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ABSTRACT

Positive density dependence can create a threshold of population states below which extinction of
the population occurs. The existence of this threshold, which can often be a complex,
multi-dimensional surface, rather than a single point, is of particular importance in degraded
populations for which there is a desire for successful restoration. Here, we incorporated positive
density dependence into a closed, size- and age-structured integral projection model
parameterized with empirical data from an Eastern oyster, Crassostrea virginica, population in
Pamlico Sound, North Carolina. To understand the properties of the threshold surface, and
implications for restoration, we introduced a general method based on a linearization of the
threshold surface at its unique, unstable equilibrium. We estimated the number of oysters of a
particular age (i.e. stock enhancement), or the surface area of hard substrate required (i.e. habitat
enhancement), to move a population from an extinction trajectory to a persistent trajectory. The
location of the threshold surface was strongly affected by changes in the amount of local larval
retention. Traditional stock enhancement with oysters less than a year old (i.e. spat) required
three times as many oysters relative to stock enhancement with oysters between ages three and
seven, while the success of habitat enhancement depended upon the initial size distribution of the
population. The methodology described here demonstrates the importance of considering positive
density dependence in oyster populations, and also provides insights into effective management
and restoration strategies when dealing with a high dimensional threshold separating extinction
and persistence.
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INTRODUCTION

Many natural populations exhibit positive density dependence, or Allee effects, in which an
increase in population size leads to an increase in per capita growth rate, or other components of
fitness (Allee, 1931, 1949; Stephens et al., 1999; Courchamp et al., 1999). These Allee effects
arise through various mechanisms, such at mate limitation or predator saturation (Courchamp
et al., 1999; Schreiber, 2003; Gascoigne and Lipcius, 2004). Positive density dependence might
also arise in populations of ecosystem engineers, organisms that significantly modify the
surrounding abiotic and biotic environment, as the population size must be sufficiently large to
generate required environmental change for population persistence (Byers et al., 2006;
Cuddington et al., 2009). If the Allee effect is strong enough, at low population sizes the
population will experience negative growth rates, and ultimately extinction (Courchamp et al.,
1999). This leads to a critical population size required for population persistence; below this
critical threshold, the population will decline to extinction, while above this threshold the
population will persist. Knowledge of this critical threshold is thus of particular importance in
exploited or degraded populations where there is an interest in population restoration or
conservation (Courchamp et al., 2008).

One ecosystem engineer of particular restoration importance is the Eastern oyster, Crassostrea
virginica. This species inhabits thousands of miles of coastline, and provides valuable ecosystem
services, including commercial harvest, water filtration, seashore stabilization, erosion protection,
and habitat and predator refuge for a variety of organisms (Coen et al., 2007; Grabowski et al.,
2012). In these oyster populations, individuals aggregate into large, complex reef structures.
Reefs are composed of living oysters, as well as oyster shell that remains following natural
mortality. Shell provides solid substrate on which new oyster larvae can attach, increasing larval
survival by providing shelter from predators and preventing burial in sediment (Rothschild et al.,
1994; Mann and Powell, 2007). Reefs also increase growth and survival of adult oysters by
increasing water filtration, buffering against hypoxic events, and increasing food availability
through increased current speeds (Lenihan et al., 1996; Lenihan and Peterson, 1998; Lenihan,
1999; Bartol et al., 1999; Schulte et al., 2009).

Globally, oysters have experienced severe population declines due to decades of overfishing,
coastal development, and pollution (Airoldi and Beck, 2007; Beck et al., 2011). Particularly
damaging has been the use of destructive fishing practices that not only remove older, more
fecund individuals, but also destroys the reef structure and available substrate that is necessary for
recruitment and persistent populations (Rothschild et al., 1994). Additionally, the emergence and
increasing prevalence of two protozoan diseases, MSX and Dermo, along the eastern United
States in the mid to late 1900s has contributed to population declines (Hofmann et al., 2009;
Carnegie and Burreson, 2011). Along the eastern coast of the United States, many native C.
virginica populations have been reduced to less than 15% of their historic population sizes, with
an associated decline in substrate availability and integrity (Rothschild et al., 1994; Beck et al.,
2011; zu Ermgassen et al., 2012).

Demographic modeling has shown that positive feedbacks between living oysters and shell
substrate can lead to thresholds between population persistence and extinction, as well as possible
alternative stable states (Jordan-Cooley et al., 2011; Nystrom et al., 2012; Housego and Rosman,
2016). In systems with alternative stable states, restoration becomes particularly challenging as
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transitions between desired and undesired states can occur through sudden, often unpredictable,
regime shifts, and successful restoration often requires the conditions of the system be returned to
levels more extreme than those of the original system (Beisner et al., 2003; Scheffer et al., 2001;
Scheffer and Carpenter, 2003; Hastings and Wysham, 2010). In oysters, the desirable state
consists of a healthy, abundant population of oysters on high-relief reefs, while the undesirable
state is heavily degraded, with low or zero population sizes.

Empirical data and restoration efforts also supports these ideas (Powell et al., 2009a,b; Schulte
et al., 2009). For example, Powell et al. (2009b) analyzed a time series of C. virginica populations
in Delaware Bay from 1953-2006, and found that the population persisted for extended periods of
time in two distinct states, one of high abundance, and one of low abundance. Additionally,
Schulte et al. (2009) showed that the success of restoration of C. virigincia populations in the
Chesapeake Bay was influenced significantly by the vertical height of the reef. Locations restored
with high vertical reefs had greater oyster densities and were likely to persist, while populations
restored with low vertical reefs had low oyster densities and were predicted to decline to
extinction within a handful of years. This result suggests a critical threshold of reef height
required for persistence.

Given the possible existence of a threshold between population persistence and extinction, it is
important to understand the shape of this threshold in size-structured populations, and what
restoration actions can be taken to push a population from an extinction trajectory to a persistent
trajectory. Restoration efforts in oyster populations generally consist of (i) stock enhancement,
i.e. supplementing existing populations with additional oyster spat reared in the lab, or oysters
grown in aquaculture-like “oyster gardens”; (ii) habitat enhancement, i.e. adding recycled shells
or artificial reef structures to increase the availability of substrate; or (iii) a combination of stock
and habitat enhancement (Brumbaugh and Coen, 2009). While there has been successful
restoration of some C. virginica populations along the mid-Atlantic US coast (Taylor and Bushek,
2008; Powers et al., 2009; Schulte et al., 2009; Puckett and Eggleston, 2012; Lipcius et al., 2015),
there are concerns about the efficacy of restoration actions, particularly given high disease
prevalence, and there is no current agreement on the best means for achieving success (Mann and
Powell, 2007; Kennedy et al., 2011; Geraldi et al., 2013; but see Baggett et al., 2014 and Lipcius
et al., 2015).

Here, we use C. virginica as a model species to investigate the impact of positive density
dependence on population dynamics and restoration actions. Specifically, we are interested in
understanding the properties of the threshold between population persistence and extinction. We
extend a closed, size- and age-structured integral projection model (IPM) developed in Moore
et al. (2016) to include a positive feedback between the establishment of new oyster larvae and
shell substrate. We use this model to address several questions. First, we explore properties of the
threshold and introduce a general analytic method for approximating the infinite dimensional
threshold surface. We next investigate the affect of population size structure on the threshold
surface, and the ultimate fate of the population. Finally, we assess the relative effectiveness of two
restoration actions, namely stock enhancement using oysters of different ages, or habitat
enhancement, at restoring a population declining toward extinction such that the population
persists.

METHODS
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Model

We extend an age- and size-structured integral-projection model (IPM) developed in Moore et al.
(2016). Fig. 1 shows a simplified representation of the full model. Briefly, let na(x, t)dx be the
density of age a, size x oysters at time t, with x measured as the shell length of an oyster in mm.
Oysters of size x will survive to the next time step and grow to size y according to age- and
size-specific survival and growth kernels, Sa(x) and Ga(y,x), respectively. The fecundity kernel,
Fa(y,x,H(t)), represents the density of size y recruits produced by an adult of age a and size x.
The fecundity kernel also depends upon, H(t), the m2 of substrate available at time t. Though
adult oysters are also positively affected by the amount of substrate, this effect is due largely to
the physical location of the oyster within the reef structure (Lenihan and Peterson, 1998; Lenihan,
1999), and is thus more indirect than the effect on the oyster larvae. Thus, we chose to focus
solely on the positive effect of substrate levels on recruitment. The dynamics of the population are
expressed as

n1(y, t +1) =
A

∑
a=2

∫ L

0
Sa(x)Fa(y,x,H(t))na(x, t)dx (1)

na+1(y, t +1) =
∫ L

0
Sa(x)Ga(y,x)na(x, t)dx for a≥ 1, (2)

where A is the maximum age of an individual, and L is the maximum size of an individual. To
avoid artificial eviction of individuals growing larger than the maximum size, we include a
discrete size class for individuals of size x > L, with kernels for survival and fecundity set equal
to kernels for individuals of size x = L (Moore et al., 2016; Williams et al., 2012). This discrete
class is given by

Ba+1(t +1) =
∫ L

0
Sa(x)na(x, t)

∫
∞

L
Ga(y,x)dydx+Ba(t)Sa(L) for a≥ 1. (3)

with B1 = 0. We assume that available substrate is equal to the total surface area of shell in the
population, with substrate dynamics given by

H(t +1) = H(t)e−δ +
A

∑
a=1

∫ L

0
k1xk2[1−Sa(x)]na(x, t)dx, (4)

where δ is the decay rate of shell (per year), and k1 and k2 are scaling parameters that convert the
number of size x individuals that experienced mortality to m2 of surface area. Though oyster
larvae are not restricted to settlement on dead conspecifics (Nestlerode et al., 2007), we choose
the surface area of shell to better reflect units most relevant to restoration practices.

In Pamlico Sound, spawning of C. virginica is protracted, with a primary spawning and settlement
peak in May and June, and a secondary spawning and settlement peak in July and August (Ortega
and Sutherland, 1992; Mroch et al., 2012). For simplicity, we model reproduction as occurring
once at the end of the spring, with census occurring immediately thereafter. Between census and
reproduction, adult oysters experience mortality, then grow from their current size x to their final
end-of-year size, x′. Reproduction then occurs according to a size-specific fecundity relationship,
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f (x′,H(t)). This fecundity relationship is composed of two parts: (i) the number of new oyster
larvae that are produced, survive, and settle in the natal population; and (ii) the feedback between
available substrate and the fraction of larvae that are able to successfully establish. We assume the
number of eggs produced is dependent upon the size of the parent, and that all oyster recruits are
created by adults of the local population (i.e. there is no immigration). The fecundity relationship
is given by

f (x′,H(t)) = v(x′)m(x′)ρ
H(t)

α +H(t)
, (5)

where v(x′) is the proportion of size x′ individuals in the population that are female, m(x′) is the
number of eggs produced by a size x′ individual, ρ is the maximal local retention of oyster larvae
(e.g. the proportion of eggs that survive and settle in the natal population), and H(t)/(α +H(t))
represents the positive feedback between available substrate and recruitment. The sizes of the
newly recruited oysters are assumed to be normally distributed with density z(y). Thus, the
overall fecundity kernel is expressed as

Fa(y,x,H(t)) =
H(t)

α +H(t)
ρz(y)

∫ L

0
v(x′)m(x′)Ga(x′,x)dx′. (6)

While there is evidence that negative density dependence is also important in oyster systems,
potentially leading to alternative stable states (Knights and Walters, 2010; Puckett and Eggleston,
2012; Jordan-Cooley et al., 2011; Powell et al., 2009b), here we are only interested in what
determines population persistence versus extinction, rather than the properties of the system at
some stable carrying capacity. As such, we restrict our focus to investigating the effects of positive
density dependence, rather than the effects of both positive and negative density dependence.

Data

We estimated site-specific kernels for growth, survival, and fecundity using data collected from
the West Bay C. virginica population in Pamlico Sound, North Carolina. A full description of the
methods is provided in Mroch et al. (2012) and Puckett and Eggleston (2012, 2016). Briefly, data
to estimate growth and survival kernels were obtained by deploying 15 replicate settlement trays
at a restored oyster reef protected from harvest. On each tray, individual settlers were marked and
growth and mortality tracked from June 2006 to October 2008. To estimate size-specific per
capita fecundity, oysters were collected from the reef and brought back to the lab to determine the
total egg content of each oyster following the general procedures of Cox and Mann (1992).

Statistical fitting

Growth and survival kernels.— To estimate the growth kernel, Ga(y,x), we fit a linear regression
of the log change in size from time t to t +1 against the size at time t, assuming constant variance
across all ages and sizes. Fitting growth in this way ensures non-negative changes in size, which
is important for describing oyster growth (Moore et al., 2016). We fit the survival kernel, Sa(x),
using logistic regression of survival between years. We assume that mortality is age- and
size-dependent, with larger, older oysters more susceptible to diseases, and juveniles more
susceptible to predation. While we do not measure these effects explicitly, we assume these
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processes are captured implicitly in the field data.

Fecundity kernel.— We estimate the size-specific number of eggs produced, m(x′), with a scaling
relationship. Using the estimated number of eggs produced during May 2007 and May 2008
(Mroch et al., 2012), we fit a linear relationship between the log number of eggs and log oyster
size. Since oysters are protandric hermaphrodites, beginning life as male and switching to female
at larger sizes (Galtsoff, 1964), we expect a higher proportion of females at larger sizes. We thus
estimate the size-specific proportion of females in the population, v(x′), using a linear regression
of the proportion of females in the population against size, using data from May 2007 and May
2008 (Mroch et al., 2012). After fitting the model, we bound the function such that any negative
value was set equal to zero, while any value greater than one was set equal to one. However,
model results are not highly sensitive to the form chosen for v(x′). We estimate the size
distribution of new recruits, z(y), with a normal distribution, using the mean and standard
deviation of measured recruit sizes from August 2006 and August 2007 (Puckett and Eggleston,
2012).

Local retention, ρ , depends upon factors such as fertilization success, survival during the pelagic
larval stage, predation, and local dispersal and transport processes. Here, we parameterize ρ using
results of a coupled hydrodynamic and particle tracking simulation presented in Puckett et al.
(2014). Briefly, larval dispersal was simulated over a 21 day period, whereby a daily mortality
rate of 0.2 per day was applied. After 14 days, larvae were assumed to settle if located within the
reef polygon. Local retention was estimated as the proportion of larvae spawned from a reef that
settled within their natal reef. We also consider the case when local retention is low. For this case,
we set ρ to 50% above the minimum value of local retention that still yields a positive
equilibrium (see Methods: Model analysis).

Finally, to estimate the α parameter of the positive feedback function, we solve for α using Eqn.
5 multiplied by n(x′). Thus,

α = H(t)
(

v(x′)m(x′)n(x′)ρ
r

−1
)
, (7)

where r is the observed, size-independent number of recruits. We obtain estimates of r, n(x′), and
H(t) from Puckett and Eggleston (2012). Estimates of v(x′), m(x′), and ρ are as described above.

Substrate dynamics.— We obtain estimates of the substrate decay rate, δ , from Wilberg et al.
(2013). For k1 and k2, the scaling parameters between oyster length and surface area, we used the
scaling relationship given in Galtsoff (1966).

Model analysis

To understand the dynamics of the model, we first assess model behavior by analytically
determining the location of the threshold surface dividing regions of population persistence from
regions of population extinction. We then conduct an elasticity analysis to determine how the
location of this threshold surface is affected by changes in model parameters. Finally, we assess
several restoration scenarios using analytic approximations and numerical simulations.

Model behavior.— The theory developed in Schreiber (2004) applies to the discretization of the
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IPMs which are used for all our numerical work. This theory characterizes the dynamical
behavior of the model using the dominant eigenvalue of the model at low densities, λ0, and the
dominant eigenvalue at high densities, λ∞. Using these eigenvalues, there are three possible
dynamics: (i) asymptotic extinction for all initial densities when λ∞ < 1; (ii) unbounded growth
(persistence) for all non-zero initial densities when λ0 > 1; and (iii) the existence of a
co-dimension one threshold surface such that initial conditions below this surface lead to
extinction, while initial conditions above this surface lead to unbounded growth (persistence). For
the parameters considered here, the model always exhibits the third behavior. Moreover, as we
will show, there is a unique unstable equilibrium on this threshold surface. We will use
linearizations at this unstable equilibrium to gain insights into the geometry of the threshold
surface.

At the unstable equilibrium on the threshold surface, the dominant eigenvalue, λ , of the
demographic transition operator equals one. Let ρ̂ be the value of ρ such that λ = 1 in the linear
model (i.e. when f (x′) = v(x′)m(x′)ρ̂), and n̂a(x) be the stable size- and age-distribution when
λ = 1 in the linear model. To solve for the equilibrium in the non-linear model with positive
feedbacks, we equate the fecundity term in the non-linear model with the fecundity term in the
linear model at equilibrium: ρ̂ = ρ

Ĥ
α+Ĥ

. Solving for the equilibrium level of substrate, Ĥ, yields

Ĥ =
αρ̂

ρ− ρ̂
. (8)

Note that for a positive equilibrium, ρ > ρ̂ .

We then solve for the total equilibrium number of oysters using Eqn. 4 and evaluating na(x, t) at
n̂a(x)N̂, where N̂ is the total number of oysters at equilibrium across all sizes and ages. Thus,

N̂ =
δ Ĥ

∑
A
a=1

∫ L
0 k1xk2[1−Sa(x)]n̂a(x)dx

. (9)

To investigate model behavior around the unstable equilibrium, we run simulations of population
trajectories using two initial size and age distributions: (i) the equilibrium size and age
distribution, n̂a(x); and (ii) a harvested age and size distribution, set by truncating and
re-normalizing the equilibrium size and age distribution such that all oysters ≥ 75 mm were
removed from the population. This latter distribution roughly approximates a population
experiencing severe harvesting pressure. For each of the two initial size and age distributions, we
numerically estimate the separatrix of total oyster numbers and total substrate above which the
population would persist, and below which the population would decline to extinction. We do this
using a bisection search algorithm. Briefly, we first set the initial amount of substrate, H0. We
then determine an initial value of total oysters, c1, such that a population beginning at this value is
above the threshold surface and persists, and an initial value of total oysters, c2, such that a
population beginning at this value is below the threshold surface and goes extinct. We then run
the simulation with an initial total oyster number equal to c3 = (c1 + c2)/2. If this new population
is above the threshold surface, in the next simulation we set the new total oyster number equal to
c4 = (c2 + c3)/2, otherwise we set the new total oyster number equal to c4 = (c1 + c3)/2. We
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repeat this process k steps until ck is above the threshold surface and ck− ck−1 < 0.001N̂. We
repeat this process across a range of values of H0 near Ĥ and for each of the two initial size and
age distributions.

Elasticity analysis.— Given that many parameters of the model are highly uncertain, and
potentially variable across space and time, we compute the elasticity of the equilibrium to local
retention, ρ , the shape parameter of the feedback function, α , and the substrate decay rate, δ .
These elasticities indicate the percentage change in the equilibrium values given a 1% change in
the parameter. Let x = (n,H)T, n = (n1(y),B1, · · · ,nA(y),BA), A(H,θ) be the full demographic
operator (Eqns.1-3), h(x,θ) be the dynamics of the substrate (Eqn.4), and θ be the parameter of
interest. Then, the sensitivity of the equilibrium population densities and substrate level to θ is

∂ x̂
∂θ

=

(
∂V
∂x

)−1(
−∂V

∂θ

)
, (10)

where

V (x,θ) = (A(H,θ)n−n,h(x,θ)−H)T , (11)

∂V
∂θ

=

(
∂A
∂θ

n,
∂h
∂θ

)T
∣∣∣∣∣
x̂,θ

, (12)

∂V
∂x

=

[
A− I ∂A

∂H n
∂h
∂n

∂h
∂H −1

]∣∣∣∣∣
x̂,θ

, (13)

and I denotes the identity operator. The elasticity of the population sizes and substrate level to θ

is then given by

∂ x̂
∂θ

θ

x̂
. (14)

Appendix S1 gives the specific equations used to calculate the elasticity of the equilibrium
population densities to δ , ρ , and α .

Restoration scenarios and analytic approximations.— Restoration of an oyster population is
desirable if the population lies below the threshold surface and is heading toward extinction.
Successful restoration is then defined here as restoration actions that push the population across
the threshold surface such that the population will theoretically increase toward infinity. Here, we
consider two types of one-shot restoration actions: (i) the addition of cohorts of oysters of a single
age, a; and (ii) the addition of shell substrate. Since restoration actions require significant
amounts of time and money, we are interested in determining the minimum amount of either
oysters or substrate that will push the population across the equilibrium threshold surface. We
approach this question using an analytic approximation for oyster additions, and numerically for
both oyster or substrate additions.

First, we use Eqn.13 to investigate the linearization of the threshold surface around the unstable
equilibrium. The left dominant eigenvector of this operator gives the direction perpendicular to
the threshold surface, and thus indicates the relative amount of oysters of a particular age and size
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that should be added to minimize the distance between the threshold surface and a point below the
threshold surface (Appendix S2). Since we are interested in adding cohorts of oysters of a
particular age to better reflect restoration practices, we use the relationship between the left
eigenvector, the unstable equilibrium, and the size distribution of age a oysters to analytically
approximate the total number of age a oysters required to cross the threshold surface (Appendix
S3). We determined the size distribution of age a oysters by applying the growth and survival
kernels to the initial distribution of age 1 recruits, z(y), and re-normalizing the distribution after
each time step.

To determine whether the analytic approximations of the required oyster numbers work well, we
also simulate restoration actions numerically to determine the minimum number of age a oysters,
or the minimum amount of substrate required to push the population over the threshold surface,
assuming a one-time addition of either substrate or oysters of age a. To numerically determine the
minimum number of oysters of age a or substrate required, we use the bisection search algorithm
described in Methods: Model analysis. For simulations of oyster additions, we assume the
population starts with no living oysters, and no available substrate. This assumes a worst-case
scenario in which an oyster population once existed, but became degraded to the extent that no
oysters or shell remain. For substrate additions, we assume the population starts with no available
substrate, and a number of oysters equal to 10% above or 10% below N̂. We modeled the size
distribution of existing oysters using either the equilibrium size distribution, or the harvested size
distribution.

In all model analyses, we discretized the integral operators using the midpoint rule with 250
equally sized bins from size 0 to 250 mm, for each age class from 0 to 10 years. We ran all
simulations for 150 time steps. Model implementation and data analysis were conducted with R
(R Core Team, 2015).

RESULTS

Statistical fits

A total of 590 oysters were observed for approximately 2 years post-settlement from June 2006 to
October 2008. Measured oyster sizes ranged from 5.4 mm to 86.1 mm, while oyster ages ranged
from 62 days to 2.3 years. Oyster sizes observed from quadrat sampling (to obtain individuals to
estimate per-capita fecundity) ranged from 6-124 mm on substrate that was 3-5 years old over the
course of the study (Mroch et al., 2012; Puckett and Eggleston, 2012). In the model, we
extrapolated both size and age to span a biologically realistic range of values, allowing size to
vary from 0 mm to 250 mm, and age to vary from 0 days to 10 years.

While previous work has shown the importance of including both age- and size-structure in
models of oyster populations (Moore et al., 2016), the limited time-frame of our data led to poor
fits for growth and survival functions when including both age and size. We thus fit growth and
survival functions using only size, but also included a maximum age of survival, A = 10, beyond
which no oysters survive, regardless of size. The final growth function shows a negative
relationship between the log change in size and size of an oyster. When translated to the
relationship between size at time t +1 and size at time t, this led to a growth function in which
oyster growth slowed as size increased (Fig. 2A). Oyster survivorship increased as a function of
size (Fig. 2B).
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The proportion of females in the population increased as a function of size (Fig. 3A), while the
log number of eggs increased linearly as a function of log female size (Fig. 3B). The size
distribution of new recruits was normally distributed with mean = 16.47 mm, and sd = 5.50 mm
(Fig. 3C).

We set the degree of local retention ρest = 2.617898×10−3, using estimates from Puckett and
Eggleston (2016). We also investigated model results when the degree of local retention was low
(for instance, if environmental conditions changed such that recruit survivorship decreased), and
set ρlow = 2.842991×10−5. This value was chosen to be equal to 50% above ρ̂ , the minimum
value of local retention that still yields a positive equilibrium. To find the unstable equilibrium,
we used a value of ρ̂ = 1.89532724809747×10−5, which yielded a long-term population growth
rate of λ = 1.00000000000923 in the linear model.

To obtain an estimate of α , we used H = 4134.5 m2 (Puckett and Eggleston, 2012), and a total
population size of N = 3,583,233.333 oysters (Puckett and Eggleston, 2016). We multiplied the
total population size by size-frequency data of oysters at this location to obtain an estimate of the
size distribution n(x) (Puckett and Eggleston, 2016). To estimate r, we used the number of
observed recruits in August 2006 to obtain an estimate of r = 4,266,804 new recruits (Puckett
and Eggleston, 2012). Since r, as estimated in Puckett and Eggleston (2012), measures the overall
number of recruits, it is possible that this value includes immigrant recruits produced from outside
the local population. However, as the West Bay site is relatively isolated from other nearby oyster
reefs, the input of oyster recruits from external sources is likely small (Puckett and Eggleston,
2016). Plugging these values, as well as ρest and size-specific sex ratios and eggs as described
above into Eqn. 7 yielded a value of α = 21,800.28.

Wilberg et al. (2013) gives a range of shell decay rates from 0.05-0.4 per year. We used a mid
value from this range and set δ = 0.2. We also explored dynamics for values of δ at the extremes
of this range. Galtsoff (1966) give the scaling relationship between oyster length, in cm, and
surface area, in cm2 as 1.25(Lcm)

1.56. Converting to mm and m2, respectively, yields
k1 = 3.443×10−6 and k2 = 1.56, and thus m2 = 3.443×10−6(Lmm)

1.56.

All demographic functions and parameter estimates are given in Table 1.

Model analysis

Model behavior.— Using the parameter values in Table 1, the unstable positive equilibrium is
(N̂, Ĥ) = (20,928.69 oysters, 158.98 m2) when ρ is high (ρest), and (N̂, Ĥ) = (5,739,643.58
oysters, 43,601.02 m2) when ρ is low (ρlow). For populations beginning at the equilibrium size
distribution (Fig. 4B), the separatrix passes through the unstable equilibrium (Fig. 4A), while for
populations beginning at the harvested size distribution (Fig. 4C), the separatrix is greater than
that of the equilibrium size (Fig. 4A). Above the harvested separatrix (Fig. 4A, region I),
populations beginning at either initial size distributions will increase to infinity, while below the
equilibrium separatrix (Fig. 4A, region III) populations beginning at either the equilibrium or the
harvested size distribution will decline to extinction. However, there exists a large region between
the two separatrices (Fig. 4A, region II), where populations beginning at the equilibrium size
distribution will increase to infinity, but populations beginning at the harvested size distribution
will decline to extinction, even if the population begins above (N̂, Ĥ). Additionally, populations
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beginning at the harvested size distribution will often exhibit complex, oscillatory behavior during
the first 10-12 years of the simulation, regardless of whether they are declining toward extinction
or increasing toward infinity.

Elasticity analysis.— Increasing the feedback parameter, α , will increase x̂, while increasing local
retention, ρ , will decrease x̂ (Fig. 5). Increasing the substrate decay rate, δ , will increase N̂ and
decrease Ĥ, though the effect on Ĥ is much smaller than the effect on N̂ (Fig. 5). Of the three
parameters, changes in local retention ρ has the largest impact on the threshold surface, while
changes in δ has the smallest impact on the threshold surface. The effect on x̂ to changes to ρ is
reduced when ρ is high, while the effect on x̂ to changes to δ is reduced when δ is low (not
shown).

Restoration scenarios.— Fig. 6 shows the normalized size distributions of age a oysters. Using
these distributions and the methods presented in Appendix S3, we analytically approximate the
total number of oysters of a particular age cohort that are required to cross the threshold surface.
These results, as well as the results of the numerical simulations, are shown in Fig. 7A.

For all parameter combinations evaluated, the greatest number of oysters are required if oysters
are added to the system at age 1, while the fewest number of oysters are required if oysters are
added to the system between the ages of 3-7. When local retention, ρ , is low, significantly more
oysters are required to push the population across the threshold surface, versus when ρ is high.
Increasing δ increases N̂ and thus the overall number of oysters required to cross the threshold.

While the analytic approximations work well, in general they underestimate the number of
oysters required (Fig. 7B), with larger errors for older ages. When δ is low, the underestimation
becomes more pronounced, while if δ is high, the analytic approximations overestimate the
required oyster numbers for younger ages (particularly when ρ is high).

The degree of effort required for habitat enhancement depends upon the initial population size
and size distribution of the population (Fig. 8). If ρ is low, more overall substrate is required to
push the population over the threshold surface, versus when ρ is high. If the population is at its
equilibrium size distribution, with total oyster numbers above N̂, the amount of substrate required
is less than the equilibrium value of substrate (Fig. 8A). However, if the population begins with a
size distribution similar to that of a harvested population, significantly more substrate is required
beyond the equilibrium value, even if the total number of oysters begins above N̂ (Fig. 8B).

DISCUSSION

We found that incorporating positive density dependence into a size- and age-structured IPM can
create an infinite dimensional threshold surface below which the population would decline to
extinction, and above which the population would increase to infinity. This surface existed when
ρ > ρ̂ . That is, when positive feedbacks are included in the model, the maximum degree of local
retention must be greater than if positive feedbacks are not considered, since the feedback term
scales the number of recruits, and decreases recruitment when Ĥ is low.

Additionally, we found that population dynamics near the threshold surface were highly
dependent upon the size and age distribution of the population. This is because the threshold not
only depends on the total oyster numbers and substrate levels, but also on the size and age
distribution. As such, even if the total number of oysters in the population exceeds the total
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equilibrium oyster number, N̂, the number of oysters of a particular size and age might be below
the threshold surface, and the population might still decline to extinction. For example, in a
population that has experienced significant harvest pressure and only oysters < 75 mm remained
in the population, the total number of oysters and substrate had to be well above N̂ and Ĥ in order
for the population to persist. While our results indicate the existence of a restoration threshold
that must be met for successful restoration (Suding and Hobbs, 2008), our results also emphasize
the complexity of this threshold. It thus becomes particularly important to set a desired size- and
age-structure as a goal of restoration, and not just an overall number of oysters or substrate
(Baggett et al., 2014, 2015; Moore et al., 2016). In addition, in simulations that began away from
the equilibrium size- and age-structure, populations exhibited oscillatory dynamics for upwards of
10 years, both when declining to extinction or persisting. When monitoring real world oyster
populations, this indicates the potential difficulty of using short (approx. 5 year) time series
observations to judge the need for, or the success of, restoration actions, as populations in the
declining phase of an oscillation may ultimately persist.

The location of the threshold surface is dependent upon parameters whose estimates are highly
uncertain. The threshold surface was most affected by changes in ρ , the maximum degree of local
retention, with increases in ρ leading to decreases in the location of the threshold surface. That is,
if more oyster recruits survive and remain in the natal population, the smaller the extinction
region, and thus the increased likelihood of a persistent population. In terms of restoration, this
supports the idea that restoration should focus on locations with a high degree of local retention
or larval survival. This could be achieved by assessing the abiotic conditions of the region, such
as salinity or specific hydrodynamic patterns, as well as focusing on areas of low predation and
disease.

Alternatively, increases in both δ and α led to increases in the threshold surface, making it less
likely that the population would persist. Increases in δ , the decay rate of shell substrate, indicate
that the substrate will not persist as long in the system, and thus there will be less overall recruits
that are able to successfully establish. This is of particular importance as there is evidence that
climate change will increase ocean acidification (Orr et al., 2005; Gaylord et al., 2015). Increases
in ocean acidification will decrease the calcification of oysters shells, making the shell weaker and
ultimately increasing shell erosion rates (i.e. increasing δ ; Waldbusser et al., 2011). Additionally,
δ is temporally and spatially variable (Powell et al., 2006; Wilberg et al., 2013). Given that,
restoration actions should again focus on particular locations where δ is low.

The α parameter determines the shape of the feedback function; high values of α decrease the
strength of the positive feedback (thus increasing the equilibrium value and making it more
difficult to push the population across the threshold surface), while low values of α increase the
strength of the positive feedback. When restoring populations, there are many ways that substrate
is added to existing populations. Loose shell can be dumped across large regions of the
population, shells can be bagged first before being placed, or large artificial structures can be built
and added to the population (Brumbaugh and Coen, 2009; Theuerkauf et al., 2015). This analysis
supports the idea that the most effective technique will be the one that best facilitates oyster
recruitment. While there is some data on the relationship between substrate and recruitment
(Mann and Evans, 1998), much is still unknown, and oyster restoration efforts would likely
benefit from additional studies investigating this relationship.
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If ρ is low (or if δ is high), the location of the threshold surface will be further from the origin,
and more oysters will be needed to restore the population. Additionally, our analysis shows that
approximately three times as many oysters are required if spat are added to the system, rather than
larger, mid-aged oysters. This might explain why seeding oysters is not always successful at
enhancing oyster populations (e.g. Geraldi et al., 2013, Puckett and Eggleston, 2016). When
seeding oyster populations, oyster larvae are grown on recycled shell in the lab, and then planted
in the natural population once they reach a large enough size to limit mortality (Brumbaugh and
Coen, 2009). As oysters grow older and larger, it becomes cost prohibitive to continue rearing the
oysters in the lab. However, our results indicate that it would be worthwhile to consider methods
of growing oysters to a larger size in a stress-free, high survival environment before planting them
in a degraded location where restoration is desired. This could involve growing oysters off shore
in protected sites for several years before moving them, or coordinating with aquaculture or
community-based oyster gardening facilities.

A coupled ecological and economic modeling study conducted by Kellison and Eggleston (2004)
for summer flounder stock enhancement found similar results: the number of survivors of
released stock was maximized, and the total cost per survivor was minimized, when fish were
released at the maximum size possible. A similar cost-benefit analysis could be done for oysters
that incorporates the cost of growing a given number of oysters to a particular size to better
determine the most economic size and age of oysters to use for restoration. Additionally, while
this analysis looked at the minimum level of stock enhancement required for persistence, future
work could also incorporate an “economic restoration threshold” (Lampert and Hastings, 2014) to
determine the optimal level of stock enhancement (which might exceed the minimum level)
required to meet a restoration goal in a cost-effective manner.

For substrate addition, an unrealistic amount of substrate (> 13 million m2) was required if the
population began at low (<10% of N̂) population levels (results not shown). If the population
began close to the equilibrium total oyster numbers, the amount of substrate required was closer to
the equilibrium substate levels. However, if ρ was low or δ was high, substantially more substrate
was required. The initial size distribution of the population was also important. If the population
began at the equilibrium size distribution, then the amount of substrate required was less than the
equilibrium substrate level if the population began at 110% of N̂, while the amount was greater
than or equal to the equilibrium substrate level if the population began at 90% of N̂. However, if
the population began with a size distribution similar to that of a harvested population, even if the
population began above the equilibrium number of total oysters, significantly more substrate
beyond the equilibrium substrate levels was required to restore the population. This result
reinforces the idea that the structure of the population is equally important as the overall size of
the population for a healthy, persistent population (Baggett et al., 2014, 2015; Moore et al., 2016).

The analytic approximation of oysters required tended to underestimate the number of oysters
required, particularly for older ages and when δ is low. However, within the range of parameter
values explored, in most cases the analytic approximation was within 25% of the numeric value,
with the worst case still within 40% of the numeric value. Given the high dimension of the
threshold surface, it is surprising that the analytic approximation performs this well. This success
of the analytical approach suggests that it might be useful for other IPMs and matrix models with
positive feedbacks.
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Limitations and challenges

Our model, which includes both structuring population variables and positive density dependence,
allows for direct assessment of the required number of oysters or substrate for a persistent
population. However, there are several important factors that are not yet incorporated into the
model presented here. First, we only include positive feedbacks in the fecundity term of the
model. In reality, the amount of shell substrate will also have a positive effect on adult oyster
growth and survival, for example, through the interaction between reef height and shape, water
depth, and water flow speeds (Lenihan and Peterson, 1998; Lenihan, 1999; Bartol et al., 1999),
though it’s likely these effects will be small relative to the positive density dependence effect on
recruitment. Additionally, the three-dimensional shape of a reef plays a role in determining how
much of the overall shell surface area is available for settlement. Future work could extend the
IPM presented here to include a variable for reef height or shape, or a structuring variable that
represents the location of individual oysters within the reef. This will likely significantly increase
the complexity of the dynamics.

Our model also does not include negative density dependence, which is important for oyster
dynamics (Knights and Walters, 2010; Puckett and Eggleston, 2012). However, preliminary
analysis of a model with both positive and negative feedbacks on fecundity indicate that, with the
exception of a positive stable equilibrium surface in addition to the unstable threshold equilibrium
surface, qualitative results are similar. Additionally, since we are focused on restoring highly
degraded populations, population sizes are likely too small for negative density dependence to
have a large effect.

Next, our model assumes a closed population with no external subsidy of recruits. Because of this,
any new oysters must either be generated by the local population, or added through restoration
actions. This likely explains the unrealistic amount of substrate required at low population sizes.
Though many natural oyster reefs are fairly isolated, such as the site used to parameterize the
model, many natural oyster reefs receive a large proportion of recruits from external populations,
and even isolated populations likely receive some larvae from external sources (Lipcius et al.,
2008, 2011; Puckett and Eggleston, 2016). Future work could extend the model to allow for
external recruitment to better understand how external subsidies affect the location of the
threshold surface. Additionally, the inclusion of external recruitment into future models can give
managers a better sense for the relative effectiveness of either stock or habitat enhancement.

Finally, model parameters ρ , δ , and α are highly uncertain, and also highly variable in space and
time. While qualitative results do not differ significantly across the range of parameter values
explored, if managers are interested in determining more precisely the location of the threshold
surface, more accurate parameter estimates are needed. In most cases, managers will not have a
firm grasp on any of the three parameters, but based on our elasticity analysis, obtaining accurate
estimates of local retention should be prioritized followed by the relationship between substrate
and recruitment, and the local substrate decay rates. Additionally, to incorporate variability in
model parameters, future work could extend the model to allow for stochasticity, particularly in
fecundity and recruitment, which is highly variable both within and between years (Cox and
Mann, 1992; Ortega and Sutherland, 1992; Siegel et al., 2008; Mroch et al., 2012). Lastly, the
model implements a restoration strategy in year 1 of a 150 year time line. Future work could
investigate restoration actions over multiple years, as well simultaneous substrate and oyster
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addition.

Conclusion

Using demographic data from a population of Eastern oyster, C. virginica, in Pamlico Sound,
North Carolina, our modeling analysis indicates the importance of positive density dependence at
influencing population dynamics. We show how population parameters, such as local retention
and the decay rate of shell substrate, influence the amount of restoration needed to restore a
degraded population. We also find that if mid-aged oysters are used for stock enhancement of
fully degraded populations, fewer numbers are required for restoration than if oyster spat are
used. Finally, we find that restoration of existing populations depends strongly upon the initial
size distribution of the population. Future work allowing for external recruitment is needed to
better investigate the relative importance of stock enhancement versus habitat enhancement.
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TABLES

Table 1: Demographic functions and parameter estimates. Statistical models and parameter
estimates for the size- and age-structured model used to describe C. virginica demography.

Demographic process Model / Parameter Reference
Growth ŷ = 4.213(0.091)−0.019(0.002)x Puckett and Eggleston (2012)

standard deviation about the growth curve, σ = 0.421(0.025)
Survival logit(s) =−0.353(0.273)+0.013(0.006)x Puckett and Eggleston (2012)
Fecundity

sex ratio v(x) = 0.320(0.106)+0.006(0.001)x Mroch et al. (2012)
log # of eggs log(m(x)) =−3.409(1.064)+2.944(0.262)log(x) Mroch et al. (2012)
Distribution of recruit sizes z(y), Gaussian with mean = 16.472, variance = 30.237 Puckett and Eggleston (2012)

Feedback
local retention, linear model ρ̂ = 1.89533×10−5 [λ = 1.00000000000923] Estimated from model
local retention, nonlinear model ρest = 2.618×10−3, ρlow = 2.843×10−5 Puckett and Eggleston (2016)
shape parameter α = 21800.28 Estimated from model, and

(Puckett and Eggleston, 2012)
Shell parameters

decay rate (per year) δ = 0.2 Wilberg et al. (2013)
scaling relationship m2 of surface area = 3.443×10−6x1.56 Galtsoff (1966)

Notes: All models are functions of size, x (mm). The scaling relationship for shell parameters converts length, in mm, to a surface area, in m2.
Predicted values for growth (ŷ) are the log change in size given current size. Values in parentheses are standard errors of parameter estimates.
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FIGURE LEGENDS

Figure 1. Representation of model. Census occurs immediately following summer recruitment.
Oysters then experience mortality, with dying oysters converted to a surface area of substrate.
Surviving oysters grow before reproducing. Following reproduction, new oyster recruits
experience a separate growth event before joining existing oysters immediately prior to the next
census. The number of recruits that successfully establish depends upon the degree of local
retention, and the feedback with substrate.

Figure 2. Growth and survival functions. Statistical fits of size-dependent growth (A) and
survival (B) functions. A) Growth functions are fit using linear regression on the log change in
size against size, then translated to generate the relationship between size at time t +1 and size at
time t. The dotted black diagonal line is the 1:1 line. B) Survival functions are fit using linear
regression of survival between time points. All functions are extrapolated past the collected data
(gray points) to the minimum (0 mm) and maximum (250 mm) sizes. Model parameters are given
in Table 1.

Figure 3. Fecundity functions. A) The proportion of females as a function of size. B) The log
number of eggs produced as a function of log female size. C) The distribution of offspring size, fit
to August 2007 and 2008 recruit sizes. Data for (A) and (B) from Mroch et al. (2012), and data
for (C) from Puckett and Eggleston (2012). Parameters of all model fits are given in Table 1.

Figure 4. Population trajectories and initial size distributions. A) Population trajectories in
the absence of restoration for ρlow, with remaining parameters given in Table 1. Populations begin
at either the equilibrium size distribution (B; thick black lines), or a harvested size distribution (C;
thick gray lines). Black stars indicate initial conditions, while the black circle indicates the
unstable equilibrium, (N̂, Ĥ). Thin lines give the projected separatrix for populations beginning at
the equilibrium size distribution (solid black), or the harvested size distribution (dotted gray).
Above the harvested separatrix (region I), populations beginning at either size distribution will
increase to infinity, while below the equilibrium separatrix (region III), populations beginning at
either size distribution will decline to extinction. Above the equilibrium separatrix but below the
harvested separatrix (region II), populations beginning at the equilibrium size distribution will
increase to infinity, while populations beginning at the harvested size distribution will decline to
extinction. B) The size distribution of the population at equilibrium (when λ = 1 in the linear
model). C) The size distribution of a harvested population, obtained by truncating the equilibrium
size distribution such that all oysters ≥ 75 mm are removed from the population.

Figure 5. Elasticity analysis. Elasticity of equilibrium oyster numbers for ρlow (dark bars) and
ρest (light bars), with remaining parameters given in Table 1. The elasticity of equilibrium
substrate levels is the same as the elasticity of equilibrium oyster numbers for α and ρ . The
elasticity of Ĥ to δ is equal to −2.4×10−11 for ρlow and −8×10−12 for ρest.

Figure 6. Age-specific size distributions for C. virginica. Size distributions for each age from
a = 1 to a = 10. Distributions are generated by applying the growth and survival kernels to an
initial distribution of new a = 1 recruits, and normalizing the distribution after each time step.

Figure 7. Oyster additions required for restoration. A) The required oysters of a single age, a,
needed to push the population across the threshold surface for ρlow (solid bars, left axis), and ρest
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(shaded bars, right axis), with remaining parameters given in Table 1. Horizontal lines indicate
the equilibrium total oyster number, N̂, for ρlow (solid), and ρest (dotted). Black and gray points
indicate the analytic approximation of required oysters for ρlow and ρest, respectively. All
populations began with no available substrate, and no oysters. B) The ratio of the required oyster
numbers calculated from the analytic approximation to the required oyster numbers generated
from numeric simulations for each age a for ρlow (solid bars, left axis), and ρest (shaded bars,
right axis). The horizontal line indicates a perfect correspondence between the two values, while
bars above or below this line indicate an over- or under-estimation of the analytic approximation,
respectively.

Figure 8. Substrate additions required for restoration. The amount of substrate required to
push the population across the threshold surface for ρlow (solid bars, left axis), and ρest (shaded
bars, right axis), with remaining parameters given in Table 1. Horizontal lines indicate the
equilibrium total substrate area, Ĥ, for ρlow (solid), and ρest (dotted). All populations began at
either 90% or 110% of N̂, with the initial size distribution of the population set at the equilibrium
size distribution (A), or the harvested size distribution (B).
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FIGURES

Figure 1. Representation of model.
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Figure 2. Growth and survival functions.
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Figure 3. Fecundity functions.
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Figure 4. Population trajectories and initial size distributions.
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Figure 5. Elasticity analysis.
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Figure 6. Age-specific size distributions for C. virginica.
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Figure 7. Oyster additions required for restoration.
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Figure 8. Substrate additions required for restoration.
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DESCRIPTION OF SUPPORTING INFORMATION

Appendix S1. Details of elasticity analysis. Provides explicit equations used in elasticity
analysis for ρ , δ , and α .

Appendix S2. Characteristics of the threshold surface at the equilibrium. Shows that the
tangent space of the threshold surface at the equilibrium, x̂, is perpendicular to the left, dominant
eigenvalue of the derivative operator evaluated at x̂.

Appendix S3. Analytic approximation of required oysters. Provides a discussion of how the
required number of age-specific oysters was approximated analytically.
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APPENDIX S1. DETAILS OF ELASTICITY ANALYSIS.

In this Appendix, we discuss the specific equations used to determine the elasticity of the
threshold surface to ρ , δ , and α .

Let x = (n,H)T and n = (n1(y),B1, · · · ,nA(y),BA), where

n1(y) =
A

∑
a=2

∫ L

0
Sa(x)

[∫ L

0

z(y)ρH
α +H

Ga(x′,x)v(x′)m(x′)dx′
]

na(x)dx,

B1 = 0,

na+1(y) =
∫ L

0
Sa(x)Ga(y,x)na(x)dx for a≥ 1,

Ba+1 =
∫ L

0
Sa(x)na(x, t)

∫
∞

L
Ga(y,x)dydx+BaSa(L) for a≥ 1.

Then,

[A(H,θ)n]a =(na(y),Ba)

and

h(x,θ) = H(t)e−δ +
A

∑
a=1

∫ L

0
k1xk2 [1−Sa(x)]na(x, t)dx.

As described in the text, the sensitivity of x̂ = (n̂, Ĥ) to θ is

∂ x̂
∂θ

=

(
∂V
∂x

)−1(
−∂V

∂θ

)
,

where

V (x,θ) = (A(H,θ)n−n,h(x,θ)−H)T ,

∂V
∂θ

=

(
∂A
∂θ

n,
∂h
∂θ

)T
∣∣∣∣∣
x̂,θ

,

∂V
∂x

=

[
A− I ∂A

∂H n
∂h
∂n

∂h
∂H −1

]∣∣∣∣∣
x̂,θ

.
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Let

W = z(y)
A

∑
a=2

∫ L

0
Sa(x)

[∫ L

0
Ga(x′,x)v(x′)m(x′)dx′

]
na(x, t)dx.

Then,

∂h
∂n

=
A

∑
a=1

∫ L

0
k1xk2(1−Sa(x))dx,

∂h
∂H

= e−δ ,

∂h
∂α

= 0,

∂h
∂ρ

= 0,

∂h
∂ρ

=−δHe−δ ,

and, [
∂A
∂H

n
]

a
=

{(
ραW

(α+H)2 ,0
)

for a = 1

(0,0) for a≥ 2,[
∂A
∂α

n
]

a
=

{( −ρHW
(α+H)2 ,0

)
for a = 1

(0,0) for a≥ 2,[
∂A
∂ρ

n
]

a
=

{( HW
α+H ,0

)
for a = 1

(0,0) for a≥ 2,[
∂A
∂δ

n
]

a
=
{
(0,0) for all a.

Elasticities are then given by

∂ x̂
∂θ

θ

x̂
.
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APPENDIX S2. CHARACTERISTICS OF THRESHOLD SURFACE.

In this Appendix, we show that the tangent space of the threshold surface at the equilibrium x̂ is
perpendicular to the left, dominant eigenvalue of the derivative operator evaluated at x̂. Recall
that x = (n,H) and the dynamics of the IPM is given by iterating the map F(x) = (A(H)n,h(x)).
The Jacobian matrix of F at x̂ is given by

J = DF(x̂) =
(

A(Ĥ) A′(Ĥ)n̂
∇nh(x̂) ∂h

∂H (x̂)

)
where ∇nh denotes the gradient of h with respect n. This operator J is non-negative and power
positive as A′(H) is strictly positive in the age 1 class and 0 elsewhere, ∇nh is strictly positive and
∂h
∂H is strictly positive. Let λ be the dominant eigenvalue of J and v and w be corresponding left
and right eigenvectors.

To show that tangent space of the threshold surface at x̂ is perpendicular to v, it suffices to show
for any right eigenvector, call it u, not spanned by w is perpendicular to w. Let µ 6= λ be the
eigenvalue associated with u. Then

µ〈u,v〉 = 〈Ju,v〉
= 〈u,vJ〉
= λ 〈u,v〉.

As λ 6= µ , it follows that 〈u,v〉= 0.
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APPENDIX S3. ANALYTIC APPROXIMATION OF REQUIRED OYSTER ADDITIONS.

In this Appendix, we derive the analytic approximation of the number of age-specific oysters
required to cross the threshold surface, beginning with no oysters, and no substrate. Let
x̂ = (n̂, Ĥ) be the vector representing the equilibrium, w be the left dominant eigenvector that is
perpendicular to the linearized threshold surface, and va be the vector given by the normalized
size distribution of oysters of age a. We are then interested in determining ba, the multiplier of va
such that ||bava|| just crosses the linearized threshold surface (Fig. S1). We solve for ba by first
determining angles B and C, where

B = π/2−D, C = π/2−E,

and

cos(D) =
w · x̂
||w|| ||x̂||

, cos(E) =
w ·va
||w|| ||va||

.

Then, using the Law of Sines,

||bava||=
sin(B) ||x̂||

sin(C)
,

and thus

ba =
sin(B) ||x̂||
sin(C) ||va||

.

We then calculate ba for each age from a = 1 to a = 9.

linearized
threshold 
surface

A

B

C

va

w = left eigenvector

E

D

w = left eigenvector

x^

||x||^

origin

bava
||bava||

Figure S1
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