetate, propyl acetate, isopropyl acetate) showed no toxic effects at 2.5 g/L or less. No 200 

growth was observed at any concentrations of butyl acetate higher than 4 g/L. Isobutyl acetate 201 

was less toxic than butyl acetate where cells (0.4194 ± 0.0294 1/h) grew 15% faster at 2.5 g/L 202 

and displayed a 3% increase in OD (0.6847 ± 0.0341 1/h) (Figures 5N, 6). Like butyl acetate, 203 

cells exposed to isobutyl acetate at concentrations higher than 4 g/L failed to grow. 204 
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 Butyl propionate is far more toxic than butyl acetate (Figures 5L, 6). Unlike butyl and 205 

isobutyl acetates, butyl propionate with concentration greater than 2 g/L prevented growth. 206 

Growth at 1.25 g/L of this compound was marginal with specific growth rate decreased by more 207 

than 60%. The toxic effects were even seen at just 1 g/L, where specific growth rate (0.4850 ± 208 

0.0207) dropped by 20%. Isobutyl propionate was slightly less toxic, allowing for growth at 2 209 

g/L, but specific growth rate and OD were each no more than 20% of that of the reference 210 

(Figures 5O, 6).  211 

 The final esters of interest were the pair of butyl butyrate and isobutyl butyrate. Butyl 212 

butyrate was the most toxic compound in this work, prohibiting all growth at any concentrations 213 

of 1 g/L or higher (Figures 5M, 5P, 6). At just 0.75 g/L, specific growth rate was reduced to 214 

0.3661 ± 0.0319 1/h (60% of the reference) and OD to 0.4948 ± 0.1426 (~35% of the reference). 215 

In comparison, isobutyl butyrate limited growth by 30% less (Figure 6), displaying a specific 216 

growth rate of 0.5337 ± 0.0204 (1/h) at the same concentration. OD was over 2-fold higher with 217 

this compound than with butyl butyrate. Growth at concentrations of 1 g/L of both compounds 218 

was prevented. 219 

Like alcohols and acids, we observed similar trend of toxicity as a function of ester types 220 

and concentrations. Increasing ester concentrations increases toxicity for all compounds and 221 

shorter chain esters exhibit less toxic effects on microbial growth. 222 

There is a strong linear correlation (R2>0.94) between growth rate and cell mass when E. 223 

coli is exposed to alcohols, acids, and esters (Supplementary Figure 1). Therefore, E. coli health 224 

can be evaluated based on growth rates and cell mass under all conditions investigated.  225 

 226 

Linking physiochemical properties of metabolites and toxic effects 227 
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Chain length and associated functional groups. To compare toxic effects of metabolites 228 

within and across chemical classes, we first used the carbon chain length as a basis. Regardless 229 

of metabolite types and concentrations, carbon chain length was strongly correlated with growth 230 

inhibition, reducing both growth rate and cell mass (Figure 7). The longer the carbon length is, 231 

the more toxic a metabolite becomes.  232 

Toxic effects of longer chain metabolites on microbial growth are likely caused by 233 

membrane disruption. Except esters, some acids and alcohols have been reported to disrupt 234 

membrane integrity and hence inhibit cell growth [25, 27, 39, 40]. As the total count of carbon 235 

atoms in a molecule increases, it becomes more soluble in the cell’s lipid membrane and less so 236 

in aqueous media. This interference causes extensive changes to cell morphology, primarily 237 

elongation due to changes in membrane fluidity, which is a well-known indicator of high stress 238 

environments and disrupted membranes [41]. This effect of chain length has been discussed in 239 

previous literature among ionic liquids [42] and surfactants [43], but has not been observed for a 240 

comprehensive set of fermentative metabolites investigated in this work. 241 

Even though the correlation between carbon chain length and toxic effect is prevalent, the 242 

strength of this correlation varies among metabolites within and across metabolite classes. 243 

Alcohol toxicity is most strongly correlated with chain length, and each alcohol is overall more 244 

toxic than a corresponding organic acid or ester of the same total carbon. The trend, however, 245 

cannot be simply explained alone by the functional role of carbon chain length but needs to take 246 

into account of associated functional groups such as the relative polarity of a hydroxyl or 247 

carboxyl group. For example, pentanol and pentanoic acid each have the same number of carbon 248 

atoms, but pentanol is less polar (1.79 D versus 2.29 D). The higher polarity of pentanoic acid 249 

makes it less membrane-soluble than pentanol at identical concentrations, and hence is less toxic 250 
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on microbial growth. Our data shows that cells grew faster in pentanoic acid (0.4016 ± 0.0212 251 

1/h) than in pentanol (0.5228 ± 0.0519 1/h) at 2.5 g/L and yielded higher cell mass (OD = 0.8140 252 

± 0.0155 in pentanoic acid versus 0.6930 ± 0.0362 in pentanol). Another factor that could 253 

contribute to this difference in toxicity of alcohols and acids is stereochemistry. The larger 254 

carboxyl group on organic acids can physically hinder the acid’s ability to enter the membrane, 255 

whereas the smaller hydroxyl group will present less resistance.  256 

Chain branching. For the same carbon length and chemical class, chain branching can 257 

also have different toxic effects on microbial growth. Our result shows that branched-chain 258 

isomers of each metabolite is less toxic to microbial growth across all chemical classes (Figure 7 259 

and Supplementary Figures 2-4). This trend can be clearly seen when cells are exposed to C5 260 

alcohols, esters, and acids. At 2.5 g/L exposure, for instance, cells grew ~18% faster in 261 

isopentanol (0.4752 ± 0.0370 1/h) than pentanol (0.4016 ± 0.0212 1/h), 5% faster in isopentanoic 262 

acid (0.5560 ± 0.0186 1/h) than pentanoic acid (0.5528 ± 0.0519 1/h), and 10% faster in 263 

isopropyl acetate (0.6438 ± 0.0357 1/h) than propyl acetate (0.5849 ± 0.0167 1/h). For C5 acids, 264 

the trend is more significant when cells are exposed to higher concentrations. Cells grew ~30% 265 

faster in isopentanoic acid than pentanoic acid at 7.5 g/L. The reduced toxic effects of chain 266 

branching can also be explained by the impact of membrane disruption. Branched chain isomers 267 

are less membrane soluble than their corresponding straight chain isomer at any given chain 268 

length, and hence become less toxic to microbial growth. 269 

Ester dissociation. Each ester is comprised of alcohol and acid moieties. Different from 270 

alcohols and acids, toxic effects of esters can be very distinct in that different esters of the same 271 

total carbon length can have significantly different degrees of toxicity. To demonstrate, we focus 272 

on the pair of ethyl butyrate and butyl acetate (both C5H12O2) to examine this pattern. The 273 
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difference between these two esters is that ethyl butyrate is comprised of ethanol and butyric acid 274 

moieties while butyl acetate is comprised of butanol and acetic acid moieties. At 2.5 g/L, cell 275 

grew ~40% slower in butyl acetate (0.3186 ± 0.0207 1/h) than in ethyl butyrate (0.5106 ± 0.0168 276 

1/h) and also yielded ~40% lower cell mass in butyl acetate than ethyl butyrate (Figures 5, 6). 277 

This same trend is consistently seen in many other ester pairs of the same total carbon count. 278 

This distinct toxic effect of esters can be explained by ester dissociation. Esters can be 279 

spontaneously hydrolyzed into alcohol and carboxylic acid moieties in aqueous media. At any 280 

given time, media supplied with esters for toxicity test contain some of both associated alcohols 281 

and carboxylic acids. For esters with the same carbon length, those having longer chain alcohol 282 

moieties are more toxic than those having shorter chain alcohol moieties.  283 

Acid dissociation. For high carbon chain lengths and concentrations, acids appear less 284 

toxic than esters (Figure 7). For instance, at 7.5 g/L and a total carbon of 6, cells were still able to 285 

grow in acids (hexanoic acid) but neither in alcohols (hexanol) nor esters (ethyl butyrate, butyl 286 

acetate, propyl propionate, isopropyl propionate). This phenotype can be best explained by the 287 

acid dissociation that enables it to exist as the monoprotic acid and conjugate base forms. 288 

Degrees of dissociation depend on pKa of the metabolite and pH. In our experiments, the 289 

fraction of conjugate base dominated because the initial pH was adjusted to 7. Since the 290 

conjugate base is more hydrophilic than the monoprotic acid, it is less membrane soluble and 291 

hence less toxic. 292 

Energy density. For biotechnological applications, energy density is one of the important 293 

physical properties. The longer the carbon chains become, the higher energy densities the 294 

metabolites contain (Supplementary Figure 5A). Among the classes of metabolites investigated 295 

in this study, alcohols have the highest energy densities followed by esters then acids with the 296 
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same chain lengths because alcohols are least oxygenated. Therefore, molecules with higher 297 

energy densities are more toxic to microbial growth.  298 

 Hydrophobicity. To better capture toxic effects of metabolites within and across different 299 

classes of metabolites, we further examined metabolite hydrophobicity as a basis. We used 300 

partition coefficients to determine and quantitatively compare hydrophobicity of metabolites. As 301 

expected, there is a strong linear correlation between the carbon chain lengths and partition 302 

coefficients (R2 ~ 0.98) (Supplementary Figure 5B). The longer the carbon chain, the higher the 303 

partition coefficient becomes with a strong linear correlation. For the same carbon chain, 304 

chemicals may have slight differences in partition coefficients depending on associated function 305 

groups and chain branching. For instance, partition coefficients of pentanol, isopentanol, 306 

pentanoic acid, isopentanoic acid, ethyl propionate, and propyl acetate are 29.5, 15.1, 21.9, 16.2, 307 

20.9, and 19.1, respectively.  308 

Regardless of metabolite types and concentrations, a correlation exists between 309 

hydrophobicity of a metabolite and its toxic effect on microbial growth (Figure 8).  As partition 310 

coefficients increase, negative effects on specific growth rates and ODs also increase 311 

significantly. The negative effects become severe when cells are exposed to higher chemical 312 

concentrations. Among different classes of metabolites examined in this study, alcohols are the 313 

most toxic as compared to acids and esters at the same partition coefficients and concentrations. 314 

Esters also appear to be less toxic than acids at lower partition coefficients and chemical 315 

concentrations. All compounds that prevented growth at concentrations greater than 2.5 g/L have 316 

a partition coefficient at least ~250 times greater than ethanol. Every branched chain isomer in 317 

this work was shown to be less toxic than the associated straight chain isomer, and in each case 318 

the branched chain has a lower partition coefficient than the straight chain compound.  319 
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Hydrophobicity of a metabolite and its toxic effect on microbial growth can be similarly 320 

explained by hydrophobic interaction between the metabolite and cell membrane. As partition 321 

coefficients increase, metabolites become more membrane soluble and disrupt lipid membranes, 322 

which enhance degrees of toxicity and sufficiently alter cell morphology [44-46]. Therefore, 323 

hydrophobicity is a good quantitative index to evaluate toxic effect of a metabolite on microbial 324 

health.  325 

 326 

CONCLUSION 327 

Analysis of a comprehensive list short-chain alcohols, acids, and esters shows distinctive 328 

toxic effects of these metabolites on E. coli health. Alcohols are most toxic followed by acids 329 

and esters at identical concentrations and total carbon counts. Regardless of metabolite classes 330 

and concentrations, longer-chain metabolites inhibit microbial growth more significantly than 331 

shorter-chain ones. Branched-chain metabolites are less toxic than straight-chain ones with same 332 

total carbon count. Remarkably, for the same total carbon counts, esters having longer-chain 333 

alcohol moieties are more inhibitory than those having short-chain alcohol moieties. 334 

Hydrophobicity of a metabolite is a good quantitative index to determine its toxic effect on 335 

microbial health.  Since this study focuses on characterizing toxic effects of fermentative 336 

metabolites on an industrial workhorse gram-negative bacterium E. coli, it is of particular 337 

interest to further explore in the future whether the trends found in this study exist in other 338 

bacterial, eukaryotic, and archaeal species. Even though it is not the focus of this study, 339 

fermentative metabolites can cause cytotoxicity when they are present inside the cells [23, 24, 340 

47]. Overall, the results of this study shed light on toxic effects of fermentative metabolites with 341 
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distinct characteristics on microbial growth as wells as help selection of desirable metabolites 342 

and hosts for industrial fermentation to overproduce them.  343 

 344 

MATERIALS AND METHODS 345 

Medium and cell culturing 346 

For all E. coli MG1655 (DE3) characterization experiments, modified M9 medium 347 

(pH~7) was used, consisting of 100 mL/L of 10X M9 salts, 1 ml/L of 1 M MgSO4, 100 μL/L of 348 

1M CaCl2, 1 ml/L of stock thiamine HCl solution (1 g/L), 1 ml/L of stock trace metals solution, 349 

10 g/L glucose, and 5 g/L yeast extract [48]. 10X M9 salts are composed 70 g/L Na2HPO4•H2O, 350 

30 g/L KH2PO4, 5 g/L NaCl, and 10 g/L NH4Cl. Alcohols, esters, and acids were added at 351 

necessary concentrations into flasks of partitioned media. Media with the chemical of interest 352 

was then transferred from these flasks to 28 mL balch tubes and capped with rubber stoppers and 353 

aluminum seals. After addition of each chemical, media were pH adjusted to 6.5-7 with 5M 354 

KOH. Alcohols, acids, and esters were studied at varying concentrations based on a combination 355 

of factors including solubility and observed toxicity. 356 

Stock cells from the -80oC freezer were struck onto lysogeny broth (LB)-agar plates and 357 

then were grown overnight in flasks containing 50 mL of the modified M9 medium in a New 358 

Brunswick Excella E25 incubator at 37oC and 175 rpm until OD600nm (optical density measured 359 

at 600 nm using a Thermo Scientific Genysys 30 Visible Spectrophotometer) reached 2.5-3.0. In 360 

the event that this OD setpoint was surpassed, cells were diluted in 50 mL of the same medium 361 

to OD = 1.0 and grown once again to OD = 2.5.  Cells were transferred to nitrogen sparged, 362 

anaerobic culture balch tubes containing 20 mL of media at initial OD = 0.1 to begin growth 363 
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characterization on a 75o angled platform under identical conditions. All experiments were 364 

performed in at least 3 biological replicates.  365 

 366 

Data collection and analysis 367 

Partition coefficient. Partition coefficient, a measure of hydrophobicity of a metabolite, 368 

is calculated as follows: 369 

 log��P� � log�� ���
�������

�
�
���	


�  [1] 370 

where Pi is the partition coefficient of metabolite i; Si
octanol and Si

water (g/L) are the solubilities of 371 

metabolite i in octanol and water, respectively. Pi  is calculated using the Molinspiration 372 

Cheminformatics interactive log(P) calculator [49]. The input for this calculator uses the 373 

SMILES chemical notation acquired from PubChem [50]. 374 

ONMED.  Octane Normalized Mass Energy Density (ONMED) is calculated as a ratio of 375 

standard heat of combustion of a metabolite to that of octane (~44.5 kJ/kg) [18] where the standard 376 

heat of combustion of each chemical was estimated based on average bond energies [51].   377 

Specific growth rate. First-order kinetics is applied to calculate a specific growth rate 378 

from kinetic measurement of cell growth as follows: 379 

 µ � �

��

· ���
��

 [2] 380 

where μ (1/h) is the specific growth rate, CX (g/L) is cell titer, and t (h) is culturing time. Note 381 

that in our study cell titer is estimated from measured OD with a correlation of 1 OD ~ 0.5 g 382 

DCW/L. 383 

 384 

ABBREVIATIONS 385 
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μ: specific growth rate; CX: cell concentration; DCW: dry cell weight; OD: optical 386 

density; ONMED: octane normalized mass energy density; Pi: partition coefficient 387 

of metabolite i; Si
octanol and Si

water: solubilities of metabolite i in octanol and water, 388 

respectively; t: time; h: hour.  389 
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FIGURE LEGENDS 552 

Figure 1: Growth kinetics of E. coli exposed to eight short-chain alcohols at various 553 

concentrations including (A) ethanol, (B) propanol, (C) isopropanol, (D) butanol, (E) isobutanol, 554 

(F) pentanol, (G) isopentanol, and (H) hexanol. 555 

Figure 2: Comprehensive analysis of toxic effects of alcohols on E. coli health based on (A) 556 

specific growth rate and (B) OD. 557 

Figure 3: Growth kinetics of E. coli exposed to eight short-chain fatty acids at various 558 

concentrations including (A) acetic acid, (B) propanoic acid, (C) butanoic acid, (D) isobutanoic 559 

acid, (E) pentanoic acid, (F) isopentanoic acid, (G) hexanoic aid, and (H) octanoic acid. 560 

Figure 4: Comprehensive analysis of toxic effects of alcohols on E. coli health based on (A) 561 

specific growth rate and (B) OD. 562 

Figure 5: Growth kinetics of E. coli exposed to sixteen short-chain esters at various 563 

concentrations including (A-D) ethyl esters, (E-J) (iso)propyl esters, and (K-P) (iso)butyl esters 564 

Figure 6: Comprehensive analysis of toxic effects of esters on E. coli health based on specific 565 

growth rate and OD of (A-B) ethyl esters, (C-D) (iso)propyl esters, and (E-F) (iso)butyl esters.  566 

Figure 7: Comprehensive analysis of metabolite carbon chains determining toxic effects on E. 567 

coli health based on (A-C) specific growth rate and (D-F) OD at 2.5, 5.0, and 7.5 g/L 568 

metabolites. 569 

Figure 8: Comprehensive analysis of degrees of metabolite hydrophobicity determining toxic 570 

effects on E. coli health based on (A-C) specific growth rate and (D-F) OD at 2.5, 5.0, and 7.5 571 

g/L metabolites.  572 
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SUPPMENTARY FILES 573 

 574 

Supplementary File S1: Supplementary Figures and descriptions in a PDF. 575 
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FIGURE 1 577 
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FIGURE 3 585 
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FIGURE 5 592 
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FIGURE 7 597 
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FIGURE 8 600 
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