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Abstract11

The spread of pathogens fundamentally depends on the underlying contacts between individuals.12

Modeling infectious disease dynamics through contact networks is sometimes challenging,13

however, due to a limited understanding of pathogen transmission routes and infectivity. We14

developed a novel tool, INoDS (Identifying Network models of infectious Disease Spread) that15

estimates the predictive power of empirical contact networks to explain observed patterns of16

infectious disease spread. We show that our method is robust to partially sampled contact17

networks, incomplete disease information, and enables hypothesis testing on transmission18

mechanisms. We demonstrate the applicability of our method in two host-pathogen systems:19

Crithidia bombi in bumble bee colonies and Salmonella in wild Australian sleepy lizard populations.20

The performance of INoDS in synthetic and complex empirical systems highlights its role in21

identifying transmission pathways of novel or neglected pathogens, as an alternative approach to22

laboratory transmission experiments, and overcoming common data-collection constraints.23

24

Introduction25

Host contacts, whether direct or indirect, play a fundamental role in the spread of infectious26

diseases (Newman, 2002; Rohani et al., 2010; Bansal et al., 2007; Sah et al., 2017a). Traditional27

epidemiological models make assumptions of homogeneous social structure and mixing among28

hosts which can yield unreliable predictions of infectious disease spread (Shirley and Rushton, 2005;29

Volz and Meyers, 2007; Bansal et al., 2007; Chen et al., 2014). Network approaches to modeling the30

spread of infectious diseases provide an alternative by explicitly incorporating host interactions that31

mediate pathogen transmission. Formally, in a contact network model, individuals are represented32

as nodes, and an edge between two nodes represents an interaction that has the potential to33

transmit infection. Constructing a complete contact network model requires (i) knowledge about34

the transmission routes of a pathogen, (ii) a sampling of all individuals in a population, and (iii) a35

sampling of all disease-causing interactions among the sampled individuals. In addition, accuracy36

of disease predictions depends on the quantification of the epidemiological characteristics of the37

pathogen, including the rate of pathogen transmission given a disease-causing contact between38

two individuals, and the rate of recovery of infected individuals.39

The use of modern technology in recent years, including RFID, GPS, radio tags, proximity loggers40
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and automated video tracking has enabled the collection of detailed movement and contact data,41

making network modeling feasible. Despite the technology, logistical and financial constraints42

still prevent data collection on all individuals and their social contacts (Welch et al., 2011; Cross43

et al., 2012; Godfrey, 2013; Krause et al., 2013; Farine andWhitehead, 2015; Silk et al., 2015). More44

importantly, limited knowledge about a host-pathogen system makes it challenging to identify the45

mode of infection transmission, define the relevant disease-causing contacts between individuals,46

andmeasure per-contact rate of infection transmission (Craft and Caillaud, 2011;White et al., 2015;47

Manlove et al., 2017). Laboratory techniques of unraveling transmission mechanisms usually take48

years to resolve (Velthuis et al., 2007; Aiello et al., 2016; Antonovics et al., 2017). Defining accurate49

contact networks underlying infection transmission in human infectious disease has been far from50

trivial (Bansal et al., 2007; Pellis et al., 2014; Eames et al., 2015). For animal infectious disease,51

limited information on host behavior and the epidemiological characteristics of the spreading52

pathogen makes it particularly difficult to define a precise contact network, which has severely53

limited the scope of network modeling in animal and wildlife epidemiology (Craft and Caillaud,54

2011; Craft, 2015).55

Lack of knowledge about disease transmission mechanisms has prompted the use of several56

indirect approaches to identify the link between social structure and disease spread. A popular57

approach has been to explore the association between social network position (usually quantified58

as network degree) of an individual and its risk of acquiring infection (Godfrey et al., 2009, 2010;59

Leu et al., 2010; MacIntosh et al., 2012). Another approach is to use proxy behaviors, such as60

movement, spatial proximity or home-range overlap, to measure direct and indirect contact net-61

works occurring between individuals (Danon et al., 2011; Hamede et al., 2009; Fenner et al., 2011).62

A recent approach, called the k-test procedure, explores a direct association between infectious63

disease spread and a contact network by comparing the number of infectious contacts of infected64

cases to that of uninfected cases (VanderWaal et al., 2016). However, several challenges remain in65

identifying the underlying contact networks of infection spread that are not addressed by these66

approaches. First, it is often unclear how contact intensity (e.g. duration, frequency, distance) relate67

to the risk of infection transfer unless validated by transmission experiments (Aiello et al., 2016).68

Furthermore, the role of weak ties (i.e., low intensity contacts) in pathogen transfer is ambiguous69

(Pellis et al., 2014; Sah et al., 2017b). The interaction network of any social group will appear as a70

fully connected network if monitored for a long period of time. As fully-connected contact networks71

rarely reflect the dynamics of infectious disease spread through a host population, one may ask72

whether weak ties can be ignored, or what constitutes an appropriate intensity threshold below73

which interactions are epidemiologically irrelevant? Second, many previous approaches ignore the74

dynamic nature of host contacts. The formation and dissolution of contacts over time is crucial in75

determining the order in which contacts occur, which in turn regulates the spread of infectious76

diseases through host networks (Bansal et al., 2010; Fefferman and Ng, 2007; Farine, 2017). Finally,77

none of the existing approaches allow direct comparison of competing hypotheses about disease78

transmission mechanisms which may generate distinct contact patterns and consequently different79

contact network models.80

All of these challenges demand an approach that can allow direct comparison between com-81

peting contact network models while taking into account the dynamics of host interactions and82

data-constraints of network sampling. In this study, we introduce a computational tool called INoDS83

(Identifying Network models of infectious Disease Spread) that quantifies the predictive power84

of empirical contact networks in explaining infectious disease spread, and enables comparison of85

competing hypotheses about transmission mechanisms of infectious diseases. Our tool can also86

infer the per-contact transmission rate of various infectious disease types (SI, SIS, and SIR), and87

can be easily extended to incorporate other complex models of disease spread. The INoDS tool88

provides inference on dynamic and static contact networks, and is robust to common forms of89

missing data. Using two empirical datasets, we highlight the two-fold application of our approach –90

(i) to identify whether observed patterns of infectious disease spread are likely given an empirical91
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Significance Testing

Figure 1. A schematic of our algorithm. Observed data: INoDS utilizes an observed infection time-series to estimate evidence towards a static or
dynamic contact network hypothesis (or hypotheses) using a three step procedure. Shown here is an example of two competing contact network

hypothesis based on different definitions of disease-causing contact (quantified by behavior A and behavior B). Inferential steps: In the first step,
the tool estimates per-contact transmission rate parameter �, and an error parameter � which captures the components of infection propagation
unexplained by the edge connections of the network hypothesis. Second, the likelihood that the infectious disease spreads through the edge

connections of the contact network hypothesis is compared to a distribution of likelihoods obtained from an ensemble of randomized networks.

The predictive power of the empirical network hypothesis is considered to be high when its likelihood is higher than the null likelihood distribution

at 5% significance level. Third, the marginal likelihood for the contact network hypothesis is calculated, which is then used to perform model

comparison (using Bayes Factor, BF) between multiple contact network hypotheses, wherever available.

contact network, and (ii) to identify transmission routes, the role of the contact intensity, and the per92

contact transmission rate of a host-pathogen system. The epidemiological mechanisms of infection93

transmission identified by INoDS can therefore provide invaluable insights during implementation94

of immediate disease control measures in the event of an epidemic outbreak.95

Results96

The primary purpose of INoDS is to assess whether an empirical contact network is likely to generate97

an observed infection time-series from a particular host population. INoDS also provides epidemio-98

logical insights into the spreading pathogen by estimating the per-contact rate of transmission. In99

practice, the structure of a contact network model depends on the mode of infection transmission,100

and is sensitive to the amount of missing data on nodes and edges. The tool therefore treats101

empirically collected contact network models as network hypotheses, and facilitates hypothesis102

testing between different contact networks. The INoDS algorithm follows a three step procedure103

(Figure 1). First, the tool estimates a per-contact pathogen transmission rate (�) and an error104

parameter (�). The � parameter quantifies the rate of pathogen transmission through each edge of105

the contact network, and the � parameter quantifies components of infection transmission that are106

unexplained by the edge connections of the contact network. In the second step, the likelihood of107

the observed infection time-series under the network hypothesis and pathogen transmission rate108

is compared to the null likelihood distribution based on an ensemble of randomized networks. The109

randomized networks are generated by permuting the edge connections of the network hypothesis,110
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while controlling the number of nodes and edges present. We consider the network hypothesis111

to have high predictive power if the likelihood of thr infection time-series given the hypothesis is112

higher than the null likelihoods at the 5% significance level. In the final step, the marginal (Bayesian)113

evidence is calculated for the network hypothesis, which can be used to perform model selection114

between multiple network hypotheses.115
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Figure 2. INoDS performance in recovering the
per-contact pathogen transmission rate (�) for
simulated infection time series under an

susceptible-infected (SI) model. Each boxplot

summarizes the results of 10 independent disease

simulations; the black horizontal lines are the

means of the estimated parameter values, the top

and bottom black horizontal lines represent the

standard deviation, and the tip of the black vertical

line represents the maximum/minimum value. The

solid red line represents one-to-one

correspondence between the true value of the

pathogen transmission rate (used to generate the

simulated data), �∗, and the � value estimated by
INoDS. Since the simulations were performed on a

known synthetic network, the expected value of

the error parameter, �, (represented by the green
lines) is zero.

In the sections that follow, we evaluate the116

accuracy of the tool in recovering the transmis-117

sion parameter, �, and its robustness to missing118

data (missing individuals, missing contacts and119

missing infection cases). We further demonstrate120

the application of INoDS by using two empirical121

datasets: (i) spread of an intestinal pathogen in122

bumble bee colonies, and (ii) salmonella spread123

in Australian sleepy lizards.124

INoDS performance125

We evaluated the performance of INoDS on126

multiple infection time-series data generated by127

performing numerical simulations of infection128

spread on a synthetic dynamic network, for a129

wide range of pathogen transmission rates.130

We found that INoDS accurately estimates the131

true value of pathogen transmission rate, �, and132

the accuracy is independent of the spreading rate133

of the pathogen (Figure 2). The error parame-134

ter, �, specified in the algorithm improves the135

estimate of transmission rate when either the136

network data or disease surveillance is incom-137

plete (Appendix Figure 1). The estimated rate of138

pathogen transmission is therefore accurate even139

when substantial network or infection time-series140

data is missing (Appendix Figure 2). The expected141

value of � is zero when all infection transmission142

events are explained by the edge connections in143

the contact network hypothesis (Figure 2). Values144

greater than zero, on the other hand, indicate145

unexplained transmission events due to either146

missing or inaccurate data (Appendix Figure 2).147

Next, we tested the performance of INoDS148

in establishing the epidemiological relevance of149

a hypothesized contact network against three potential sources of error in data-collection: (a)150

incomplete sampling of individuals in a population (missing nodes); (b) incomplete sampling of151

interactions between individuals (missing edges); and (c) infrequent health diagnosis of individuals152

(missing cases). The performance of the tool was quantified in terms of a true positive rate (i.e., the153

proportion of times an epidemiologically relevant contact network with missing data was correctly154

distinguished as statistically significant from an ensemble of randomized networks with the same155

amount of missing data) and a true negative rate (i.e., the proportion of times a network with the156

same degree distribution as the epidemiologically relevant contact network, but with randomized157

edge connections, was correctly classified as statistically insignificant). We found INoDS to be both158

sensitive and specific (with a high true positive and true negative rate) across a range of missing159

data scenarios (Figure 3). The true positive rate of the tool remains close to one even when as low160
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Figure 3. Robustness of INoDS in establishing the epidemiological significance of a hypothesized contact network under three common forms of
missing data - missing nodes, missing edges and missing infection cases. True positive rate is calculated as the proportion of times (n = 20) the
epidemiologically relevant (true) dynamic network was detected as statistically significant relative to a null distribution of randomized networks.

True negative rate is calculated as the proportion of times (n = 20) a network with similar degree distribution as the epidemiologically relevant
network, but randomized edge connections, was identified as statistically indistinguishable from the null distribution. The null distribution for a

network hypothesis was generated by permuting all its edge connections, but preserving the number of nodes and edges.

Figure 3–Figure supplement 1. Robustness plot of (A) INoDS, (B) k-test and (C) network position test to three common forms of missing data -
missing nodes, missing edges and missing infection cases. The null expectation in INoDS and the network position test was generated by permuting

network edges, creating an ensemble of null networks. In the k-test, the location of infection cases within the observed network are permuted,

creating a permuted distribution of the k-statistic (VanderWaal et al., 2016).

as 10% of infection cases are documented (missing cases, Figure 3). For incompletely sampled161

contact networks, the true positive rate remains close to one when at least 50% nodes or 30%162

edges are documented.163

The performance of INoDS in discriminating the epidemiological contact network from null164

network hypotheses also surpasses two previous approaches – the k-test procedure and the165

network position test (Figure 3 - figure supplement). In comparison to INoDS, the k-test and166

network position test are sensitive to all three types of missing data. The true positive rate of the167

k-test declines with an increasing number of missing nodes, edges, or infection cases. Of the three168

approaches, the network position test has the lowest sensitivity (true positive rate). Since the k−test169

procedure and network position test have been primarily used in the context of non-dynamic170

networks, we repeated this analysis with simulated disease data from a static synthetic network.171

Appendix Figure 4 demonstrates that even for observed networks that are not dynamic, INoDS has172

greater sensitivity and specificity than the k-test procedure and the network position test.173

Applications to empirical data-sets174

We next demonstrate the application of INoDS to perform hypothesis testing on contact networks,175

identify transmissionmechanisms and infer transmission rate using two empirical datasets. The first176

dataset is derived from the study by Otterstatter and Thomson (2007) that examined the spread of177

an intestinal pathogen (Crithidia bombi) within colonies of the social bumble bee, Bombus impatiens.178

The second dataset documents the spread of Salmonella enterica within two wild populations of179

Australian sleepy lizards Tiliqua rugosa Bull et al. (2012).180

Determining transmissionmechanism and the role of contact intensity: case study181

of Crithidia bombi in bumble bees182

Otterstatter and Thomson (2007) showed that the transmission of C. bombi infection in bumble183

bee colonies was associated with the frequency of contacts with infected nest-mates rather than184

the duration of contacts. However, the dynamic contact network models had a small number of185
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Figure 4. Identifying the contact network model of Crithidia spread in bumble bee colony (colony UN2). Edges in the contact network models
represent physical interaction between the bees. Since the networks were fully connected, a series of filtered contact networks were constructed

by removing weak weighted edges in the network. The x-axis represents the edge weight threshold that was used to remove weak edges in the

network. Two types of edge weights were tested - duration and frequency of contacts. In addition, across all ranges of edge weight threshold, the

weighted networks were converted to binary networks. The results shown are estimated values of the per contact rate transmission rate �, and
estimated values of error �, for the (A-B) the two types of binary network, (C) contact duration weighted network, (D) contact frequency weighted
network. The faded bars correspond to networks where � parameter is statistically insignificant. Numbers above bars indicate the log Bayesian
(marginal) evidence of the networks that were detected to have statistically significant higher predictive power as compared to an ensemble of null

networks (P < 0.05, corrected for multiple comparisons).

nodes, and were fully connected (i.e., all individuals were connected to each other in the network) at186

all time steps. Because predictions of infection transmission is sensitive to the size and edge density187

of the contact network model, we extended the previous analysis by answering three specific188

questions: (1) Do physical contact networks have higher predictive power to explain the spread of189

C. bombi than random networks?, (2) Do the value of contact intensities (edge weights) matter in190

transmission?, and (3) Do weak ties between individuals contribute to infection transfer? To validate191

our tool, we performed analyses on two types of contact network models – those described by192

frequency of contacts and those described by duration of contacts – and compared the results with193

the findings reported in (Otterstatter and Thomson, 2007).194

To answer the three questions, we constructed dynamic contact networks where edges represent195

close proximity between individuals. Since fully connected networks rarely describe the dynamics of196

infection spread, we sequentially removed edges with weights less than 10-50% of the highest edge197

weight to generate contact network hypotheses at different edge weight thresholds. Corresponding198

to the two types (frequency and duration) of weighted networks, unweighted contact networks199

were also constructed by replacing weighted edges in the thresholded weighted networks with200

binary edges (i.e., edges with an edge weight of one).201

Figure 4 shows the estimates of pathogen transmission rate �, and error � for the four types of202

contact network hypotheses at different edge weight thresholds. Only a subset of contact network203

hypotheses had statistically significant estimates of � (non faded bars). Two network hypotheses204

summarizing frequency of contacts – binary frequency network at 15% edge weight threshold205

and weighted frequency network at 5% edge weight threshold – demonstrated higher predictive206

power than an ensemble of null networks. Of the two, the weighted frequency network had slightly207

higher Bayesian evidence, although the binary frequency network was equally supported. In a208

separate colony (UN1), only the weighted frequency network at 5% edge weight threshold had209

higher predicted power compared to an ensemble of null networks (Appendix Figure 5). Together,210

our results therefore show that (1) contact networks capturing frequency (but not duration) of211

contacts have statistically high predictive power to explain the spread of C. bombi in bumble bee212

colonies, (2) the contact networks should be weighted, and (3) weak ties (i.e., edges with weights213

less than 5% of the highest weighted edge) are epidemiologically unimportant.214
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Identifying transmission mechanisms with imperfect disease data: case study of215

Salmonella enterica Australian sleepy lizards216

Spatial proximity is known to be an important factor in the transmission of Salmonella enterica217

within Australian sleepy lizard populations (Bull et al., 2012). However, it is not known whether218

the transmission risk increases with frequency of proximate encounters between infectious and219

susceptible lizards. We therefore tested two contact network hypotheses to explain the spread220

of salmonella at two sites of wild sleepy lizards populations. The first contact network hypothesis221

placed binary edges between lizards if they were ever within 14m distance from each other during a222

day (24 hours). We constructed the second contact network by assigning edge weights proportional223

to the number of times two lizards were recorded within 14m distance of each other during a day.224

Because disease sampling was performed at regular fortnightly intervals, the true infection225

time (day) of individuals at both study sites was unknown. We therefore used a data augmentation226

method in INoDS (see Methods) to sample unobserved infection timings along with the per contact227

transmission rate, �, and error, �. We found that the likelihood of salmonella infection spreading228

through the weighted contact network was significantly greater than the null expectation at both229

sites (Figure 5). Compared to unweighted networks, networks with edges weighted by contact230

frequency had higher marginal (Bayesian) evidence at both sites. This indicates that the occurrence231

of repeated contacts between two spatially proximate individuals, rather than just the presence of232

contact between individuals is important for Salmonella transmission.233

Discussion234

Network modeling of infectious disease spread is becoming increasingly popular, because modern235

technology has dramatically improved the quality of data that can be collected from animal popula-236

tions. However, the concepts of power analysis and hypothesis testing are still underdeveloped237

in network modeling, even though such approaches are widely recognized as key elements to238

establish how informative and appropriate a model is (Jennions and Møller, 2003; Johnson et al.,239

2015). Our ability to define a contact network relies on our understanding of host behavior, and240

the dominant transmission mode for a given pathogen. Since such information is either derived241

from expert knowledge (which can be subjective) or laboratory experiments (which are time- and242

resource-intensive), it is essential to conduct an a priori analysis of contact network models to avoid243

uninformative or misleading disease predictions.244

In this study we therefore present INoDS as a tool that performs network model selection and245

establishes the predictive power of a contact network model to describe the spread of infectious246

diseases. Our method also provides epidemiological insights about the host-pathogen system247

by enabling hypothesis testing on different transmission mechanisms, and estimating pathogen248

transmission rates (transmission parameter, �). Unlike previous approaches, our method is robust249

to missing network data, imperfect disease surveillance, and can provide network inference for a250

range of disease spreadmodels. The tool can thus be used to provide inference on contact networks251

for a variety of pathogen types occurring both in wildlife and human populations. Inferring the role252

of dynamic contacts on infectious disease spread requires the knowledge of either order or timing253

of infection of individuals in the network. In practice, constraints on data collection (e.g., due to254

infrequent health assessments), or infection diagnostics (e.g., due to sub-clinical infection, poor255

diagnostics) precludes precise knowledge of infection timing. To overcome this challenge, our tool256

assumes the infection times in a host population to be unobserved, and uses data on infection257

diagnosis instead to provide inference on contact networks.258

Our work thus addresses a growing subfield in network epidemiology that leverages statistical259

tools to infer contact networks using all available host and disease data (Welch et al., 2011; Stack260

et al., 2013; VanderWaal et al., 2016; Groendyke et al., 2011). Our approach can be used to tackle261

several fundamental challenges in the field of infectious disease modeling (Eames et al., 2015;262

Pellis et al., 2014). First, INoDS can be used to perform model selection on contact network models263
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Site Transmission mechanism � � Predictive power Evidence

Site 1 Direct transmission, binary 0.011 0.034 0.03 -1019.33

Site 1 Direct transmission, weighted (frequency) * 0.376 0.037 0.03 -219.44

Site 2 Direct transmission, binary 0.061 0.042 0.15 -775.80

Site 2 Direct transmission, weighted (frequency) * 2.734 0.075 <0.001 -250.61

Figure 5. Identifying transmission mechanisms of Salmonella spread in Australian sleepy lizards. Dynamic network of proximity interactions for a
total duration of 70 days between (A) 43 lizards at site 1, and (B) 44 lizards at site 2. Each temporal slice summarizes interactions within a day (24

hours). Edges indicate that the pair of individuals were within 14m distance of each other, and the edge weights are proportional to the frequency

of physical interactions between the node pair. Green nodes are the animals that were diagnosed to be uninfected at that time-point, red are the

animals that were diagnosis to be infected and grey nodes are the individuals with unknown infection status at the time-point. We hypothesized

that the spatial proximity networks could explain the observed spread of Salmonella in the population. The results are summarized as a table. Bold
numbers indicate that the network hypothesis was found to have high predictive power compared to an ensemble of randomized networks. The

network hypothesis with the highest log Bayesian (marginal) evidence at each site is marked with an asterisk (*)
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that quantify different transmission modes; this approach therefore facilitates the identification264

of infection-transmitting contacts and does not rely on laboratory experimentation (or subjective265

expert knowledge). Second, INoDS can be used to establish the predictive power of proxy measures266

of contact in cases where limited interaction data is available. For example, spatial proximity,267

home-range overlap or asynchronous refuge use are commonly used as a proxy for disease-causing268

contact in wild animal populations (Godfrey et al., 2010; Leu et al., 2010; Sah et al., 2016). INoDS269

establishes the epidemiological significance of such assumptions by comparing the likelihood270

of infection spread occurring along the edges of the proxy contact network to the likelihoods271

generated from an ensemble of random networks. Third, it is well known that not all contacts272

between hosts have the same potential for infection transmission. The heterogeneity of host273

contacts in a network model is typically captured through edge weights, but it is often not clear274

which type of edge weights (frequency, duration or intensity) is relevant in the context of a specific275

host pathogen system (Pellis et al., 2014). Through model selection of contact networks with similar276

edge connection but different edge weighting criterion, INoDS can help establish a link between277

edge weight and the risk of transmission across an edge in a contact network.278

We demonstrate the application of INoDS using two real-world datasets. In the first dataset, we279

used INoDS to determine the role of edge weight type and edge weight value on the predictive280

power of the contact network. To accurately model the spread of the Crithidia gut protozoan in281

bumble bee colonies, we show that the contact networks weighted with respect to frequency,282

rather than duration, have higher predictive power given observed patterns of transmission. Our283

results therefore support the original finding of the study (Otterstatter and Thomson, 2007), where284

individual risk of infection was found to be correlated with contact rate with infected nest-mates.285

Our analysis further extends previous findings in this system by comparing the observed patterns286

of transmission against null expectations from random networks, and assessing the likelihood287

of competing network hypotheses. We find weak ties below a certain threshold do not play an288

important role in infection transfer. Contact networks where such weak weighted edges have289

been removed, therefore, demonstrate higher predictive power than fully connected networks. In290

the next empirical example, we explore the transmission mechanisms of a commensal bacterium291

in wild populations of Australian sleepy lizards. We find that taking repeated contacts between292

closely located lizards into account allows better, i.e. more consistent, predictions on Salmonella293

transmission.294

The current version of INoDS assumes the infection process has no latent period, and that the295

infectiousness of infected hosts and susceptibility of naive hosts is equal for all individuals in the296

population. These assumptions can be relaxed to incorporate more complex disease progression.297

For instance, heterogeneity in infectiousness of infected hosts and the susceptibility of naive298

hosts can be incorporated as random effects in the model by assuming the two follow a Gaussian299

distribution. Disease latency can also be incorporated using a data-augmentation technique, similar300

to what we use for inferring infection times.301

Our results show that the data-collection efforts should aim to sample as many individuals in302

the population as possible, since missing nodes have the greatest impact (rather than missing303

edges) on the predictive power of network models. Since data-collection for network analysis can be304

labor-intensive and time-consuming, our approach can be used to make essential decisions on how305

limited data collection resources should be deployed. Our approach can also be used to improve306

targeted disease management and control by identifying high-risk behaviors and super-spreaders307

of a novel pathogen without relying on expensive transmission experiments that take years to308

resolve.309

Methods310

Here we describe INoDS, a computational tool that (i) estimates per contact transmission rate (�)311

of infectious disease for empirical contact networks, (ii) establishes predictive power of a contact312

network by comparisons with an ensemble of randomized networks, and (iii) enables discrimination313
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of competing contact network hypotheses, including those based on pathogen transmission mode,314

edge weight criteria and data collection techniques. Two types of data are required as input for315

INoDS – infection time-series data, which include infection diagnoses (coded as 0 = not infected and316

1 = infected), and time-step of diagnosis for all available individuals in the population; and an edge-317

list of a dynamic (or static) contact network. An edge-list format is simply the list of node pairs (each318

node pair represents an edge of the network), along with the weight assigned to the interaction, and319

time-step of interaction, with one node pair per line. The tool can be used for unweighted contact320

networks - an edge weight of one is assigned to all edges in this case. Time-steps of interactions are321

not required when analysis is performed on static contact networks. The software is implemented in322

Python, is platform independent, and is freely available at https://bansallab.github.io/INoDS-model/.323

INoDS formulation324

We assume that at each instance the potential of acquiring infection for a susceptible individual i325

depends on the per contact transmission rate �, the total strength of interactions with its infected326

neighbors at the previous time-step, and an error parameter � that captures the force of infection327

that is not explained by the individual’s social connections. The infection receiving potential, �i(ti),328

of individual i at time t is thus calculated as:329

�i(t) = 1 − exp{−�wi(t − 1) − �}, (1)

where both transmission rate � and error parameter � are > 0; wi(t−1) denotes the total strength330

of association between the focal individual i and its infected associates at the previous time-step331

(t − 1). For binary (unweighted) contact network models wi = ki, where ki is the total infected332

connections of the focal individual.333

The log-likelihood for all observed timings of infection in a population given the contact network334

hypothesis (HA) can therefore be estimated as:335

log(D|HA, �, �) =
n
∑

log[�n(tn)] +
t

∑

(

m
∑

log[1 − �m(t)]
)

, (2)

where tn is the time of infection of individual n. The first part of equation 2 estimates the log336

likelihood of all observed infection acquisition events. The second part of the equation represents337

the log-likelihood of susceptible individuals m remaining uninfected at time t.338

Parameter estimation and data augmentation of infection timings339

We adopted a Bayesian MCMC framework to estimate the unknown model parameters. Calculation340

of the likelihood in equation 2 requires knowledge of exact timing of infection, t1, ...tn, for n infected341

individuals in the population. However in many cases, the only data that is available are the timings342

of when individuals in a populations were diagnosed to be infected, d1, ...dn. We therefore employ343

a Bayesian data augmentation approach to estimate the actual infection timings in the disease344

dataset (Tanner and Wong, 1987). Since in this case the actual infection time ti for an individual i is345

unobserved, we only know that the timing of infection for the individual lies between the interval346

(Li, di], where Li is the last negative diagnosis of individual i before infection acquisition. Within this347

interval, the individual could have potentially acquired infection at any time-step where it was in348

contact with other individuals in the network. Assuming incubation period to be one time-step, we349

can therefore represent the potential set of infection timings as ti ∈ {gi(ti−1) > 0, Li < ti ≤ di}, where350

gi(ti − 1) is the degree (number of contacts) of individual i at time ti − 1. For infections that follow a351

SIS or SIR disease model, it is also essential to impute the recovery time of infected individuals for352

accurate estimation of infected degree. To do so, we adopt a similar data augmentation approach353

as described to sample from the set of possible recovery time-points.354

The joint posterior distribution of augmented data and the set of parameters is proportional to:355

P (Θ|D,H) =
(D|H,Θ)(Θ|H)

(D|H)
∝ (D|H,Θ)(Θ|H) (3)
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where D is the infection time-series data, H is the contact network hypothesis, and P ,, , 356

are the shorthands for the posterior, the likelihood, the prior and the evidence, respectively. The357

data augmentation proceeds in two steps. In the first step, the missing infection times are imputed358

conditional on the possible set of infection times. In the next step the posterior distributions of359

the unknown parameters are sampled based on the imputed data. We performed data imputation360

using inverse transform sampling method, which is a technique of drawing random samples from361

any probability distribution given its cumulative distribution function (Robert and Casella, 2004).362

We used a used a uniform prior on [0, 1000] for the per contact transmission rate and the error363

parameter.364

MCMC sampling of the unknown parameters is performed using the PTsampler function of emcee365

package implemented in Python (Foreman-Mackey et al., 2013). PTsampler is an implementation366

of the affine-invariant ensemble MCMC algorithm which provides efficient sampling of highly cor-367

related parameters - a common problem when using simple Metropolis-Hastings type samplers368

(Foreman-Mackey et al., 2013). INoDS uses twice the number of walkers as the total model pa-369

rameters, and the temperature is set to T = 15 to maximize the sampling of the parameter space.370

The values of The number of sampling steps and burn-in is specified by the user. Convergence is371

assessed using an autocorrelation plot of few randomly selected walkers. From the joint posterior372

estimates of � and �, we report the parameter combination with the highest maximum likelihood373

value.374

Statistical significance of infection transmission parameter375

The statistical significance of parameter � is determined by comparing the force of infection376

explained by edge connections (=�wi(t − 1)) at each infection event to the error parameter �. The377

p-value is calculated as the proportion of transmission events where the force of infection is greater378

than the error estimate. The per contact transmission rate � is considered to be statistically379

significant when its calculated p-value is less than 0.05.380

Interpretation of the error parameter381

In principle, inclusion of the error parameter in eq. 1 is similar to the asocial learning rate used in382

the network based diffusion analysis approach in the behavior learning literature (Franz and Nunn,383

2009; Aplin et al., 2013). However, in contrast to the asocial learning rate which quantifies the384

rate of spontaneous learning, � in INoDS formulation serves to improve the estimation of the per385

contact transmission rate, �, when either the contact network or infection spread is not completely386

sampled (Appendix Figure 1 and 2). The magnitude of � can also be used to (approximately)387

assess the magnitude of missing data (Appendix Figure 3). The percentage transmission events388

where � is greater than the force of infection explained by edge connections (=�wi(t − 1)) increases389

proportionately with increasing amount of missing network data. The relative differences between390

social force of infection and unexplained transmission events, however is less sensitive to missing391

data on infection cases.392

Predictive power of a contact network hypothesis393

We assess the predictive power of a contact network hypothesis by performing comparisons394

with an ensemble of randomized networks with same number of nodes and edge connectivity.395

Specifically, the likelihood of the infection data given the network and estimated model parameters396

(i.e., (D|H,Θ)) is compared to a distribution of likelihoods of infection data (given the estimated397

model parameters) obtained from the null networks (i.e., (D|HO1,Θ), (D|HO2,Θ),..., (D|HOn,Θ));398

n = 500). Null networks are generated by randomizing edge connections of the contact network399

hypothesis, which preserves the edge density in the permuted networks. Next, a p-value is calculated400

as the proportion of randomizations which generate a likelihood greater than the likelihood of401

the empirical network hypothesis. The empirical contact network is considered to have a higher402

predictive power than the null expectation when its calculated p-value is less than 0.05.403
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Model selection of competing network hypotheses404

To facilitate model selection in cases where there are more than one network hypothesis, we405

compute the marginal likelihood of the infection data given each contact network model. The406

marginal likelihood, also called the Bayesian evidence, measures the overall model fit, i.e,. to what407

extent the infection time-series data can be simulated by a network hypothesis (HA). Bayesian408

evidence is based on the average model fit, and calculated by integrating the model fit over the409

entire parameter space:410

P (D|H) = ∫ (Θ|H)(D|H,Θ)dΘ (4)

Since it is difficult to integrate Eq.4 numerically, we estimate the marginal likelihood of network411

models using thermodynamic integration, or path sampling (Lartillot and Philippe, 2006) method412

implemented in emcee package in Python. Model selection can be then performed by computing413

pair-wise Bayes factor, i.e. the ratio of the marginal likelihoods of two network hypotheses. The log414

Bayes factor to assess the performance of network hypothesisHA over network hypothesisHB , is415

expressed as:416

log(BBA) = log(P (D|HB)) − log(P (D|HA)) (5)

The contact network with a higher marginal likelihood is considered to be more plausible, and417

a log Bayes’ factor of more than 3 is considered to be a strong support in favor of the alternative418

network model (HB) (Kass and Raftery, 1995).419

Evaluating INoDS performance420

We evaluated the accuracy of the in estimating the unknown transmission parameter �, and its421

robustness to missing data was evaluated. To do so we first constructed a dynamic synthetic422

network using the following procedure. At time-step t = 0, a static network of 100 nodes, mean423

degree 4, and Poisson degree distribution was generated using the configuration model (Molloy424

and Reed, 1995). At each subsequent time-step, 10% of edge-connections present in the previous425

time-step were permuted, for a total of 100 time-steps. Next, through the synthetic dynamic426

network, we performed 10 independent SI disease simulations with per contact rate of infection427

transmission 0.01 to 0.1. Model accuracy was determined by comparing the estimated transmission428

parameter, �, with the true transmission rate �∗ that was used to perform disease simulations.429

Since the synthetic network dataset did not contain any missing data, model accuracy was also430

tested by evaluating the deviation of the estimated error parameter �, from the expected value of431

zero.432

We also tested robustness of the tool in establishing the epidemiological relevance of a hypoth-433

esized contact network against three potential sources of error in data-collection: missing nodes,434

missing edges, and missing cases. The three scenarios of missing data were created by randomly435

removing 10-95% of nodes, edges or infection cases from the simulated dataset described above.436

True positive rate was calculated as the proportion of times the hypothesized contact network437

model with missing data was correctly distinguished as statistically significant from an ensemble438

of null networks generated by randomizing its edge connections. We calculated the true negative439

rate as the proportion of times a network with the same degree distribution as the contact network440

hypothesis, but randomized edge connections, was correctly classified as statistically insignificant.441

Next, we compared INoDS with two previous approaches (k-test and network position test) that442

have been used to establish an association between infection spread and contact network in a443

host population. The k-test procedure involves estimating the mean infected degree (i.e., number444

of direct infected contacts) of each infected individual in the network, called the k-statistic. The445

p-value in the k-test is calculated by comparing the observed k-statistic to a distribution of null446

k-statistics which is generated by randomizing the node-labels of infection cases in the network447

(VanderWaal et al., 2016). Network position test compares the degree of infected individuals to that448
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of uninfected individuals (Godfrey et al., 2009, 2010;MacIntosh et al., 2012). The observed network449

is considered to be epidemiologically relevant when the difference in average degree between450

infected and uninfected individuals exceeds (at 5% significance level) the degree difference in an451

ensemble of randomized networks.452

Applications to empirical data-sets453

We demonstrate the applications of our approach using two datasets from the empirical literature.454

The first dataset comprises of dynamic networks of bee colonies (N = 5-7 individuals), where edges455

represent direct physical contacts that were recorded using a color-based video tracking software.456

A bumble bee colony consists of a single queen bee and infertile workers. Here, we focus on the457

infection experiments in two colonies where infection was artificially introduced through a randomly458

selected forager (colony UN1 and UN2). Infection progression through the colonies was tracked by459

daily screening of individual feces, and the infection timing was determined using the knowledge of460

the rate of replication of C. bombi within its host intestine.461

The second dataset monitors the spread of the commensal bacterium Salmonella enterica in two462

separate wild populations of the Australian sleepy lizard Tiliqua rugosa. The two sites consisted of 43463

and 44 individuals respectively, and these represented the vast majority of all resident individuals at464

the two sites (i.e., no other individuals were encountered during the study period). Individuals were465

fitted with GPS loggers and their locations were recorded every 10 minutes for 70 days. Salmonella466

infections were monitored using cloacal swabs on each animal once every 14 days. Consequently,467

the disease data in this system do not identify the onset of each individual’s infection. We used468

a SIS (susceptible-infected-susceptible) disease model to reflect the fact that sleepy lizards can469

be reinfected with salmonella infections. Proximity networks were constructed by assuming a470

contact between individuals whenever the location of two lizards was recorded to be within 14m471

distance of each other (Leu et al., 2010). The dynamic networks at both sites consisted of 70472

static snapshots, with each snapshot summarizing a day of interactions between the lizards. We473

constructed two contact network hypotheses to explain the spread of salmonella. The first contact474

network hypothesis placed binary edges between lizards if they were ever within 14m distance475

from each other during a day. The second contact network assigned edge weights proportional to476

the number of times two lizards were recorded within 14m distance of each other during a day.477

Specifically, edge weights between two lizards were equal to their frequency of contacts during a478

day normalized by the maximum edge weight observed in the dynamic network.479
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609 Appendix 1 Figure 1. Relative error in the estimations of parameter � under missing data conditions
with and without the inclusion of the error parameter (�) in the INoDS formulation. The simulated
infectious disease spread (SI model, per contact transmission rate pathogen = 0.03) was performed on

static network with 100 nodes, Poisson degree distribution, and a average degree of 3. Relative error

was calculated as
�−�′
� , where � is the per contact transmission rate of the simulated pathogen (=0.03)

and �′ is the value of social transmission parameter estimated
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617 Appendix 1 Figure 2. Estimation of per contact transmission rate (�) and the error parameter (�) by
INoDS under three forms of missing data conditions - (A) missing nodes, (B) missing edges and (C)

missing infection cases. Simulations of susceptible-infected (SI) model of infectious disease spread were

performed on static network with 100 nodes, Poisson degree distribution, and an average degree of 3.

Each boxplot summarizes the results of 10 independent disease simulations; the horizontal line in the

middle is the mean of estimated parameter values, the top and the bottom horizontal line is the

standard deviation, and the tip of the vertical line represents the maximum/minimum value. The solid

red line represents the true value of � used in the disease simulations. Since the simulations were
performed on a known synthetic network, the expected value of error parameter is zero.
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Appendix 1 Figure 3. Relationship between error � and force of infection (=�wi(t − 1)) with increasing
percentage of missing data. Each boxplot summarizes the results of 10 independent disease

simulations (indicated by points); the horizontal line in the middle is the mean percent transmission

events where the asocial force is greater than the infection force contributed by the social connections.

The top and the bottom horizontal line is the standard deviation, and the tip of the vertical line

represents the maximum/minimum value.
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636 Appendix 1 Figure 4. Plot of sensitivity and specificity of (A) INoDS, (B) k-test and (C) network position
test to three common forms of missing data - missing nodes, missing edges and missing infection cases.

The observed network in this case is a static network with 100 nodes, Poisson degree distribution and a

mean network degree of 3. Simulations of pathogen spread with per contact transmission rate of 0.03

were performed through the observed static network. Null expectation in INoDS and network position

test was generated by permuting the edge connections of the observed networks, creating an ensemble

of null networks. In k-test, the location of infection cases within the observed network are permuted,
creating a permuted distribution of k-statistic (VanderWaal et al., 2016)
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Appendix 1 Figure 5. Identifying the contact network model of Crithidia spread in bumble bee colony
(colony UN2). Edges in the contact network models represent physical interaction between the bees.

Since the networks were fully connected, a series of filtered contact networks were constructed by

removing weak weighted edges in the network. The x-axis represents the edge weight threshold that

was used to remove weak edges in the network. Two types of edge weights were tested - duration and

frequency of contacts. In addition, across all ranges of edge weight threshold, the weighted networks

were converted to binary networks. The results shown are estimated values of the per contact rate of

infection transmission �, and estimated values of error �, for the (A-B) two types of binary network, (C)
contact duration weighted network, (D) contact frequency weighted network. The faded bars

correspond to networks where � parameter is statistically insignificant. Numbers above bars indicate
the log Bayesian (marginal) evidence of the networks that were detected to have statistically significant

higher predictive power as compared to an ensemble of null networks (P < 0.05, corrected for multiple

comparisons). We note that frequency networks with more than 25% weak edge removed failed to

converge in (C) and (D), and therefore the transmission parameter associated with these contact

networks were not estimated.
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C. Network position test

Figure 3–Figure supplement 1. Robustness plot of (A) INoDS, (B) k-test and (C) network position
test to three common forms of missing data - missing nodes, missing edges and missing infection

cases. The null expectation in INoDS and the network position test was generated by permuting

network edges, creating an ensemble of null networks. In the k-test, the location of infection cases
within the observed network are permuted, creating a permuted distribution of the k-statistic
(VanderWaal et al., 2016).
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