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Abstract 
 
The genomes of laboratory rat strains are characterised by a mosaic haplotype structure 
caused by their unique breeding history. These mosaic haplotypes have been recently 40 
mapped by extensive sequencing of key strains. Comparison of genomic variation between 
two closely related rat strains with different phenotypes has been proposed as an effective 
strategy for the discovery of candidate strain-specific regions involved in phenotypic 
differences.  
 45 
We developed a method to prioritise strain-specific haplotypes by integrating genomic 
variation and genomic regulatory data predicted to be involved in specific phenotypes. To 
identify genomic regions associated with metabolic syndrome, a disorder of energy utilization 
and storage affecting several organ systems, we compared two Lyon rat strains, LH/Mav 
which is susceptible to MetS, and LL/Mav, which is susceptible to obesity as an intermediate 50 
MetS phenotype, with a third strain (LN/Mav) that is resistant to both MetS and obesity. 
Applying a novel metric, we ranked the identified strain-specific haplotypes using 
evolutionary conservation of the occupancy three liver-specific transcription factors (HNF4A, 
CEBPA, and FOXA1) in five rodents including rat.  
 55 
Consideration of regulatory information effectively identified regions with liver-associated 
genes and rat orthologues of human GWAS variants related to obesity and metabolic traits. 
We attempted to find possible causative variants and compared them with the candidate 
genes proposed by previous studies. In strain-specific regions with conserved regulation, we 
found a significant enrichment for published evidence to obesity—one of the metabolic 60 
symptoms shown by the Lyon strains—amongst the genes assigned to promoters with strain-
specific variation.  
 
Our results show that the use of functional regulatory conservation is a potentially effective 
approach to select strain-specific genomic regions associated with phenotypic differences 65 
among Lyon rats and could be extended to other systems. 
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Introduction 
 70 
Phenotypic diversity is ultimately driven by genetic differences. The connections between 
DNA sequence and observed phenotypes are often difficult to determine and may be 
confounded by non-genetic causes including environmental effects. Regardless, it is 
increasingly clear that differences in transcriptional regulation are an important factor 
explaining phenotypic diversity (Wittkopp and Kalay 2012; Pai and Gilad 2014; Villar et al. 75 
2014; Villar et al. 2015; Lowdon et al. 2016; Mack and Nachman 2016). This is especially 
true between closely-related species (Romero et al. 2012; Shibata et al. 2012; Stefflova et al. 
2013; Pai and Gilad 2014). Accordingly, a number of efforts have been made to combine 
transcriptional regulatory data with genome variation to select candidate genomic regions 
involved in producing phenotypic characteristics of interest (Ward and Kellis 2012; Nica and 80 
Dermitzakis 2013; Lowe and Reddy 2015; Moreno-Moral and Petretto 2016) . 
 
The rat is a key animal model for biomedical research (Lindsey and Baker 2006; Jacob 2010; 
Aitman et al. 2016 ). More than 600 laboratory rat strains have been created over the last 
century in order to study specific traits including those which are more informative in rat than 85 
in other model species, such as behaviour and neurodegenerative diseases, cardiovascular 
diseases and metabolic disorders (Mashimo and Serikawa 2009; Voigt 2010; Yau and 
Holmdahl 2016). One focus over the last decade has been the identification of genes and 
other genomic loci associated with these strain-specific traits (Dwinell et al. 2011; Moreno-
Moral and Petretto 2016). Despite the great number of quantitative trait loci (QTL) identified 90 
in rat models using a number of techniques (Shimoyama et al. 2014), only a small number of 
causative genes have been determined for complex traits or diseases (Aitman et al. 2010; 
Baud et al. 2013; Moreno-Moral and Petretto 2016).  
 
Most genomic variants in an individual are expected to be neutral, and therefore have no 95 
impact on reproduction or survival (Kimura 1968; King and Jukes 1969). In the case of 
laboratory rats, the existing variation among strains (e.g. Hermsen et al. 2015) is the sum of 
the ancestral variation among individuals used in the process of strain development and the 
novel variation that originated and accumulated in the genome during the establishment and 
maintenance of the strains. Like humans (1000 Genomes Project Consortium, 2015) and 100 
laboratory mice (Adams et al. 2015), genetic variation among rat strains is not randomly 
distributed across the genome; instead it is organised in haplotype blocks (Saar et al. 2008; 
Atanur et al. 2013; Ma et al. 2014), which are caused by meiotic crossover of the shared 
ancestral variation. Comparison of these haplotype blocks among rat strains with different 
phenotypes has proven to be a powerful strategy for genetic mapping of complex traits and 105 
diseases (Saar et al. 2008; Ma et al. 2014). For example, Atanur and colleagues analysed 
the genomes of 27 rat strains, and found that haplotype blocks with variants that are unique 
to a single strain were positively selected in the initial phenotype-driven derivation of these 
strains, and thus variants associated with strain-specific phenotypes are predicted to be in 
these regions (Atanur et al. 2013). However, the genomic extent of such regions and the 110 
number of sequence variants found within them are nearly always too large for an effective 
determination of candidate loci influencing the phenotype of interest (see e.g. Cuppen 2005). 
 
Regulatory activity such as active promoters, enhancers and transcription factor binding sites 
(TFBS) can be effectively mapped genome-wide with current techniques such as chromatin 115 
immunoprecipitation followed by high-throughput sequencing (ChIP-seq) (Encode Project 
Consortium et al. 2012). Previous studies have suggested that both the number and 
conservation level of transcription factor binding sites in a given region affect the level of 
gene expression (Pennacchio and Rubin 2001; Berman et al. 2002; Cheng et al. 2014; Villar 
et al. 2014; Wong et al. 2015). Since tissue characteristics are directed to a large extent by 120 
the activity of tissue-specific transcription factors, the location of these regulatory elements 
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might be useful when selecting haplotype blocks associated with specific phenotypes or 
diseases.  
 
In this study, we characterise the haplotype blocks holding strain-specific genome variation 125 
among three closely related strains of the Lyon rat. Although Lyon rats were initially 
established as a model of hypertension (Dupont et al. 1973), several additional symptoms 
related to metabolic syndrome (MetS), such as obesity, dyslipidaemia and susceptibility to 
insulin resistance have been found in the Lyon Hypertensive (LH/Mav) strain (Sassolas et al. 
1981; Vincent et al. 1993; Wang et al. 2015). Only obesity is observed in the Lyon Low 130 
pressure (LL/Mav) and all MetS related phenotypes are absent in the Lyon Normotensive 
(LN/Mav) strain (Sassolas et al. 1981; Vincent et al. 1993; Bilusic et al. 2004; Wang et al. 
2015). Since both liver and kidney are involved in MetS (Kaur 2014), we generated RNA-seq 
expression data from liver of LL rats and from kidney of all three strains and integrated these 
with relevant existing data including the level of regulatory conservation for three liver-135 
specific transcription factors (CEBPA, FOXA1 and HNF4A, Stefflova et al. 2013) between rat 
and five related mouse species and strains. We show that the level of functional regulatory 
conservation can help select strain-specific haplotype blocks putatively associated with 
phenotypic differences among Lyon rats.  
 140 

Results 
 
85% of strain-specific variation among Lyon rat strains is concentrated in less than 
9% of the genome. 
 145 
To define haplotype blocks, we partitioned the rat genome into 10kb windows and calculated 
the number of strain-specific variants (SSVs) in each window relative to the reference rat 
genome assembly (see methods). We observed a bimodal distribution in the number of 
SSVs and used this distribution to define the resulting haplotype blocks as having either a 
high density of SSVs (High Variability Region, HVR) or a low density of SSVs (Low Variability 150 
Region, LVR) (see Methods, Figures 1 and S1).  
 
The distribution of SSVs across the genome was similar for the two pairwise comparisons of 
Lyon rats susceptible to MetS and obesity (LH and LL) and the Lyon Normotensive (LN) that 
is resistant (i.e. LHvsLN and LLvsLN, see Figures 2A, S3A, S4A). In both cases, the vast 155 
majority of strain-specific variants were concentrated in HVRs (LHvsLN: 84.96% and 
LLvsLN: 85.09%), and these regions only covered a small part of the genome (LHvsLN: 
8.55% and LLvsLN: 7.10%) (Figures 2B, S3B, S4B and Table 1). These regions were partly 
overlapping: 42.6% of LHvsLN HVRs overlap with LLvsLN HVRs, while 51.2% of LLvsLN 
HVRs overlap with LHvsLN. SSV overlaps have similar fractions (Figure 2C). The fraction of 160 
the genome that we identify as highly strain-specific is similar to that obtained previously for 
these and other rat strains (see Atanur et al. 2013; Ma et al. 2014, Methods and Figure S3). 
HVRs characterise a substantial reduction in the portion of the genome that is most likely to 
be involved in MetS phenotypes and therefore form the primary focus of our subsequent 
analysis. 165 
 
Evidence for the functionality of High Variability Regions in the Lyon rats associated 
with MetS 
 
We then sought to determine if the HVRs preferentially contain features that could explain 170 
the phenotypic differences among Lyon rats by comparing them to other regions of the 
genome (see Methods and Figure 3). Specifically, we tested whether there is a significant 
enrichment in HVRs of the following elements: i) annotated genes, ii) genes associated with 
metabolic-related traits, iii) genes differently expressed among Lyon rats, iv) occupancy in rat 
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of three liver-specific transcription factors, and v) regions orthologous to human variants 175 
associated by GWAS to obesity and metabolic traits. 
 
The number of Ensembl genes (Yates et al. 2016) that overlap at least one HVR was 
marginally greater than expected by chance and this overlap was significant for the LHvsLN 
comparison (p < 0.05), but not for LLvsLN (p > 0.05) (Figure 3B). Additionally, but only in the 180 
case of LLvsLN, there was a significant enrichment of genes associated with Type I diabetes 
mellitus (KEGG PATHWAY database, gene count: 25, p < 10-9, see results for ‘All HVRs’ in 
Figures S5 and S6 (DAVID web services v6.7, Huang da et al. 2009; Jiao et al. 2012). Gene 
enrichment in the HVRs was more significant when considering only the genes whose 
expression in either liver or kidney differed between LH and LN strains, and between LL and 185 
LN strains (see Methods and Table S1). (Figure 3C and Table S2).  
 
We next considered whether the HVRs were enriched for either the occupancy of three 
specific transcription factors (HNF4A, CEBPA, and FOXA1) or the 418 rat orthologues of 
Human GWAS variants associated with obesity and metabolic traits. In both cases we did not 190 
observe a significant enrichment (Figures 3D-E, S7 and Table S3). 
 
In summary, the observation that both annotated and differentially expressed genes are 
enriched in HVRs supports the hypothesis that HVRs harbour functional regions that could 
be responsible for phenotypic differences observed among the Lyon rats. However, given the 195 
overall genomic span of identified HVRs and the large number of SSVs both in coding and 
non-coding regions in the HVRs (see Table 1), these analyses on their own are inadequate 
to suggest either the causative genes or the causative variants influencing MetS or obesity 
across the whole genome.   
 200 
Liver-specific regulation data can prioritise regions of strain-specific variation in Lyon 
rats associated with MetS 
 
We next integrated strain-specific genomic variation with available genomic regulatory data 
from tissue relevant to MetS in order to prioritise the HVRs using the occupancy and level of 205 
conservation of the three liver-specific transcription factors. We created subsets of HVRs 
characterised by occupancy of the factors and the level of conservation among mice and rats 
using a factor-specific Conservation Enrichment score (CEf, see Methods). Briefly, CEf is the 
fraction of transcription factor binding events in a 10kb window that are conserved between 
rat and mouse for each transcription factor. The score was determined independently for 210 
each of the three factors (f = CEBPA, FOXA1, or HNF4A). Thus, for each transcription factor 
and for both the LHvsLN and LLvsLN comparisons, we created seven subsets of HVRs: ‘All 
HVRs’ including those without any binding event; ‘HVR w/TFBS’ with at least one TFBS 
regardless of conservation; and five subsets containing HVRs with CEf greater than 0, 0.2, 
0.4, 0.6 and 0.8, respectively. We then reassessed the evidence for functionally of these 215 
HVR subsets in a similar way to that done with the whole set of HVRs as above.  
 
Enrichment of Ensembl rat genes in HVR subsets corresponded with the occupancy and 
level of conservation of the three liver-specific transcription factors (Figure 4A). With the 
exception of the subset of LLvsLN with all HVRs, all tests in the HVR subsets were 220 
statistically significant (p <0.05). For LHvsLN and for the three factors, maximum significance 
possible (p < 10-3) was obtained for the subset of HVRs with at least one TFBS (HVR 
w/TFBS), and for the subsets with CEf>0.0 and CEf>0.2. In the case of LLvsLN and for the 
three transcription factors, the maximum significance was obtained in the subset of HVRs 
with at least one TFBS, and HVR subset with CEf>0.0 (i.e. HVR subsets with the darkest 225 
colour in Figure 4A).  
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As above, we analysed the functional annotation enrichment in the HVR subsets using 
DAVID (Huang da et al. 2009; Jiao et al. 2012) with KEGG PATHWAY (Kanehisa and Goto 
2000; Kanehisa et al. 2014) and UP TISSUE (Uniprot Consortium 2015) databases (see 230 
Methods). In all cases (both LHvsLN and LLvsLN for the three liver-specific transcription 
factors) the term ‘liver’ from the UP TISSUE database, had the greatest accumulated 
significance across HVR subsets (see Figures S5 and S6). These results indicate that HVRs 
selected according to information from liver-specific regulation data are enriched in genes 
associated with liver function. Importantly, but as expected, this association was not evident 235 
without using genomic regulation data to select HVRs (see Figure 4B).  
 
In the case of LHvsLN, the greatest enrichments in genes associated with liver function were 
obtained for the CECEBPA>0.6 (p < 10-5), CEFOXA1>0.4 (p < 10-5) and CEHNF4A>0.2 (p < 10-3) 
subsets (HVR subsets with the darkest colour in Figure 4B). For LLvsLN, the greatest 240 
enrichments were obtained for CECEBPA>0.2 (p < 10-3), CEFOXA1>0.4 (p < 10-4) and 
CEHNF4A>0.2 (p < 10-3) (Figure 4B). 
 
For the analyses using KEGG_PATHWAY database, we did not find a consistent increase in 
significance associated with an increase in CEf, although we did identify some functional 245 
terms that were statistically significant (see Figures S5 and S6). 
 
Genes differentially expressed between LH and LN strains in either liver or kidney (Table S1) 
are significantly enriched for all subsets of HVRs (Figure S9), regardless of which 
transcription factor is considered. The same is true for genes differentially expressed 250 
between the LL and LN strains. To compare the differences in enrichment between subsets, 
we computed the fraction of all Ensembl rat genes that are differently expressed for each 
HVR. In all cases, the fraction of differentially expressed genes was positively correlated with 
CEf (Figure 4D). For example, for LHvsLN and data from liver, the fraction increased from 
6% (‘all HVRs’ subset) to 15% (CEFOXA1>0.8), while for kidney, it increased from 15% (‘all 255 
HVRs’ subset,) to 30% (CECEBPA>0.8; CEFOXA1>0.8). A similar pattern was observed for 
LLvsLN (Figure 4D). 
 
We hypothesised that there may be a correlation between selection pressures leading to 
regulatory conservation as measured by CEf and changes to the sequence of protein coding 260 
genes within the same sets of HVRs. The ratio of non-synonymous coding SSVs (NSC-
SSVs) to synonymous coding SSVs (SC-SSVs) was therefore compared across HVR 
subsets (see Methods). Although we find relatively little difference in the ratio of the non-
synonymous changes, especially for the case of the LHvsLN comparison, in the LLvsLN 
comparison, non-synonymous changes do appear to be depleted when HVRs have higher 265 
regulatory conservation (i.e. higher CEf) (Figure 4E). This may be the effect of simultaneous 
selection on both protein coding genes and regulatory networks for a subset of regions in the 
LL genome. 
 
Finally, we looked for an enrichment of putative GWAS positive regions in HVR subsets by 270 
determining the orthologous location in rat of NHGRI-EBI GWAS Catalog SNPs associated 
with obesity and metabolic-related in humans (Welter et al. 2014) (specific terms listed in 
Table S3). The use of the regulatory information from liver-specific transcription factors 
identified significant enrichments of GWAS variants in relevant subsets of HVRs. For 
example, we found significant enrichments (i.e. p < 0.05) for LHvsLN in the subsets of HVRs 275 
w/ TFBS and CEf>0.2 for the three liver-specific factors, in CEf>0.0 for FOXA1 and HNF4A 
and in CEf>0.4 for FOXA1) (Figure 4C, Table S6). Regarding LLvsLN, we found significant 
enrichments for in HVRs w/TFBS, CEf>0.0, CEf>0.2, CEf>0.4 for both FOXA1 and HNF4A 
(Figure 4C, Table S6). 
 280 
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In summary, the use of CEf (i.e. the conservation level between rat and mouse in the 
occupancy of three liver-specific transcription factors) is effective for selecting candidate 
regions involved in phenotypic differences between Lyon rats. In most cases, we observed 
an increase in statistical significance as a function of CEf. Moreover, the consideration of 
regulatory information was required to identify HVRs significantly enriched for genes 285 
associated with metabolic related-trait genes and enriched for human GWAS variants related 
to obesity and metabolic traits. 
 
Integrating results from the three liver-specific transcription factors to prioritise the 
strain-specific variation in Lyon rats associated with MetS 290 
 
Given the observed stability of combinatorially bound transcription factors (Stefflova et al. 
2013) and connection of these regions to human disease (Ballester et al. 2014), we 
assessed if the number of liver-specific transcription factors used to estimate the 
conservation level could more efficiently prioritise candidate HVRs. For this purpose, we 295 
used the HVR subsets with CEf>0 (i.e. all HVRs with at least one conserved TFBS).  
 
We observed that conservation of more than one type of factor in a given HVR was common: 
41% (LHvsLN) and 43% (LLvsLN) of the HVR CEf>0 regions had conserved peaks for all 
three of the liver-specific transcription factors (Figure 5A). We then partitioned the HVRs with 300 
conserved peaks by the diversity of factors that where conserved in the given HVR. 
Specifically, ‘HVR 1TF’ includes HVRs with one or more conserved TFBS from at least one 
factor; while ‘HVR 2TF’ and ‘HVR 3TF’ refer to HVRs with conserved TFBS from at least two 
or all three factors (i.e. HRV 3TF is a strict subset of HVR 2TF, which is strict subset of HVR 
1TF). We then assessed these HVRs subsets to determine if an increased diversity of 305 
conserved liver-specific transcription factors is an effective method to prioritise HVRs. 
 
Although the presence of genes is significantly enriched in each of these HVR subsets, there 
are no differences among HVR 1TF, HVR 2TF and HVR 3TF: in all cases enrichment 
significances were equal to p = 10-4 (Figure 5C). Similar results were obtained when 310 
considering all liver-associated genes in HVRs (see methods) for LLvsLN (HVR TF1: gene 
count = 126, p < 0.05; HVR TF2: gene count = 105, p < 0.05; HVR TF3: gene count = 87, p < 
10-2) and LHvsLN (HVR TF1: gene count = 153, p < 0.05; HVR TF2: gene count = 131, p < 
10-2, HVR TF3: gene count = 102, p < 10-2) (Figure 5D). 
 315 
HVRs with an increased diversity of conserved peaks were generally significantly enriched 
(permutation tests, p < 0.05) for orthologous regions of human GWAS SNPs except for the 
case of the HVR 3TF subset with the LHvsLN SSVs (Figure 5E and Table S7).  
 
The significance of enrichments of genes differentially expressed in either liver or kidney was 320 
p < 10-3 for the subsets with at least one conserved peak for one, two and three liver-specific 
transcription factors, respectively, for both LHvsLN and LLvsLN strain comparisons. 
Considering the ratios of differentially expressed genes, we observed that they kept relatively 
constant across HVRs subsets as the number of liver-specific transcription factors with 
conserved peaks increased (Figure 5B).  325 
 
These results suggest that knowledge of which TFBSs are conserved and whether a given 
region of the genome has conserved TFBSs from multiple factors may be effective in some 
situations at prioritising regions with strain specific variation involved with tissue specific 
functions. For example, we did not observe enrichments in HVRs associated with liver-330 
expressed genes and the orthologous rat regions associated with human GWAS without 
using the conservation level as measured by CEf (see above and Figure 4). 
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Analysing the genes obtained from the selected High Variability Regions 
 335 
To gain insight into genes from the prioritised HVRs that may be important for MetS or 
obesity, we focused on the most conserved and regulatorily complex HVR subset, i.e. the set 
containing at least one conserved peak for all three liver-specific factors (the HVR 3TF 
subset, see above).  
 340 
We performed two analyses based on possible functional mechanisms underpinning the 
phenotypic differences among Lyon rats. First, we characterised those genes with non-
synonymous coding strain-specific variants (NSC-SSVs; see Methods) overlapping the 
selected HVRs. Such variation would result in changes to the amino acid sequence that may 
be responsible for functional changes in the resulting proteins. Second, we identified those 345 
genes located near putative promoters in rat obtained from Villar et al. (2015) (see Methods) 
and with SSVs overlapping the selected HVRs. We assumed these SSVs might affect the 
expression of the proximal genes. For these analyses, we used only those genes expressed 
in liver as measured by RNA-seq data (FKPM > 1, see Methods).  
 350 
We categorised the selected genes based on whether they were i) liver-specific genes 
(according to the UniProt tissue database, see Methods), ii) differentially expressed in liver 
and/or kidney when comparing the susceptible Lyon strains with the control Lyon strain, (see 
Methods); iii) overlapping human GWAS variants associated with obesity and metabolic traits 
overlapping the gene body in the case of genes with NSC-SSVs or overlapping the promoter 355 
in the cases of genes linked to promoters with SSVs (see Table 2 and Supplementary 
Material). 
 
We also analysed the genes associated by published evidence to three symptoms showed 
by the LH strain (insulin resistance, dyslipidaemias) and by the LH and LL strains (obesity) 360 
plus two symptoms not obviously present in these strains as control (heart disease and 
Alzheimers), using DisGeNET (v4.0, Piñero et al. 2015; Piñero et al. 2016) (see Methods). 
For this analysis, we used the corresponding human orthologues of the selected rat genes 
because the DisGeNET data is mainly for human (see Methods). A total of 7,542 and 7,520 
rat genes had human orthologues and were expressed in liver in the LH and LL strains, 365 
respectively. DisGeNET identifies a small number of these genes as associated with the 
metabolic syndrome phenotypes and, as expected, these gene sets are highly similar for the 
LH and LL strains with approximately 140 (1.9%), 110 (1.5%) and 800 (10.6%) genes 
associated with insulin resistance, dyslipidaemia and obesity, respectively in each strain.  
 370 
There were 173 protein-coding genes expressed in liver of LH or LL strains with at least one 
NSC-SSV in the selected HVRs. Of these 173 genes, 144 had identified human orthologues 
and can thus be compared with the DisGeNET data. This set of genes was not significantly 
enriched for published associations to obesity, insulin resistance or dyslipidaemias, (see 
Table 2, Supplementary Material).  375 
 
A larger number of genes were one-to-one associated with putative active promoters 
including 3,865 and 3,864 genes that were expressed in livers of LH and LL strain rats and 
had human orthologues, respectively. Of the 3,865 genes with active promoters from the LH 
strain, a total of 85 (2.2%), 66 (1.7%) and 425 (11%) were associated with insulin resistance, 380 
dyslipidaemias and obesity, respectively. The number for LL are similar: 86 (2.2%), 65 
(1.7%), 417 (10.8%) for the associations to insulin resistance, dyslipidaemias and obesity, 
respectively. Only a fraction of these promoters had SSVs in the selected HVRs: 206/3865 
(5.3%) for LH and 164/3864 (4.2%) for LL. Thirty-two of the genes assigned to promoters 
with SSVs overlapping the selected HVRs in the LH strain were associated with obesity 385 
(15.5%, Fisher’s exact test: p < 0.05). There were no significant enrichments for insulin 
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resistance or dyslipidaemias in the LH strain or any significant associations in the LL 
comparison (see Table 2, Table S10 and supplementary Material). 
 
We found no significant enrichments for the two symptoms used as control in either the 390 
comparison to genes with at least NSC-SSV in the selected HVRs (Fisher’s exact tests: all p-
values > 0.08) or to genes one-to-one assigned to promoters with SSVs overlapping the 
selected HVRs (Fisher’s exact tests: all p-values > 0.05). 
 
Of the set of 32 genes responsible for the significant enrichment for obesity in the LHvsLN 395 
comparison (Figure S10), the gene with most published evidence of association with obesity 
was the insulin receptor gene Insr (ENSRNOG00000029986) (Table S9); Cat 
(ENSG00000121691) was the human gene of that list assigned to the promoter with the 
greatest number of SSVs (58 SSVs) overlapping the HVRs.  
 400 
Discussion 
 
In this study, we have used the level of functional regulatory conservation between related 
species to prioritise genomic regions whose patterns of genome variation suggest that they 
are involved in phenotypic differences in a model of obesity and metabolic syndrome, the 405 
Lyon rat strains. 
 
As a first step, we characterised haplotype blocks by density of strain-specific variants for the 
two comparisons between the susceptible Lyon strains with respect to the resistant Lyon 
strain (i.e. LHvsLN and LLvsLN). In agreement with similar analyses (Atanur et al. 2013; Ma 410 
et al. 2014), most of these variants were concentrated in a small part of the genomes, which 
we termed High Variability Regions (HVRs). Next, we classified the HVRs according to 
conserved occupancy between rat and mice for three liver-specific transcription factors. 
Functional enrichment of selected HVRs was evident for those genetic elements where a 
significant enrichment was found in the whole HVR sets. Importantly, our approach revealed 415 
associations between HVRs with liver-genes and with rat orthologues of human GWAS 
linked to obesity and metabolic traits.  
 
We also searched genes associated with genomic variation linked to two selected sets of 
HVRs, one from each strain comparison; namely, those sets with haplotype blocks having at 420 
least one conserved peak among rat and mice for each of the three liver-specific 
transcription factors (i.e. ‘HVR 3TF’ subset). In these two subsets, we determined those 
genes with non-synonymous strain-specific variants and genes assigned to promoters with 
strain-specific variation overlapping the selected haplotype blocks. We reported a list of 
these selected genes where we included additional information coming from functional 425 
analyses and supporting the association of these genes with human GWAS for obesity and 
metabolic traits and with traits in the susceptible Lyon strains (insulin resistance, 
dyslipidaemias and obesity) (Supplementary Material). We found a significant enrichment of 
liver-expressed genes associated with obesity that were assigned to promoters with strain-
specific variation overlapping the selected haplotype block obtained from LHvsLN. 430 
 
Ma, et al characterised the blocks with a high density of variants that are unique in the Lyon 
strains in order to fine-map Quantitative Trait Loci (QTL) for MetS previously identified in 
these rat strains (Ma et al. 2014). As result, the candidate QTL regions were narrowed by 
78%. By focusing their analyses to coding variants in the QTL on rat chromosome 17, they 435 
reduced the number of candidate genes to 27. We found that 3 of these genes had non-
synonymous strain-specific variation overlapping the most stringent HVR 3TF subset (see 
Table S10), however none of these genes were assigned to promoters with strain-specific 
variation overlapping HVR 3TF regions. More recently, Wang, et al, reported 17 candidate 
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genes involved in the phenotypic differences between LH and LN Lyon rats (Wang et al. 440 
2015). We found that only one of Wang et al.’s genes held non-synonymous variation 
overlapping an HVR 3TF region (see Table S11). In addition, none of the genes identified by 
Wang, et al, were assigned to promoters with strain-specific variation overlapping the HVR 
3TF regions (Table S10). 
 445 
The gene RGD1562963 (ENSRNOG00000039379), which encodes a protein similar to 
chromosome 6 open reading frame 52 (C6ORF52), is the only one reported by both studies 
in the previous paragraph. It is suggested to be the most likely eQTL driver gene involved in 
phenotypic differences between LH and LN strains (Wang et al. 2015). RGD1562963 is cis-
regulated by an eQTL hotspot on chromosome 17 and is predicted to affect 100 of 278 trans-450 
eQTL genes (Wang et al. 2015). While this gene was not linked to strain-specific variation 
overlapping the strict HVR 3TF subset, RGD1562963 is associated with the less restrictive 
HVRs 2TF subset obtained from LHvsLN comparison. Moreover, RGD1562963 was the only 
gene from the Ma et al. and Wang et al. lists with both non-synonymous coding and promoter 
assigned SSVs (Figure 6). This result would suggest that RGD1562963 has been under 455 
positive selection during the phenotype-driven derivation of this strain and gives support to 
the predicted role of RGD1562963 affecting susceptibility in LH rats for the Metabolic 
syndrome reported by Ma et al. and Wang et al. The identification of RGD1562963 by our 
complementary method further supports its role in the phenotype and lends additional 
validation to our general approach. 460 
 
Our results demonstrate both the potential and the limitations of using the level of functional 
regulatory conservation to prioritise genomic regions potentially associated with phenotypic 
differences among Lyon rats. This approach would be most easily extended to other systems 
with similar breeding histories including other rat strains and mice strains. Importantly, it is 465 
not needed to generate data from many individuals like QTL and eQTL approaches and 
allows the use information already available, as conservation in regulatory elements between 
rat and mice.  

Methods 
 470 
Determination of High Variability Regions, Low Variability Regions and Unmappable 
Regions 
 
Genomic sequences and Single Nucleotide Variants. 
 475 
We used existing whole genome alignments (ENA accession: ERP002160) and single-
nucleotide variants (available from the Rat Genome Database) of the three Lyon strains (LH, 
LL and LN) that were generated by Atanur et al. (2013) in comparison to the BN reference 
genome (RGSC-3.4, Gibbs et al. 2004).  
 480 
Strain-Specific Variant (SSV). We called a SSV for a given strain as a genomic position with 
an allele that is not present in the strain used as reference (Figures 1A and S1A). Firstly, we 
obtained SSVs for Lyon strains compared to the BN reference genome RGSC-3.4 and the 
resulting sets of SSVs are referred to as LHvsBN, LLvsBN and LNvsBN for the SSVs specific 
to the LH, LL and LN strains, respectively. These comparisons were used to calculate the 485 
threshold for the different types of genomic regions (see below and Figures 1C and S1C). 
Secondly, we obtained SSVs for the two pairwise comparisons of Lyon rats that are 
susceptible to MetS and obesity phenotypes relative to the strain that is resistant (LHvsLN 
and LLvsLN). In these cases, we called a SSV as a genomic position with at least one allele 
that is not present in both LN and the reference BN genome. By doing this, we discard from 490 
LH and LL genomes the genetic variation shared with LN strain, which we assume are not 
associated with MetS (Figures 2, S3 and S4). Furthermore, in a similar way as done for LN 
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strain by comparing it to LH and LL strains (LNvsLH, LNvsLL); these comparisons were used 
as controls of our approach, because we expected to not find any association between LN 
strain SSVs and MetS (see Figures S3 and S4).  495 
 
In a previous study with the Lyon rats, Ma et al. (2014) considered a SSV as any position 
that differed between the two strains that were being compared regardless of whether the 
position was variable with respect to the reference BN genome (indicated as LH+LN, LN+LH 
in Figure S3 and LL+LN and LN+LL in Figure S4). In our case, we considered a SSV only if 500 
the allele both differed from the BN reference genome and was also in the strain that was 
used as query and not present in the strain used as control. For example, in Figure S1, our 
approach considers only the G in the LNvsLN comparison, while Ma, et al, would have 
included both the G and the C. This different criterion allowed us to remove from our LHvsLN 
and LLvsLN analyses those genomic regions specific to LN, and which are likely not 505 
associated with the phenotypic differences associated with MetS among Lyon rats (see 
Figures S3, S4). Other differences from methodology used by Ma, et al, were i) we did not 
discard the roughly 5% of SSVs that were called heterozygous by Atanur et al. (2013); and ii) 
we did not use those genome regions with a low estimated accessibility (see below). 
 510 
Smooth Density of SSVs. For downstream analyses, we used a weighted sliding window 
approach—triangular smoothing—to calculate the number of SSVs in non-overlapping 10kb 
genome windows (Figures 1B and S1B). This method smoothes differences among windows 
that were caused by the genome compartmentalization. For a given window in the genome at 
position x, we calculated the smoothed density of SSVs as the following floating mean with 515 
weights: 
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where SSVx+i is the number of Strain Specific Variants in the window with position x+i, and k 
is the number of neighbouring windows up and downstream used for smoothing. We use k=3 520 
in our analyses empirically (data not shown) because this value gives a clear distinction 
between two types of genomic regions (see below and Figures 1C and S1C).  
 
Genomic regions 
 525 
High Variability Regions and Low Variability Regions. The smoothed density of SSVs in 
genome windows between two rat strains shows a bimodal distribution (Figures 1C and 
S1C). The left peak in the bimodal distribution contains regions of the genome identical by 
descent, with low a density of SSVs (Low Variability Region, LVR). The right peak contains 
regions of the genome that are divergent between the two strains with a high density of 530 
SSVs. A distinct valley separates the two peaks, which we used as a threshold to 
differentiate HVR and LVR. We calculated this threshold for the three comparisons between 
the Lyon strain rats and the reference rat genome (RGSC-3.4). In all three cases the 
threshold obtained was three (Figure S1C); that is, windows with a smoothed SSV density 
greater than three variants in 10kb were classified as HVR, and windows whose smoothed 535 
SSV density was less than or equal to three were classified as LVR. Only those regions with 
at least three consecutive genome windows of the same type were considered for further 
analyses (Figure 1D). 
 
Unmappable regions. We performed two analyses on the BAM files to estimate the 540 
parameters to characterise the non-accessible genome regions of the Lyon strains. Firstly, 
we obtained the distribution of mapping qualities (i.e. -10 log10 Pr(mapping position is wrong), 
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http://samtools.github.io/hts-specs/) by using QualityScoreDistribution.jar from Picard tools 
(v1.81(1299), http://picard.sourceforge.net) with the option 
VALIDATION_STRINGENCY=LENIENT (Figure S2A). Secondly, we calculate genome 545 
coverage per base by using genomeCoverageBed form Bedtools (v2.17.0, Quinlan and Hall 
2010) with default parameters (Figure S2B). According to results obtained from the later 
analysis, we considered a region as unmappable when at least three consecutive windows 
with an average mapping quality less then or equal to 30 and/or with an average coverage 
greater then or equal to 100 (Figures 1D, 2, S3B and S4B). 550 
 
Animals 
 
LH/MRrrcAek, LN/MRrrcAek, and LL/MRrrcAek rats were bred and maintained in an 
approved animal facility at the University of Iowa on a 12-hour light-dark cycle and provided 555 
food and water ad libitum. Male offspring were used in this study. All animal protocols were 
approved by the Institutional Animal Care and Use Committee (IACUC) at the University of 
Iowa. The rats were phenotyped and tissues collected as previously described (Wang et al. 
2015). Briefly, at three weeks of age the rats were weaned onto normal chow (Teklad 7913 - 
Harlan Teklad NIH-31 irradiated, 18% protein, 6% fat). At 15 weeks of age they were 560 
switched to a 4% NaCl diet (Teklad 7913 modified with 4% NaCl) until they were humanely 
euthanized with CO2 at 18 weeks of age after an overnight fast. Tissues were collected and 
stored in RNAlater (Life Technologies, Grand Island, N.Y.) at -80°C for subsequent RNA 
extraction.  

Gene expression 565 
 
RNA-seq data. RNA was isolated from liver and kidney tissue using standard TRIzol 
methods (Chomczynski and Sacchi 1987). RNA quality was measured (BioAnalyzer 2100, 
Agilent Technologies, Santa Clara, CA, USA), using an RIN threshold of 7. Libraries were 
prepared using TruSeq RNA Sample Preparation Kits v2 (Illumina, San Diego, CA) according 570 
to manufacturer’s instructions. RNA sequencing was performed on an Illumina HiSeq 2000, 
with paired-end, 50 bp cycles, at the Iowa Institute of Human Genetics - Genomics Division. 
Six samples were multiplexed per lane, yielding approximately 30 million reads per sample. 
All data consisted of six biological replicates for LH and LL liver and five biological replicates 
for LL liver and LH, LL, and LN kidney. Sequence data from LH and LN liver was previously 575 
described (Wang et al. (2015); GSE50027). Remaining sequence data created for this study 
has been deposited in the ArrayExpress database at EMBL-EBI 
(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-5939.  
 
We analysed the read quality using FASTQC software (v 0.10.1 580 
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were trimmed by using 
Trimmomatic (v0.32, Bolger et al. 2014) if the Phred score of any base was below 25 
(LEADING:25 TRAILING:25). We used reads with at least 36 bases (MINLEN:36) and only 
those paired reads that remained after trimming. 
 585 
Gene expression analyses. We estimated differential gene expression between LH and LN, 
and between LL and LN. TopHat (v2.0.13, Trapnell et al. 2009) was used to map reads to the 
rat reference genome (RGSC-3.4). Read alignments with more than two mismatches were 
discarded (--read-mismatches 2). We also used the option --no-novel-juncs to look for reads 
across junctions already annotated. The Cufflinks package (v2.2.1, Trapnell et al. 2010) was 590 
used to assemble transcripts separately for each replicate. We used cuffmerge to merge the 
transcript assemblies from replicates to be analysed, and finally we used cuffdiff to find 
differently expressed genes and with Benjamini-Hochberg corrected False Discovery Rates 
(FDR) of 0.05. Thus, we obtained the differently expressed genes either in liver or in kidney 
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between LH and LN, and between LL and LN (see Table S1). We also used the FPKM 595 
(Fragments per kilobase of exon per million of fragments mapped) values obtained from 
these analyses to get the list of genes that were expressed in the livers of the LH and LL 
strains. We considered a gene expressed in liver if its FPKM was greater than 1.0.  
 
Regulation data: liver-specific transcription factors 600 
 
We used the liver ChIP-seq datasets generated by Stefflova et al. (2013) for BN rat strain 
(ArrayExpress accession: E-MTAB-1414) and for five mouse species/strains (Mus musculus 
(strains C57BL/6J and AJ), Mus caroli and Mus castaneus and Mus spretus, ArrayExpress 
accession: E-MTAB-1414). The dataset comprised two biological replicates for each 605 
species/strain and for three liver-specific transcription factors (CEBPA, HNF4A and FOXA1). 
Reads were aligned using BWA (Li and Durbin 2009) with default parameters. Peak locations 
were called by SWEMBL (https://github.com/stevenwilder/SWEMBL). Final peak sets 
contained peaks present in both biological replicates.  
 610 
Conservation of occupancy of three liver-specific transcription factors between rat 
and mouse strains 
 
We compared peaks generated from ChIP-seq datasets among the five mouse species and 
the rat. We used only the genomic regions present in the BLAST-Z alignment between 615 
mouse and rat available in Ensembl (v59, Yates et al. 2016) and using the NCBI37 mouse 
genome as references for comparing datasets from the different species. We considered as 
conserved peaks between rat and mouse, the overlapping peaks between rat and at least 
one mouse species/strain. Coordinates of conserved peaks were converted to the rat 
genome reference (RGSC-3.4). For each HVR and liver-transcription factor, we calculated its 620 
Conservation Enrichment score (CEf) as the number of conserved peaks in 10kb for a given 
transcription factor.  
 
Permutation tests 
 625 
Permutation tests were used to find significant enrichments in HVRs. We clustered HVRs 
within an empirically defined distance of 1Mb because HVRs have a non-uniform distribution 
across the genome (see Figure 3A) and we assume nearby HVRs are regulatorily non-
independent. Clusters were randomly permutated across the whole genome by using the 
command shuffle from BEDTools (v2.22.0, Quinlan and Hall) and accessed from pybedtools 630 
(v0.6.9, Dale et al. 2011); the relative coordinates of HVRs inside of clusters were 
maintained. We estimated the distribution of expected values by calculating either the total 
number or average of genetic elements overlapping the set of HVRs inside of the shuffled 
cluster for each permutation. We performed 10,000 permutations in each test. Significance of 
the enrichment of the genetic element in HVRs was obtained by calculating the two-tailed p-635 
value according to this formula:  
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where OV is the value obtained from the observed HVRs, and EV is the expected value 
calculated from each of the 10,000 sets of permuted HVRs (see Figure 3A). The minimal p-640 
value possible with 10,000 permutations is 1x10-4 . 
 
Functional analyses of HVRs 
 
Ensembl genes overlapping HVRs 645 
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We used the set of Ensembl genes from Ensembl (v69, Yates et al. 2016) for the BN 
reference genome RGSC-3.4. We used a permutation test (see above) to determine if genes 
overlapped HVRs more often than expected by chance. We calculated the number of genes 
overlapping at least one HVR in the observed permutated sets (Figure 3B). 650 
 
Differentially expressed genes overlapping HVRs 
 
We tested if genes that were differentially expressed between LH and LN and between LL 
and LN overlapped HVRs more often than expected by chance (Figure 3C). We used 655 
permutation test for these analyses (see above). We used the list of genes differentially 
expressed that were obtained from RNA-seq data (Table S1). We calculated the number of 
these genes that overlapped at least one HVR in the observed and permutated sets of HVRs 
(Figure 3C and Table S2).  
 660 
Gene-annotation enrichment analysis of HVRs  
 
We analysed if there was a functional enrichment associated with metabolic or obesity 
phenotypes for the genes overlapping at least one HVR that were obtained from LHvsLN (‘All 
HVRs’ in Figure S5) and LLvsLN (‘All HVRs’ in Figure S6). We tested for this enrichment by 665 
using DAVID web services v6.7 (python client, Huang da et al. 2009; Jiao et al. 2012) for 
KEGG PATHWAY (Kanehisa and Goto 2000; Kanehisa et al. 2014) and UP TISSUE (Uniprot 
Consortium 2015) databases (release/download date: Sep 2009, 
https://david.ncifcrf.gov/content.jsp?file=update.html). We used DAVID v6.7 (Sep 2009) for 
our analyses rather than DAVID v6.8 (October 2016), because most of the data used in our 670 
study (gene annotation, SNPs and occupancies of liver-transcription factors) are based on 
the RGSCv3.4 assembly, which is also that used by DAVID v6.7. DAVID v6.8 uses the Rnor 
6.0 assembly and differences in the gene sets and/or gene nomenclature between these two 
rat assemblies create inconsistencies that affect the accuracy of our results (data not 
shown). In addition, although the KEGG PATHWAY resource was updated in DAVID 6.8, the 675 
UP TISSUE dataset, which we used to report the expected association between the term 
liver and the level of functional regulatory conservation (see Results section), was not 
updated in DAVID v6.8 (in both versions UP TISSUE is dated Sep 2009). We recognise that 
in their recent paper, Wadi et al. (2016) showed that the use of out-dated gene annotation 
prevents the identification of all significant terms in enrichment analyses. However, in our 680 
case, even when using DAVID v6.7, we found significant results and the expected correlation 
between gene enrichment and the level of functional regulatory conservation. Thus, the 
DAVID supporting database that we use are largely the same between v6.7 and v6.8, it is 
more important for us to be consistent on the assembly and gene set for our analysis. 
 685 
Liver-specific transcription factor overlapping HVRs 
 
We also tested if the number of peaks in rat overlapping HVRs (Figures 3E and S7) and the 
average CEf (Figure S8) observed for each one of the three liver-specific transcription factors 
were significantly greater that that expected by chance. We used permutation tests (see 690 
above) for these analyses. For the observed values, we used either the total number of 
peaks overlapping the HVRs or the average CEf for a given transcription factor. For the 
expected values, we calculated the two latter values for each one of the 10,000 permuted 
sets of HVRs (see above). 
 695 
Human GWAS variants associated with metabolic traits overlapping HVRs 
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We obtained from the NHGRI-EBI GWAS catalogue (Welter et al. 2014) the list of SNPs 
associated with obesity and metabolic-related traits in humans (search terms used in Table 
S3). SNPs coordinates were converted from the GRCh38 human assembly to the rat RGSC-700 
3.4 assembly using mapping from GRCh38 to Rno6.0 and then from Rno6.0 to Rno5.0 and 
RGSC-3.4. All conversions used the Ensembl Perl API and the Ensembl assembly converter 
software (v87, Yates et al. 2016). As with other genetic elements analysed, we then used 
permutation tests to determine if there was a significant enrichment of rat orthologous 
positions for these GWAS variants overlapping HVRs. For the observed value, we used the 705 
total number of GWAS variants overlapping HVRs. The expected value was calculated as 
the number of GWAS variants overlapping each one of the 10,000 sets of permuted sets of 
HVRs. 
 
Selection of HVRs according to CEf 710 
 
For downstream analyses, we created seven subsets of HVRs according to the occupancy 
for the three liver-specific transcription factors and their CEf for each on each one of the three 
liver-specific transcription factors (CECEBPA, CEFOXA1 and CEHNF4A): all HVRs; HVRs with at 
least one peak (HVR w/TFBS); HVRs with CEf greater than 0 (i.e. HVRs with at least one 715 
conserved peak), and HVRs with CEf greater than 0.2, 0.4, 0.6, 0.8 respectively (Table S4 
and Table S5 show sizes and number of SSVs of HVR subsets). We analysed each one of 
the subsets of HVRs in a similar way to that used for the full set of HVRs as described 
above. Then, we compared the results obtained in each analysis across the subsets of HVRs 
(Figure 4). Specifically, we analysed the enrichment in HVRs for i) Ensembl genes, ii) gene 720 
annotation from DAVID (UP TISSUE and KEGG PATHWAY databases), iii) differentially 
expressed genes in liver and kidney (Table S1) and iv) rat orthologues of human GWAS 
variants associated with obesity and metabolic-related traits (Tables S3·and S6). 
Additionally, we also tested if the proportion of non-synonymous coding SSVs (NSC-SSVs) 
and synonymous coding SSVs (SC-SSVs) in HVRs differed between the subsets of HVRs. 725 
For this, we estimated the effect of SSVs in HVRs by using the Ensembl Variant Effect 
Predictor (VEP) tool (standalone perl script v2.7 associated with Ensembl v69, McLaren et al. 
2016). We considered in the analyses those NSC-SSVs whose most severe effect was 
‘missense_variant’, ‘stop_gained’ or ‘stop_lost’. 
 730 
Selection of HVRs by the number of liver-specific transcription factors with conserved 
peaks 
 
Three subsets of HVRs were created according to how many liver-specific transcription 
factors had conserved peaks: the ‘HVR 1TF’ subset included HVRs with conserved peaks for 735 
at least one liver-specific factor, the ‘HVR 2TF’ subset had HVRs with conserved peaks for at 
least two factors, and the ‘HVR 3TF’ subset had HVRs with conserved peaks for all three 
liver-specific factors (Figure 5A and Table S8). We compared the functionality among these 
HVRs subsets to test the importance of the number of transcription factors used to define the 
conservation level (Figure 5). We analysed each one of these three subsets of HVRs in a 740 
similar way as used for the full set of HVRs and for the HVRs subsets created with different 
conservation levels as described in the previous section. Specifically, we compared the 
enrichment in HVRs among ‘HVR 1TF’, ‘HVR 2TF’ and ‘HVR 3TF’ subsets for i) Ensembl 
genes, ii) gene annotation from DAVID (liver term of UP_TISSUE database), iii) differentially 
expressed genes in liver and kidney and iv) rat orthologues of human GWAS variants 745 
associated with obesity and metabolic-related traits. 
 
Analyses of SSVs of the selected subsets of HVRs  
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For these analyses, we selected the subset of HVRs that had at least one conserved peak 750 
between rat and mouse strains/species for all three of the liver-specific transcription factors 
(i.e. ‘HVR 3TF’ subset) as they show enrichment for most of the functional elements and 
because of the observed stability of combinatorially bound transcription factors (Stefflova et 
al. 2013). We limited our analysis to the genes that were both expressed in liver of LH or LL 
(FKPM > 1) and associated with coding or non-coding strain-specific variation.  755 
 
Non-synonymous coding SSVs (NSC-SSVs) in the selected subsets of HVRs 
 
We assessed the effect of the SSVs on the protein by using the VEP tool (standalone perl 
script v2.7, McLaren et al. 2016). We considered in the analyses those SSVs classified as 760 
non-synonymous variants and whose most severe effect was ‘missense_variant’, 
‘stop_gained’ or ‘stop_lost’.  
 
SSVs of the selected subsets of HVRs sited in promoters 
 765 
Positions of putative promoters in Rat were obtained from Villar et al. (2015). These authors 
characterised promoters and enhancers by using modifications to histone 3 lysine 27 
(H3K27ac) and histone 3 lysine 4 (H3K4me3). Active promoters are marked by H3K4me3 
and H3K27ac, while active enhancers are regions marked by H3K27ac (Villar et al. 2015). 
Coordinates were converted from the Rnor5.0 assembly to the RGSC-3.4 assembly using 770 
the Ensembl assembly converter software (v80, Yates et al. 2016). Genes were assigned to 
promoters if the gene’s transcription start site (TSS) overlapped or was within 5kb 
downstream of the promoter. Only one-to-one gene-promoter assignations were used for our 
analysis. 
 775 
Association between metabolic diseases and genes 
 
Genes associated with the three metabolic-related symptoms showed by LH and LL strains 
(i.e. insulin resistance, dyslipidaemias and obesity) was obtained from DisGeNET (v4.0, 
Piñero et al. 2015; Piñero et al. 2016). DisGeNET is a platform integrating information on 780 
associations between genes and human diseases from public data sources and literature. 
We analysed those genes expressed in liver and with either the selected NSC-SSV or 
assigned to selected promoters with SSVs. DisGeNET analysis used the human orthologous 
genes of the selected rat genes with homology determined by the Ensembl Perl API (v69, 
Yates et al. 2016). Only the human orthologous genes with rat homology annotated as 785 
‘one2one’ or ‘apparently one2one’ were used. From DisGeNET, we searched for disease 
gene associations using relevant Unified Medical Language System Concept Unique 
Identifiers (UMLS® CUIs, insulin resistance: C0021655, dyslipidaemias: C0242339 and 
obesity: C0028754). We also included two additional diseases not shown by the susceptible 
Lyon strains as controls for our analyses (heart diseases: C0018799 and Alzheimers: 790 
C0002395).  
  
For each of the five diseases, we compared, using Fisher’s exact test, the counts of rat 
genes expressed in liver with NSC-SSVs overlapping the selected subsets of HVRs and 
human orthologues associated with that disease with the total number of rat genes 795 
expressed in liver and human orthologues associated with the disease. A similar comparison 
was done for genes assigned to promoters with SSVs overlapping the selected HVRs. In this 
case, the total number of human orthologues of rat genes expressed in liver was limited to 
those that were one-to-one assigned to promoters.  
 800 
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Figure 1  
 

 
Figure 1.- Procedure to identify genomic regions of interest based on the distribution 
of Strain-Specific Variants (SSV) across the genome. 975 
(A) SSVs were obtained for the pairwise comparisons between the two susceptible Lyon 
strains  (LH or LL) relative to the control Lyon rat (LHvsLN and LLvsLN) and the reference rat 
genome (LHvsBN and LLvsBN).  
(B) Densities of SSVs were calculated in non-overlapping genome windows of 10kbp; we 
applied a smoothing algorithm to these densities (see Methods). 980 
(C) Distribution of the smoothed densities of SSVs obtained from LNvsBN and LLvsBN were 
used to calculate the threshold between HVRs and LVRs. Only those regions with at least 
three consecutive genome windows of the same type were considered.  
(D) HVR and LVR across chr19 for the hypertensive Lyon rat relative to the control Lyon rat 
(LHvsLN); regions showing poor mapping qualities (unmappable) were discarded from our 985 
analyses. 
 
Related Figure:  
Figure S1.- Procedure to identify genomic regions of interest based on the distribution of 
SSV across the genome.  990 
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Figure 2  
 

 995 
Figure 2.- Genome distribution and characteristics of HVRs and SSVs 
(A) Distribution and density across the whole genome of the HVRs obtained for LHvsLN (in 
brown) and LLvsLN (in green) rats. Figure modified from the Ensembl genome browser 
version 69.  
(B) Percentages of the rat genome and the strain-specific variants assigned to HVR, LVR 1000 
and unmappable regions (UNMAP) for LHvsLN and LLvsLN.  
(C) Overlap of HVRs and SSVs for LHvsLN and LLvsLN comparisons. 
 
Related Figures:  
Figure S3.- HVR/LVR approach in LHvsLN. 1005 
Figure S4.- HVR/LVR approach in LLvsLN. 
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Figure 3  

 1010 
Figure 3.- High Variability Regions as functional regions. 
 
(A) HVRs and Ensembl genes (orange) across chr11 for LHvsLN (red) and for LLvsLN 
(green). We tested for significant enrichment of HVRs with several genetic elements using 
permutation tests. We compared the observed values (OV) and the expected values (EV) to 1015 
determine significance. Similar analyses was done for: 
(B) Ensembl annotated rat genes (v69) 
(C) Genes whose expression differed either in liver or in kidney between LH and LN strains, 
and between LL and LN. 
(D) Rat orthologues of human GWAS variants associated with metabolic traits. 1020 
(E) Occupancy in BN rat strain of three liver-specific transcription factors (CEBPA, FOXA1 
and HFN4A) 
 
Related Figures:  
Figure S5.- Gene-annotation enrichment analyses performed with DAVID v6.7 in HVRs 1025 
obtained for the comparison LHvsLN. 
Figure S6.- Gene-annotation enrichment analyses performed with DAVID v6.7 in HVRs 
obtained for the comparison LLvsLN. 
Figure S7.- HVRs and occupancy of the occupancy for three liver-specific transcription 
factors. 1030 
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Figure 4 
 

 1035 
Figure 4-.  Conservation Enrichment (CEf) is correlated with functional enrichment  
 
(A) Genes overlapping HVR subsets. The colour gradient shows the significance obtained 
from the enrichment analyses done in each of the HVR subsets. Bar sizes indicates the total 
number of genes overlapping each subset of HVRs.  1040 
(B) Liver-genes defined by UP_TISSUE annotation. The functional annotation analyses were 
calculated by DAVID 6.7. Colour gradient and bar size defined as above. 
(C) Rat orthologues of human GWAS regions associated with obesity and metabolic traits. 
We excluded HVR subset with CEf>0.6 and CEf>0.8 due to no GWAS variants overlapping 
these HVR subsets. Colour gradient and bar size defined as above. 1045 
(D) Ratio of genes differentially expressed in either liver or kidney, between LH and LN 
strains, and between LL and LN strains (y-axis) for each subset of HVRs. 
(E) Proportion of synonymous coding SSV (SC-SSV) and non-synonymous coding SSVs 
(NSC-SSV) in HVRs for each subset of HVRs. 
 1050 
Related Figures:  
Figure S5.- Gene-annotation enrichment analyses performed with DAVID v6.7 in HVRs 
obtained for the comparison LHvsLN. 
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Figure S6.- Gene-annotation enrichment analyses performed with DAVID v6.7 in HVRs 
obtained for the comparison LLvsLN. 1055 
Figure S8.- HVRs and conservation between rat and mice for the occupancy of three liver-
specific transcription factors. 
Figure S9.- Gene expression and level of conservation between rat and mice for the 
occupancy of the three liver- specific transcription factors. 
 1060 
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Figure 5 
 

 
Figure 5.- Integrating results from the three liver-specific transcription factors 1065 
(A) Venn diagrams of HVRs with at least one conserved binding site between rats and mice 
(HVR subsets with CEf>0) for the three liver-specific transcription factors.  
(B) Ratio of genes differentially expressed in either liver or kidney between LH and LN, and 
between LL and LN calculated for each subset of HVRs is not influenced by the number of 
bound factors. 1070 
(C) Genes overlapping HVR subsets. The colour gradient shows the significance obtained 
from the enrichment analyses. Bar sizes indicates the total number of genes overlapping 
each subset of HVRs.  
(D) Liver-genes according to UP_TISSUE annotation. The functional annotation analyses 
were calculated by DAVID 6.7. Colour gradient and bar size defined as above. 1075 
(E) Rat orthologues of human GWAS SNPs associated with obesity and metabolic traits. 
Colour gradient and bar size defined as above. 
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Figure 6 
 1080 

 
Figure 6.- The genomic region of RGD1562963 (ENSRNOG00000039379) 
Non-synonymous coding SSVs and promoter SSVs linked to RGD1562963 overlapping 
HVRs from the LHvsLN strain comparison are highlighted. Promoter splitting in the inset 
image was due to conversion from the RGSC3.4 coordinate system. Image modified from 1085 
Ensembl genome browser (Rattus norvegicus version 69.34 (RGSC3.4) Chromosome 17: 
29,665,942 - 30,017,536). 
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Table 1 
 1090 

Table 1.- Descriptive statistics for the SSVs and HVRs obtained for the susceptible Lyon rats (LH 
and LL) relative to the resistant Lyon strain (LN).  
Strains Total SSVs SSVs in HVRs HVR counts Total HVRs size 

LHvsLN 413,068 351,459 (85.09%) 2319 232.36 Mb (8.55%) 

LLvsLN  324,932 276,053 (84.96%) 1941 193.06 Mb (7.10%) 
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Table 2 
 

Table 2.-  Number of rat genes and human orthologues expressed in liver of the susceptible Lyon rats (LH or LL) and associated with coding or non-coding 
(promoters) strain-specific variation overlapping the selected subsets of HVRs obtained from the two strain comparisons (i.e. HVR with at least one 
conserved peaks for three liver-specific transcription factors). Numbers of human orthologues with evidenced associations with insulin resistance, 
dyslipidaemias and obesity, are shown between parentheses. 
 

LHvsLN LLvsLN 

  Rat genes Human orthologues Rat genes Human 
orthologues 

Coding Variation 
     Genes with NSC-SSVs 133 111 (1,1,14) 96 78 (0,0,8) 

 Genes with GWAS ¥ and NSC-SSVs 3 2 (0,0,2) 3 3 (0,0,2) 
 Liver-genes§ with NSC-SSVs 15 9 (0,1,4) 10 6 (0,0,1) 
 Dif-liver* genes with NSC-SSVs 14 12 (0,0,0) 17 16 (0,0,1) 
 Dif-kidney* genes with NSC-SSvs 32 25 (0,0,4) 9 7 (0,0,0) 
Promoters  

 
 

 Genes assigned to promoters with SSVs 232 206 (7,3,32) 189 164 (4,4,18) 
 Genes assigned to promoters with GWAS¥ and SSVs 1 1 (0,0,1) 1 1 (0,0,1) 
 Liver-genes§ assigned to promoters with SSVs 35 30 (2,1,9) 26 26 (1,1,4) 
 Dif-liver* assigned to promoters with SSVs 38 33 (1,1,8) 26 26 (1,1,3) 
 Dif-kidney* assigned to promoters with SSVs 52 44 (0,1,7) 13 13 (0,1,1) 
¥ Human GWAS variants associated with Obesity and Metabolic traits in the NHGRI-EBI GWAS catalogue  
§ Genes expressed specifically in liver according to UniProt tissue database and accessed by using DAVID web services. 
* Genes differently expressed in liver or in kidney when comparing the susceptible Lyon rats (LH or LL) with the control Lyon rat (LH). 
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