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Abstract 22 

Motivation: Very low depth sequencing has been proposed as a cost-effective approach to 23 

capture low-frequency and rare variation in complex trait association studies. However, a full 24 

characterisation of the genotype quality and association power for very low depth sequencing 25 

designs is still lacking. 26 

Results: We perform cohort-wide whole genome sequencing (WGS) at low depth in 1,239 27 

individuals (990 at 1x depth and 249 at 4x depth) from an isolated population, and establish 28 

a robust pipeline for calling and imputing very low depth WGS genotypes from standard 29 

bioinformatics tools. Using genotyping chip, whole-exome sequencing (WES, 75x depth) and 30 

high-depth (22x) WGS data in the same samples, we examine in detail the sensitivity of this 31 

approach, and show that imputed 1x WGS recapitulates 95.2% of variants found by imputed 32 

GWAS with an average minor allele concordance of 97% for common and low-frequency 33 

variants. In our study, 1x further allowed the discovery of 140,844 true low-frequency variants 34 

with 73% genotype concordance when compared to high-depth WGS data. Finally, using 35 

association results for 57 quantitative traits, we show that very low depth WGS is an efficient 36 

alternative to imputed GWAS chip designs, allowing the discovery of up to twice as many true 37 

association signals than the classical imputed GWAS design.  38 

Supplementary Data: Supplementary Data are appended to this manuscript. 39 

 40 
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Introduction 42 

The contribution of low-frequency and rare variants to the allelic architecture of complex 43 

traits remains largely unchartered. Power to detect association is central to genetic studies 44 

examining sequence variants across the full allele frequency spectrum. Whole genome 45 

sequencing (WGS)-based association studies hold the promise of probing a larger proportion 46 

of sequence variation compared to imputed genome-wide genotyping arrays. However, 47 

although large-scale high-depth WGS efforts are now underway (Brody, et al., 2017), 48 

comparatively high costs do not yet allow for the generalised transposition of the GWAS 49 

paradigm to high-depth sequencing. As sample size and haplotype diversity are more 50 

important than sequencing depth in determining power for association studies (Alex Buerkle 51 

and Gompert, 2013; Le and Durbin, 2011), low-depth WGS has emerged as an alternative, 52 

cost-efficient approach to capture low-frequency variation in large studies. Improvements in 53 

calling algorithms have enabled robust genotyping using WGS at low depth (4x-8x), leading 54 

to the creation of large haplotype reference panels (1000 Genomes Project Consortium, et 55 

al., 2015; McCarthy, et al., 2016), and to several low-depth WGS-based association studies 56 

(Astle, et al., 2016; Tachmazidou, et al., 2017; UK10K Consortium, et al., 2015). Very low depth 57 

(<2x) sequencing has been proposed as an efficient way to further improve the cost efficiency 58 

of sequencing-based association studies. Simulations have shown that in WES designs, 59 

extremely low sequencing depths (0.1-0.5x) are effective in capturing single-nucleotide 60 

variants (SNVs) in the common (MAF>5%) and low-frequency (MAF 1-5%) categories 61 

compared to imputed GWAS arrays (Pasaniuc, et al., 2012). The CONVERGE consortium 62 

demonstrated the feasibility of such approaches through the first successful case-control 63 

study of major depressive disorder in 4,509 cases and 5,337 controls (Converge Consortium, 64 

2015), and we previously showed that 1x WGS allowed the discovery of replicating burdens 65 
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of low-frequency and rare variants (Gilly, et al., 2016). However, a systematic examination of 66 

genotyping quality from 1x WGS and its implications for power in association studies is 67 

lacking, posing the question of the generalisability of such results in the wider context of next-68 

generation association studies. Here, we perform very low depth (1x), cohort-wide WGS in an 69 

isolated population from Greece, show that imputation tools commonly used with chip data 70 

perform well using 1x WGS,  and establish a detailed quality profile of called variants. We then 71 

demonstrate the advantages of 1x WGS compared to the more traditional imputed GWAS 72 

design both in terms of genotype accuracy and power to detect association signals. 73 

 74 

Results 75 

As part of the Hellenic Isolated Cohorts (HELIC) study, we whole genome sequenced 990 76 

individuals from the Minoan Isolates (HELIC-MANOLIS) cohort at 1x depth, on the Illumina 77 

HiSeq2000 platform. In addition, 249 samples from the MANOLIS cohort were sequenced at 78 

4x depth (Southam, et al., 2017). Imputation-based genotype refinement was performed on 79 

the cohort-wide dataset using a combined reference panel of 10,244 haplotypes from 80 

MANOLIS 4x WGS, the 1000 Genomes (1000 Genomes Project Consortium, et al., 2015) and 81 

UK10K (UK10K Consortium, et al., 2015) projects (Figure 1). 82 
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 92 

Figure 1: Processing pipeline for the MANOLIS 1x data. Tools and parameters for the genotype refinement 93 
and phasing steps were selected after benchmarking nine pipelines involving four different tools (See 94 
Methods). 95 
 96 

Variant calling pipeline 97 

Prior to any imputation-based refinement, our approach allowed the capture of 80% and 98 

100% of low-frequency (MAF 1-5%) and common (MAF>5%) SNVs, respectively, when 99 

compared to variants present on the Illumina OmniExpress and HumanExome chips 100 

genotyped in the same samples. In 10 control samples with high-depth WGS data 101 

downsampled to 1x, joint calling with MANOLIS resulted in pre-imputation false positive and 102 

false negative rates of 12% and 24.6%, respectively (See Methods).  103 

 104 

In order to improve sensitivity and genotype accuracy, we compared nine genotype 105 

refinement and imputation pipelines using tools commonly used for genotyping chip 106 

imputation, using directly typed OmniExpress and ExomeChip genotypes as a benchmark (See 107 

Methods). We used a reference panel containing haplotypes from 4,873 cosmopolitan 108 
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samples from the 1000 Genomes and UK10K projects, as well as the phased haplotypes from 109 

249 MANOLIS samples sequenced at 4x depth. The best-performing pipeline, described in 110 

Figure 1, captures 95% of rare, 99.7% of low-frequency and 99.9% of common variants 111 

present in chip data, with an average minor allele concordance of 97% across the allele 112 

frequency spectrum (see Methods, Figure 2a., Supplementary Figure 1). 79.7% of 1x WGS 113 

variants were found using high-depth WGS at 22x in a subset of the MANOLIS samples 114 

(n=1,225), although this positive predictive value varied across the MAF spectrum, from 8.9% 115 

for singletons to 95.1% for common variants (Figure 2b.). Genotype concordance was similar, 116 

although slightly lower, when compared to the chip variants. Due to the 22x data being 117 

aligned to a different build, we were unable to compute genome-wide false positive rates, 118 

however by comparing 1x calls with those produced by whole-exome sequencing in 5 119 

individuals from the MANOLIS cohort, we estimate a false-positive rate of 2.4% post-120 

imputation in the coding parts of the genome (see Methods).  121 

 122 

  123 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 24, 2018. ; https://doi.org/10.1101/169789doi: bioRxiv preprint 

https://doi.org/10.1101/169789


 7 

  Figure 2: Concordance and call rate for very low depth WGS genotypes. a. Genotype (blue circles) and 124 

minor allele (yellow circles) concordance is computed for 1,239 samples in MANOLIS against merged 125 

OmniExpress and ExomeChip data. Call rate is assessed for the refined (purple) and refined plus imputed 126 

(green) datasets. b. Non-reference allele concordance (green circles) and positive predictive value (PPV) 127 

(fuchsia bars) is computed for 1,225 MANOLIS samples with both 22x WGS and low-depth calls. 128 

 129 

 130 

Comparison of variant call sets with an imputed GWAS 131 

a. 

b. 
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The genotype refinement and imputation step yielded 30,483,136 non-monomorphic SNVs in 132 

1,239 MANOLIS individuals. The number of variants discovered using 1x WGS is nearly twice 133 

as high as that from array-based approaches. In a subset of 982 MANOLIS individuals with 134 

both 1x WGS, OmniExpress and ExomeChip data, we called 25,673,116 non-monomorphic 135 

SNVs using 1x WGS data, compared to 13,078,518 non-monomorphic SNVs in the same 136 

samples with chip data imputed up to the same panel (Southam, et al., 2017) without any 137 

imputation INFO score filtering. The main differences are among rare variants (MAF<1%) 138 

(Figure 3):  13,671,225 (53.2%) variants called in the refined 1x WGS are absent from the 139 

imputed GWAS, 98% of which are rare. 82% of these rare unique SNVs are singletons or 140 

doubletons, and therefore 9.5% of all variants called in the 1x WGS dataset were unique 141 

variants with MAC>2.  142 

 143 

 144 

 145 

Figure 3: Unique variants called by 146 
sequencing and imputed GWAS. Variants 147 
unique to either dataset, arranged by MAF 148 
bin. Both datasets are unfiltered apart from 149 
monomorphics, which are excluded. MAF 150 
categories: rare (MAF<1%), low-frequency 151 
(MAF 1-5%), common (MAF>5%).  152 
 153 

 154 

A crucial question is the proportion of true positives among these additional SNVs not found 155 

by GWAS and imputation. By comparing their positions and alleles with high-depth WGS in 156 

the same samples, we find that the PPV profile for these variants is much lower compared to 157 

when all variants are examined (Figure 4 and Figure 2.b). As expected, PPV is almost zero for 158 

additional singletons and doubletons, and just above 40% for the few additional common 159 
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variants. 62% of low-frequency variants unique to the 1x are true positives, which 160 

corresponds to 140,844 low-frequency variants with high genotyping quality that are missed 161 

by the imputed GWAS. Minor allele concordance is lower than for all variants, with a lower 162 

bound at 55% for rare variants and reaching 73% for novel low-frequency variants. 163 

Figure 4: Positive predictive value of additional variants called in 1x sequencing. 1x variants not found in 164 

the GWAS data, arranged by MAF bin, in raw numbers (top). Green bars count variants recapitulated in the 165 

22x (true positives). The proportion of these over the total (positive predictive value) is displayed in each 166 

bin in the bottom panel. The black line indicates minor allele concordance for true positive variants. The 167 

first category (0-0.1%) contains singletons and doubletons only.  168 

 169 

 170 

 171 
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Comparison of association summary statistics with imputed GWAS 172 

1x WGS calls a larger number of variants and is noisier than imputed GWAS in the same 173 

samples. To evaluate how this difference affects association study power, we performed 174 

genome-wide association of 57 quantitative traits in 1,225 overlapping samples with both 175 

imputed OmniExome and 1x WGS using both sources of genotype data. We then compared 176 

independent suggestively associated signals at p<5x10-7 (Supplementary Table 1). These 177 

signals were then cross-referenced with a larger (n=1,457) study based on 22x WGS on the 178 

same traits in the same cohort(Gilly, et al., 2018). We only considered signals to be true if 179 

they displayed evidence for association  with at most a two order of magnitude attenuation 180 

compared to our suggestive significance threshold (P<5x10-5). According to this metric, 52 of 181 

182 independent signals (28.5%) were true in the imputed GWAS, in contrast to 108 of 462 182 

(23.4%) in the 1x study (Figure 5). With an equal sample size and identically transformed 183 

traits, 1x therefore allowed to discover twice as many independent GWAS signals with almost 184 

identical truth sensitivity. Seven rare and three suggestive low-frequency variant associations 185 

in the 1x WGS data (9.2% of all signals) were driven by a variant not present and without a 186 

tagging SNP at r2>0.8 in the imputed GWAS, whereas the converse is true for only two rare 187 

variants in the imputed GWAS. Among variants called or tagged in the imputed GWAS, 4 rare, 188 

11 low-frequency and 5 common SNV associations detected in the 1x (19% of total) are not 189 

seen associated below that threshold in the imputed GWAS. As expected, there are 190 

significantly fewer (3.8%, P=0.01, one-sided chi-square proportion test) true associations in 191 

the imputed GWAS not recapitulated by the 1x study.  192 

  193 
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 11 

    Figure 5: Association signals in the 1x WGS and imputed GWAS at  p<5x10-7 for 57 quantitative traits 194 
in 1,225 samples. Purple dots represent significant results in the 1x WGS (a.) and imputed GWAS (b.) 195 
analysis. Orange dots, if present, denote the p-value of the same SNP in the other study. Blue dots 196 
represent the association p-value in a larger (n=1,457) association study based on 22x WGS. Signals with a 197 
22x WGS p-value above 5x10-5 were considered as false positives in both studies and excluded from the 198 
plot. Red dashes indicate the minimum p-value among all tagging SNVs in the other dataset (r2>0.8). 199 
Absence of an orange dot and/or a red dash means that the variant was not present and/or no tagging 200 
variant could be found for that signal in the other study.  201 
 202 

 203 

Discussion 204 

a. 

b. 
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In this work, we empirically demonstrate the relative merits of very low depth WGS both in 205 

terms of variant discovery and association study power for complex quantitative traits 206 

compared to GWAS approaches. However, the advantages of 1x WGS have to be weighed 207 

against compute and financial cost considerations. As of summer 2018, 1x WGS on the HiSeq 208 

4000 platform was approximately half of the cost of a dense GWAS array (e.g. Illumina 209 

Infinium Omni 2.5Exome-8 array), the same cost as a sparser chip such as the Illumina 210 

HumanCoreExome array, and half of the cost of WES at 50x depth. By comparison, 30x WGS 211 

was 23 or 15 times more costly depending on the sequencing platform (Illumina HiSeq 4000 212 

or HiSeqX, respectively). The number of variants called by 1x WGS is lower than high-depth 213 

WGS, but is in the same order of magnitude, suggesting comparable disk storage 214 

requirements for variant calls. However, storage of the reads required an average 650Mb per 215 

sample for CRAMs, and 1.3Gb per sample for BAMs.  216 

 217 

Genome-wide refinement and imputation of very low depth WGS generates close to 50 times 218 

more variants than a GWAS chip. The complexity of the imputation and phasing algorithms 219 

used in this study is linear in the number of markers, linear in the number of target samples 220 

and quadratic in the number of reference samples (Browning and Browning, 2016), which 221 

results in a 50-fold increase in total processing time compared to an imputed GWAS study of 222 

equal sample size. In MANOLIS the genome was divided in 13,276 chunks containing equal 223 

number of SNVs, which took an average of 31 hours each to refine and impute. The total 224 

processing time was 47 core-years (see Methods and Supplementary Figure 2). This 225 

parallelisation allowed processing the 1,239 MANOLIS samples in under a month, and as 226 

imputation software continue to grow more efficient (Bycroft, et al., 2017), future pipelines 227 

should greatly simplify postprocessing of very low depth sequencing data.  228 
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 229 

As a proof of principle, we used imputed GWAS, 1x and 22x WGS in overlapping samples from 230 

an isolated population to assess how genotyping quality influences power in association 231 

studies. As we only wanted to study the implications of varying genotype qualities afforded 232 

by different designs on association p-values in a discovery setting, we considered only 233 

suggestively associated signals and did not seek replication in a larger cohorts for the 234 

discovered signals. In our study of 57 quantitative traits, we show that an 1x-based design 235 

allows the discovery of twice as many of the signals suggestively associated in the more 236 

accurate 22x WGS study, compared to the imputed GWAS design. Almost 10% of the 237 

suggestive signals arising in the 1x data are not discoverable in the imputed GWAS, but the 238 

great majority (96%) of imputed GWAS signals is found using the 1x.  239 

 240 

The 1x-based study seems to discover more signals than the imputed GWAS across the MAF 241 

spectrum, and this remains true whether or not the signals are filtered for suggestive 242 

association p-value in the more accurate 22x based study (Supplementary Table 2). At first 243 

glance this suggests 1x WGS has better detection power than the imputed GWAS across the 244 

MAF spectrum, however it is unlikely that this is true for common variants, which are reliably 245 

imputed using chip data. Instead, this phenomenon is likely due to a slightly less accurate 246 

imputation than in the GWAS dataset caused by a noisier raw genotype input (Supplementary 247 

Text). This effect is marginal, as evidenced by genome-wide concordance measures (Figure 2) 248 

which are very high at the common end of the MAF spectrum. However, it is important to 249 

note that this slightly less accurate imputation can attenuate some signals as well as boosting 250 

others. For this reason, we would recommend relaxing the discovery significance threshold in 251 
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1x studies in order to capture those less well imputed, signal-harbouring variants, followed 252 

by rigorous replication in larger cohorts and direct validation of genotypes.  253 

 254 

Our study's intent was to focus on the performance on commonly used general-purpose tools 255 

for low-depth sequencing data in isolates, both for genotype calling (GATK) and imputation 256 

(BEAGLE, IMPUTE). There are ongoing efforts to leverage the specificities of both low-depth 257 

sequencing (Davies, et al., 2016)(https://www.gencove.com) and of isolated populations 258 

(Livne, et al., 2015). The popularity and long-term support of established generic methods is 259 

an advantage when running complex study designs, as has been shown in other isolate studies 260 

(Herzig, et al., 2018). 261 

 262 

We show that very low depth whole-genome sequencing allows the accurate assessment of 263 

most common and low-frequency variants captured by imputed GWAS designs and achieves 264 

denser coverage of the low-frequency and rare end of the allelic spectrum, albeit at an 265 

increased computational cost. This allows very low depth sequencing studies to recapitulate 266 

signals discovered by imputed chip-based efforts, and to discover significantly associated 267 

variants missed by GWAS imputation (Gilly, et al., 2016).  Although cohort-wide high-depth 268 

WGS remains the gold standard for the study of rare and low-frequency variation, very low-269 

depth WGS designs using population-specific haplotypes for imputation remain a viable 270 

alternative when studying populations poorly represented in existing large reference panels. 271 

  272 
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Methods 273 

Cohort details 274 

The HELIC (Hellenic Isolated Cohorts; www.helic.org) MANOLIS (Minoan Isolates) collection 275 

focuses on Anogia and surrounding Mylopotamos villages on the Greek island of Crete. All 276 

individuals were required to have at least one parent from the Mylopotamos area to enter 277 

the study. Recruitment was primarily carried out at the village medical centres. The study 278 

includes biological sample collection for DNA extraction and lab-based blood measurements, 279 

and interview-based questionnaire filling. The phenotypes collected include anthropometric 280 

and biometric measurements, clinical evaluation data, biochemical and haematological 281 

profiles, self-reported medical history, demographic, socioeconomic and lifestyle 282 

information. The study was approved by the Harokopio University Bioethics Committee and 283 

informed consent was obtained from every participant. 284 

 285 

Sequencing  286 

Sequencing and mapping for the 990 MANOLIS samples at 1x depth has been described 287 

previously (Gilly, et al., 2016), as well as for 249 MANOLIS samples at 4x (Southam, et al., 288 

2017), and for 1,457 samples at 22x (Gilly, et al., 2018). For comparison, 5 samples from the 289 

cohort were also whole-exome sequenced at an average depth of 75x. We use a standard 290 

read alignment and variant calling pipeline using samtools(Li, et al., 2009) and 291 

GATK(McKenna, et al., 2010), which is described in detail in the Supplementary Text. 292 

 293 

Variant filtering 294 

Variant quality score recalibration was performed using GATK VQSR v.3.1.1. However, using 295 

the default parameters for the VQSR mixture model yields poor filtering, with a Ti/Tv ratio 296 
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dropoff at 83% percent sensitivity and a Ti/Tv ratio of 1.8 for high-quality tranches 297 

(Supplementary Figure 3.a). We therefore ran exploratory runs of VQSR across a range of 298 

values for the model parameters, using the dropoff point of the transition/transversion 299 

(Ti/Tv) ratio below 2.0 as an indicator of good fit (Supplementary Figure 4). A small number 300 

of configurations outperformed all others, which allowed us to select an optimal set of 301 

parameters. For the chosen set of parameters, false positive rate is estimated at 10%±5% 302 

(Supplementary Figure 3.b). Indels were excluded from the dataset out of concerns for 303 

genotype quality. We found that the version of VQSR, as well as the annotations used to train 304 

the model, had a strong influence on the quality of the recalibration (Supplementary Figure 4 305 

and Supplementary Text). 306 

 307 

Comparison with downsampled whole genomes 308 

For quality control purposes, reads from 17 of the well-characterised Platinum Genomes 309 

sequenced by Illumina at 50x depth (McCarthy, et al., 2016), and downsampled to 1x depth 310 

using samtools (Christopoulos, 1997) were included in the merged BAM file. VQSR-filtered 311 

calls were then compared to the high-confidence call sets made available by Illumina for those 312 

samples. 524,331 of the 4,348,092 non-monomorphic variant sites were not present in the 313 

high-confidence calls, whereas 1,246,403 of the 5,070,164 non-monomorphic high-314 

confidence were not recapitulated in the 1x data. This corresponds to an estimated false 315 

positive rate of 12% and false negative rate of 24.6%. Both unique sets had a much higher 316 

proportion of singletons (corresponding to MAF < 2.9%) than the entire sets (57.9% vs 19.9% 317 

of singletons among 1x calls and 51% vs 18.1% among high-confidence calls), which suggests 318 

that a large fraction of the erroneous sites lies in the low-frequency and rare part of the allelic 319 

spectrum. However, genotype accuracy is poor, to the point where it obscures peculiarities 320 
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in the distribution of allele counts (Supplementary Figure 5). Due to these being present in 321 

the 1000 genomes reference panel, we remove the 17 Platinum Genomes prior to imputation. 322 

 323 

Genotype refinement and imputation 324 

Evaluation of pipelines 325 

The authors of SHAPEIT (Delaneau, et al., 2013) advise to phase whole chromosome when 326 

performing pre-phasing in order to preserve downstream imputation quality.  This approach 327 

is computationally intractable for the 1x datasets, where the smallest chromosomes contain 328 

almost 7 times more variants than the largest chromosomes in a GWAS dataset.  329 

 330 

For benchmarking purposes, we designed 13 genotype refinement pipelines involving Beagle 331 

v4.0 (Browning and Browning, 2007) and SHAPEIT2 (Delaneau, et al., 2013) using a 1000 332 

Genomes phase 1 reference panel, which we evaluated against minor allele concordance. All 333 

pipelines were run using the vr-runner scripts 334 

(https://github.com/VertebrateResequencing/vr-runner). Pipelines involving Beagle with the 335 

use of a reference panel ranked consistently better (Supplementary Figure 1), with a single 336 

run of reference-based refinement using Beagle outperforming all other runs. IMPUTE2 337 

performed worst on its own, whether with or without reference panel; in fact the addition of 338 

a reference panel did not improve genotype quality massively. Phasing with Beagle without 339 

an imputation panel improved genotype quality, before or after IMPUTE2. 340 

 341 

Halving the number of SNVs per refinement chunk (including 500 flanking positions) from the 342 

4,000 recommended by the vr pipelines resulted in only a modest loss of genotype quality in 343 

the rare part of the allelic spectrum (Supplementary Figure 7), while allowing for a twofold 344 
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increase in refinement speed. Genotype quality dropped noticeably for rare variants when 345 

imputation was turned on (Supplementary Figure 7), but remained high for low-frequency 346 

and common ones. A reference-free run of Beagle allowed to phase all positions and remove 347 

genotype missingness with no major impact on quality and a low computational cost. We also 348 

tested thunderVCF (Pollin, et al., 2008) for phasing sites, however, the program took more 349 

than 2 days to run on 5,000 SNV chunks and was abandoned. 350 

 351 

Production pipeline for the MANOLIS cohort 352 

For production, we used a reference panel composed of 10,244 haplotypes from the 1000 353 

Genomes Project Phase 1 (n=1,092), UK10K  (UK10K Consortium, et al., 2015) TwinsUK 354 

(Moayyeri, et al., 2013) and ALSPAC (Golding, et al., 2001) (n=3,781, 7x WGS), and 249 355 

MANOLIS samples sequenced at 4x depth, which has been described before (Southam, et al., 356 

2017). Alleles in the reference panel were matched to the reference allele in the called 357 

dataset. Positions where the alleles differed between the called and reference datasets were 358 

removed from both sources. Indels were filtered out due to poor calling quality.  359 

 360 

The pipeline with best minor allele concordance across the board used Beagle v.4 (Browning 361 

and Browning, 2007) to perform a first round of imputation-based genotype refinement on 362 

1,239 HELIC MANOLIS variant callsets, using the aforementioned reference panel. This was 363 

followed by a second round of reference-free imputation, using the same software.  364 

 365 

 366 

 367 

 368 
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Variant-level QC 369 

Beagle provides two position level imputation metrics, allelic R-squared (AR2) and dosage R-370 

squared (DR2). Both measures are highly correlated (Supplementary Figure 8.a). Values 371 

between 0.3 and 0.8 are typically used for filtering (Browning, 2014). In both 1x datasets 59% 372 

and 91% of imputed variants lie below those two thresholds, respectively. The distribution of 373 

scores does not provide an obvious filtering threshold (Supplementary Figure 8.b) due to its 374 

concavity. Since most imputed variants are rare and R-squared measures are highly correlated 375 

with MAF, filtering by AR2 and DR2 would be similar to imposing a MAF threshold 376 

(Supplementary Figure 8.c and d.). Moreover, due to a technical limitation of the vr-runner 377 

pipelines, imputation quality measures were not available for refined positions at the time of 378 

analysis, only imputed ones. Therefore, we did not apply any prior filter in downstream 379 

analyses. 380 

 381 

Sample QC 382 

Due to the sparseness of the 1x datasets, sample-level QC was performed after imputation. 5 383 

samples were excluded from the MANOLIS 1x cohort following PCA-based ethnicity checks.  384 

 385 

Comparison with WES 386 

A set of high confidence genotypes was generated for the 5 exomes in MANOLIS using filters 387 

for variant quality (QUAL>200), call rate (AN=10, 100%) and depth (250x). These filters were 388 

derived from the respective distributions of quality metrics (Supplementary Figure 9).  389 

When compared to 5 whole-exome sequences from each cohort, imputed 1x calls 390 

recapitulated 77.2% of non-monomorphic, high-quality exome sequencing calls. Concordance 391 

was high, with only 3.5% of the overlapping positions exhibiting some form of allelic 392 
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mismatch. When restricting the analysis to singletons, 9105 (58%) of the 15,626 high-quality 393 

singletons in the 10 exomes were captured, with 21% of the captured positions exhibiting 394 

false positive genotypes (AC>1). To assess false positive call rate, we extracted 1x variants 395 

falling within the 71,627 regions targeted by the Agilent design file for WES in overlapping 396 

samples, and compared them to those present in the unfiltered WES dataset. 103,717 397 

variants were called in these regions from WES sequences, compared to 58,666 non-398 

monomorphic positions in the 1x calls. 1,419 (2.4%) of these positions were unique to the 1x 399 

dataset, indicating a low false-positive rate in exonic regions post-imputation.  400 

 401 

Genetic relatedness matrix 402 

Relatedness was present at high levels in our cohort, with 99.5% of samples having at least 403 

one close relative (estimated  𝜋" > 0.1) and an average number of close relatives of 7.8. In 404 

order to correct for this close kinship typical of isolated cohorts, we calculated a genetic 405 

relatedness matrix using GEMMA (Zhou and Stephens, 2012). Given the isolated nature of the 406 

population and the specificities of the sequencing dataset, we used different variant sets to 407 

calculate kinship coefficients. Using the unfiltered 1x variant dataset produced the lowest 408 

coefficients (Figure 10.a), whereas well-behaved set of common SNVs (Arthur, et al., 2017) 409 

produced the highest, with an average difference of 3.67x10-3. Filtering for MAF lowered the 410 

inferred kinship coefficients. Generally, the more a variant set was sparse and enriched in 411 

common variants, the higher the coefficients were. However, these differences only had a 412 

marginal impact on association statistics, as evidenced by a lambda median statistic 413 

difference of 0.02 between the two most extreme estimates of relatedness when used for a 414 

genome-wide association of triglycerides (Supplementary Figure 10.b). For our association 415 

study, we used LD-pruned 1x variants filtered for MAF<1% and Hardy Weinberg equilibrium 416 
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p<1x10-5 to calculate the relatedness matrix, which translated into 2,848,245 variants for 417 

MANOLIS. 418 

 419 

Single-point association 420 

Pipeline 421 

For association, fifty-seven phenotypes were prepared, with full details of the trait 422 

transformation, filters and exclusions described in Supplementary Table 3. The 423 

‘transformPhenotype’ (https://github.com/wtsi-team144/transformPhenotype) R script was 424 

used to apply a standardised preparation for all phenotypes. Association analysis was 425 

performed on each cohort separately using the linear mixed model implemented in GEMMA 426 

(Zhou and Stephens, 2012) on all variants with minor allele count (MAC) greater than 2 427 

(14,948,665 out of 30,483,158 variants in MANOLIS). We used the aforementioned centered 428 

kinship matrix. GC-corrected p-values from the likelihood ratio test (p_lrt) are reported. 429 

Singletons and doubletons are removed due to overall low minor allele concordance. Signals 430 

were extracted using the peakplotter software (https://github.com/wtsi-431 

team144/peakplotter ) using a window size of 1Mb. 432 

 433 

Data Access 434 

The HELIC genotype and WGS datasets have been deposited to the European Genome-435 

phenome Archive (https://www.ebi.ac.uk/ega/home): EGAD00010000518; 436 

EGAD00010000522; EGAD00010000610; EGAD00001001636, EGAD00001001637. The 437 

peakplotter software is available at https://github.com/wtsi-team144/peakplotter, the 438 

transformPhenotype app can be downloaded at https://github.com/wtsi-439 

team144/transformPhenotype.  440 
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