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Abstract

Long-read sequencing currently provides sequences of several thousand
base pairs. This allows to obtain complete transcripts, which offers an un-
precedented vision of the cellular transcriptome.

However the literature is lacking tools to cluster such data de novo, in
particular for Oxford Nanopore Technologies reads, because of the inher-
ent high error rate compared to short reads.

Our goal is to process reads from whole transcriptome sequencing data ac-
curately and without a reference genome in order to reliably group reads
coming from the same gene. This de novo approach is therefore par-
ticularly suitable for non-model species, but can also serve as a useful
pre-processing step to improve read mapping. Our contribution is both
to propose a new algorithm adapted to clustering of reads by gene and a
practical and free access tool that permits to scale the complete process-
ing of eukaryotic transcriptomes.

We sequenced a mouse RNA sample using the MinION device, this dataset
is used to compare our solution to other algorithms used in the context
of biological clustering. We demonstrate its is better-suited for transcrip-
tomics long reads. When a reference is available thus mapping possible,
we show that it stands as an alternative method that predicts comple-
mentary clusters.

1 INTRODUCTION

Massively parallel cDNA sequencing by Next Generation Sequencing (NGS)
technologies (RNA-seq) has made it possible to take a big step forward in un-
derstanding the transcriptome of cells, by providing access to observations as
diverse as the measurement of gene expression, the identification of alternative
transcript isoforms, or the composition of different RNA populations [1]. The
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main drawback of RNA-seq is that the reads are usually shorter than a full-
length RNA transcript. The growth of accession records in databases recently
burst for transcripts obtained with short reads [2] but a laborious curation is
needed to filter out false positive reconstructed variants that do not have enough
support. Referred to as Third Generation Sequencing, long read sequencing
technologies such as Pacific Biosciences [3] and Oxford Nanopore Technolo-
gies [4] have brought the opportunity to sequence full-length RNA molecules.
In doing so, they relax the previous constraint of transcript reconstruction prior
to study complete RNA transcripts [5]. The size of short reads constitutes
indeed a major limitation in the process of whole transcript reconstitution, be-
cause they may not carry enough information to ensure the recovery of the full
sequence. In addition, tools for de novo assembly of transcripts from short
reads [5, 6] use heuristic approaches that do not guarantee the exact original
transcripts to be retrieved. On the contrary long reads are prone to cover full-
length cDNA or RNA molecules, thus they can inform about the comprehensive
exon combinations present in a dataset. This gain in length is at the cost of
a computationally challenging error rate (quite variable across protocols, up to
more than 15%, although RNA reads generally show lower rates, around 9% or
less [7, 8]).

In the last few years, studies have been increasing on the treatment of long
read data generated via the Oxford Nanopore MinIlON, GridlON or Prome-
thION platforms, for transcriptome and full-length ¢cDNA analysis [4, 9, 10,
11]. International projects have been launched and the WGS nanopore consor-
tium (https://github.com/nanopore-wgs-consortium/NA12878/blob/master/RNA.
md) has for example sequenced the complete human transcriptome using the
MinION and GridION nanopores. Besides Human and microbial sequencing,
this technology has also proved useful for the de novo assembly of a wide vari-
ety of species including for example nematodes [12], plants [13] or fishes [14]. Tt
seems clear that the reduced cost of sequencing and the portable and real-time
nature of the equipment will favour a wide diffusion of this technology in the lab-
oratories compared to the PacBio technology [15] and many authors point out
the world of opportunities offered by nanopores [16]. Variant catalogs and ex-
pression levels start to be extracted from these new resources [17, 18, 19, 20, 21],
and isoform discovery was cited as a major application of nanopore reads by a
recent review [22]. However, the vast majority of these works concern species
with a reference. In this work we propose to support the de novo analysis of
Oxford Nanopore Technologies (ONT) RNA long read sequencing data. We in-
troduce a clustering method that works at the gene level, without the help of a
reference. This enables to retrieve the transcripts expressed by a gene, grouped
in a cluster. Such clustering may be the basis for a more comprehensive study
that aims at describing alternative variants or gene expression patterns.
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1.1 Problem statement

Within a long-read dataset, our goal is to identify for each expressed gene the
associated subset of Third Generation Sequencing reads without mapping them
on a reference. In order to group RNA transcripts from a given gene using these
long and spurious reads, we propose a novel clustering approach. The applica-
tion context of this paper is non-trivial and specific for at least three reasons: 1/
in eukaryotes, it is common that alternative spliced and transcriptional variants
with various exon content (isoforms) occur for a given gene [23]. The issue is
to automatically group alternative transcripts in a same cluster (Figure 1); 2/
long reads currently suffer from difficult indel errors at high rate [7, 8]; 3/ all
genes are not expressed at the same level in the cell [24, 25, 26]. This leads to
an heterogeneous abundance of reads for the different transcripts in presence.
Thus clusters of different sizes including small ones are expected, which is a hur-
dle for most algorithms, including the prevalent methods based on community
detection [27].

Our method starts from a set of long reads and a graph of similarities between
them. It performs an efficient and accurate clustering of the graph nodes to
retrieve each group of gene’s expressed transcripts (detailed in section “MATE-
RIALS AND METHODS”). A second contribution of our work is an implemen-
tation of the clustering algorithm in a tool dubbed CARNAC-LR (Clustering
coefficient-based Acquisition of RNA Communities in Long Reads) inserted
into a pipeline (see section Results). The input of this pipeline is a whole raw
reads dataset, with no prior filter or correction needed. The output is a set of
clusters that groups reads by gene without the help of a reference genome or
transcriptome.

1.2 Background

Early attempts to solve this problem can be traced back to before the age of
NGS: in the NCBI Unigen database [28] Expressed Sequence Tags (ESTs) are
partitioned into clusters that are very likely to represent distinct genes. In fact,
clustering has been the basis for gene indexing in major gene catalogues like
Unigene, HGI, STACK or the TIGR Gene Indices [29, 30]. Moreover this prob-
lem has appeared in many disciplines, taking different forms according to the
application domain. Many works applied to sequence clustering put efforts in
finding the most efficient way to compute similarity but remained quite basic
in their clustering scheme (e.g. CD-HIT [31], SEED [32], Uclust [33], DNA-
CLUST [34]). They essentially tried to avoid by these simple schemes all versus
all pairwise comparison of sequences, that became a major issue with the advent
of NGS and meta-transcriptomics. These approaches and the underlying simi-
larity measures were thought for highly similar sequences, and are also popular
for applications out of the scope of this paper such as clustering OTUs. In the
context of proteins [35], spectral clustering has been shown to provide a mean-
ingful clustering of families. It uses the Blast E-value as a raw distance between
sequences and it integrates all of them to decide with a simple K-means clus-
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tering a global partition of protein sequences. This type of work cannot easily
be extended to the comparison of reads, which are much less structured than
protein sequences. To our knowledge no article has been published so far using
spectral clustering on RNA reads. In the context of RNA, using Sanger reads
then short reads, many approaches used simple single linkage transitive-closure
algorithms (EST clustering such as [36, 37, 38]), i.e. searched for connected
components in a graph of similar sequences. Single linkage clustering is often
used for expression data as two similar sequences are meant to merge their clus-
ters into a single one. A counterpart of simple search for clusters is that it can
easily lead to chimeric clusters, especially because of repetitions.

Thus, more advanced clustering strategies have been developed on graphs, which
use the topological properties of the graph to select relevant classes. Roughly
speaking, resolution strategies can be classified into two trends according to
applications and the community of affiliation: a graph clustering strategy based
on the search for minimal cuts in these graphs and a community finding strategy
based on the search for dense subgraphs. Our own approach aims to combine
the best of both worlds. The first approach generally searches for a partition
into a fixed number of clusters by deleting a minimum number of links that are
supposed to be incorrect in the graph. The second approach frequently uses a
modularity criterion to measure the link density and decide whether overlap-
ping clusters exist, without a priori regarding the number of clusters. Given
that it is difficult to decide on the right number of clusters and to form them
solely on the basis of minimizing potentially erroneous links, the main find-
ings and recent developments are based on the community finding strategy and
we will focus our review on this approach. Modularity measures the difference
between the fraction of edges within a same cluster and the fraction of edges
that would be observed by chance given the degree of each node. In particular
modularity-based partitioning of sequences [39] was applied for discovering pro-
tein homology [40] or repeat sequence clustering [41]. Improved state-of-the-art
methods consider either overlapping communities or hierarchical communities.
A well-established method for overlapping communities is the Clique Percola-
tion Method (CPM) [42]. CPM came with applications such as identification of
protein families [43, 44].

Finally recent works [45] rely on Louvain algorithm [46] that is also based
on modularity and is looking for a hierarchy of clusters, by practicing a multi-
level optimization that merges the clusters initially reduced to one element as
long as the modularity increases. This algorithm is fast because it uses a greedy
strategy and is quite popular for extracting communities from large networks.
However, like the other algorithms based on modularity, it suffers from two
drawbacks: it has difficulty dealing with small clusters and is unstable in that,
depending on the order of application of merges, it can produce very different
solutions that are difficult to compare [47].

Clustering problems applied to the specificity of long reads start to emerge.
Such needs were already of concern in the past long read literature [19, 48] and
are even more acute when a mapping strategy cannot be taken into considera-
tion. We place ourselves in the particular framework of de novo identification.
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While several works based on long read mapping on a reference were proposed,
methodological contributions that would enable to make the most of this promis-
ing data remain rare in particular for non model species. To our knowledge, two
contributions [49, 48] propose respectively to de novo detect alternative vari-
ants and to cluster and detect isoforms in long reads transcriptome datasets.
However these tools highly rely on the property of high accuracy proposed by
Pacific Biosciences Consensus Circular Sequence (CCS) long reads, thus do not
apply to ONT reads. The method we propose is much more robust to noise.

2 MATERIALS AND METHODS

2.1 Input similarity graph

We define a similarity graph as an undirected graph in which nodes are reads
and there is an edge between two nodes if the computed similarity between
these nodes exceeds a fixed threshold. In such a graph, reads from a same gene
are expected to be connected with one another because they are likely to share
exons. In the ideal case, all reads from a gene are connected with one another.
It is therefore a clique. However, the spurious nature of data imposes the use
of heuristics to detect read overlaps.

This, in addition to the presence of genomic repeats leads to the expectation
of a graph with both missing edges (connection missed during the search of
overlapping reads) and spurious edges (wrong connections between unrelated
reads), which motivates the development of tailored clustering methods.

2.2 Clustering long reads
2.2.1 Clustering issue and sketch of the algorithm

Problem formalization In the following, we describe the clustering algo-
rithm that is the main contribution of this paper. Our method makes no as-
sumption on the number of expressed genes (i.e. clusters/communities), nor on
the size distribution of such communities, and it needs no input parameters.
As we want to realize a partition of the graph, there are no intersecting com-
munities (no read belongs to several gene families) and every node belongs to
a community (each read is assigned to a gene). As mentioned previously, the
expected subgraph signature of a gene in the graph of reads is a community,
that is, a cluster of similar reads. Clustering seeks to maximize intra-cluster
similarity and minimize inter-cluster similarity. To measure the density of a
connected component, we use the clustering coefficient (C1Co) [50] rather than
modularity. Indeed, we assume that a gene should be represented by a complete
subgraph (clique) in a perfect similarity graph. The value of ClCo measures
the concentration of triangles in a given subgraph (see section “Selection of
community founding node”), and this coefficient is more directly connected to
the notion of clique than modularity. The paragraph “Results on theoretical
instances” in the Results section clearly demonstrates the advantage of ClCo
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Figure 1: Clustering scenarii. In the case of basal gene expression and al-
ternative events (described below), with the exception of mutually exclusive
transcripts, it is expected that all transcripts of a gene will be grouped together
in a single cluster. Very small exons or very long retained introns (not shown)
can also be limitations according to the mapping tool strategies. In the more
complex case of families of genes, two or more copies of paralogous genes can
express transcripts at the same time. If these transcripts share a common exonic
content and if the gene sequences have not diverged too much (to allow overlap
detection), transcripts from this family of genes are clustered together, despite
coming from different loci. Although this is an algorithmic limitation, it can
be interesting to group these sequences together, as they likely share similar
functions. A like scenario occurs for transcripts sharing genomic repeats (such
as transposable elements).

on this aspect over modularity.

Although we have designed a parameter-free method, its foundation is a prob-
lem depending on two parameters, the number k of clusters and the cutoff 8 on
the ClCo value. Specifically, the original problem is formalized as follows:

Definition 1. A community is a connected component in the graph of similarity
having a clustering coefficient above a fized cutoff 6. An optimal clustering in
k communities is a minimal k-cut, that is, a partition of the graph nodes in k
subsets, that minimizes the total number of edges between two different subsets
(the cut-set).

We assume that the overlap detection procedure (section “First step: com-
puting similarity between long reads”) has good specificity (it does not produce
a lot of false positives). This can be ensured by carefully tuning the parameters
of this procedure. The logic behind the search for a minimum cut in the graph
is that most of the edges of the initial graph should therefore be kept during
clustering. This problem is known to be NP-hard for k£ > 3 [51]. Another source
of complexity is that we don’t know in advance the number of communities, so
we have to guess the value of k. One should thus compute the k-cut for each
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Figure 2: Summary of the algorithm. (a) All CICo and degrees are computed.
Each CiCo value is a cutoff. For a given cutoff, (b) different cutoffs yield
different seed nodes (black stroke) that initiate clusters with their neighbor-
hood (section “Selection of community founding nodes”). (c, ¢’) Boundaries of
each cluster are then refined. Intersection between clusters are solved either
by (c) merging them or by (¢’) splitting (section “Refinement of community
boundaries”). (d) The communities at different cutoffs evolve in different parti-
tions. In the end we keep only the best partition according to our criterion, i.e.
minimizing the cut.

possible value between 1 and the maximum, which is the number of reads. Solv-
ing this problem is not feasible for the large number of reads that have to be
managed. We are thus looking for an approximation of the solution by using an
efficient heuristic approach exploring a restricted space of values for k. Finally,
the second parameter, the cutoff 6, is not known either. The algorithm has thus
to loop over all possible values, that is, all CiCo values for a given connected
component. In practice it is sufficient to sample a restricted space of possible k
values.

Algorithm overview Shortly, our community detection algorithm is com-
posed of two main steps. The first one looks for an upper bound of the number
of clusters k. To this aim, we relax the condition of disjoint communities and
look initially for star subgraphs (a read connected to all reads similar to it) hav-
ing a clustering coefficient above a certain cutoff. This corresponds to detecting
well-connected reads, called seed reads, using C1Co and node degrees (detailed
in section “Selection of community founding nodes”). They form the basis of
communities with their neighborhood.

The main challenge is then to refine the boundaries of each community (sec-
tion “Refinement of community boundaries”) in order to fulfill the partition
condition. During this process, the value of k is progressively refined by possi-
bly merging clusters whose combination produces a better community (greater
ClCo value). The other possibility of refinement is to assign nodes to a commu-
nity and remove them from another. If z edges between a node and its previous
community are removed, the cut size of the partition is increased by z. This
core algorithm is run for different cutoff values to obtain different partitions
that we compare. We keep the partition that is associated to the minimal cut
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(i.e. number of edges removed when computing this partition). The pseudocode
of the implemented algorithm is given in the “Supplementary material”. In the
following, the different steps of the implementation are detailed.

2.2.2 Generation of partitions

In order to generate and compare different partitions for the graph, we define
cutoffs that rule the generation and refinement of communities. The cutoffs can
be seen as the level of connectivity at which a community can be generated
((a,b) steps and (c) merge step in Figure 2). In the basic algorithm, for each
connected component, all C;C, are computed in the first place, and partitions
are built for each non-zero C1Co value as a cutoff. In the end, only one partition
is retained, associated to the minimal cut (step (d) in Figure 2). However we
have reduced the number of possible cutoff values for the sake of scalability (see
section Implementation choices). In the following, each step is described for a
given cutoff value.

2.2.3 Selection of community founding nodes

Let G = (N, &) be an undirected graph of reads. Let n; be a node (read) from
N and N; C N its direct neighborhood. Let deg(n;) be the number of edges

connecting n; to its direct neighbors (similar reads), i.e. deg(n;) = |N;|. For
each node n; € N with degree deg(n;) > 1, we first compute the local clustering
coefficient:

2 H{(nj,nk) € € :nj,ng € N;}|
ClCo; = deg(n;) x (deg(n;) — 1) (1)

Nodes of degree 0 and 1 have a ClCo of 1. This local coefficient represents the
cliqueness of the N; Un; set of nodes. The closer to 1, the more the set of nodes
is inter-connected, which witnesses a group a reads that potentially come from
the same gene. By contrast, the subgraph induced by a node with a CiCo of 0
and its neighbours is a star (i.e. a tree whose leaves are all the neighbours). If
the coefficient is close to 0, the nodes are weakly connected and are unlikely to
come from the same gene. In order to prevent unwanted star patterns we add an
auxiliary condition for nodes to be eligible seeds, described in “Supplementary
Material”. At this point it is possible that two or more communities intersect.

2.2.4 Refinement of community boundaries

Community refinement aims at solving the conflicts of intersecting communities.
Communities intersection happen because of spurious connections in the graph
due to the creation of edges between unrelated reads in the first step.

The intersecting communities are looked up pairwise in order to assign nodes
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of the intersection to only one community. In fact two cases have to be dis-
tinguished. Either the edges between two communities are estimated spurious
and these communities must be seen separated (split, (¢’) step in Figure 2 (the
pseudocode for the split procedure is also given in the “Supplementary mate-
rial”), or the edges have sufficient support and the two communities have to be
merged to obtain the full gene expression (merge, (c) step in Figure 2). In order
to decide between the two, we use again the cliqueness notion. This time we
introduce an aggregated clustering coefficient of the union of two nodes n; and
n;

2 {(nk, ) € € :ng,ng € N; UN; @)

|Nz @] N]| X (‘Nz U N]| — 1)

If the value of ClCo;; is greater than or equal to the current cutoff, we consider
that there is a gain in connectivity when looking at the union of the two commu-
nities and they are merged. In the other case, the nodes of the intersection are
reported to only one of the two communities. We remove the edges connecting
these nodes to one or the other cluster according to which realizes the minimal
cut. In case of ties for the cut, the algorithm uses a second criterion described
in the “Supplementary material”. The global result depends on the order in
which pairs of clusters are compared. This order is carefully designed. First
the communities associated to the two nodes of greatest degree (and secondly
maximal ClCo) are chosen, the intersection is resolved and the first community
is updated. Then, it is compared to the third best community that intersected
it if it exists, and so on until all intersections are solved. This way, we start the
comparison by the most promising communities that combine reliability (they
are well-connected subgraphs) with a high potential of resolution (they likely
are the biggest communities, thus solve intersections for many nodes). On the
contrary, communities associated to small subgraphs and relatively low ClCo
are only resolved afterwards.

ClCOZ‘j =

2.2.5 Complexity and Implementation choices

Our algorithm has a quadratic component to compare sets to get clusters. In
addition, it explores the whole space of clustering coefficients to fix cutoffs. It
results in a time complexity that could theoretically be cubic in the number of
reads at worst, which is incompatible with processing large datasets.

In order to cope with noise in the input graph, we introduce features to sim-
plify the graph (disconnect loosely connected nodes) and to control the space of
research of the possible partitions. In practice these features are also key to re-
duce the complexity of our approach. Our experiments showed that the running
time is reasonable, clustering millions of reads in a few hours. Two key ideas to
obtain this result have been to reduce the number of cutoffs and to disconnect
the articulation points [52] to reduce the size of connected components in the
graph. Details are given in the “Supplementary material”.

Indeed, the most costly phase relies on the treatment of the largest connected
components. In these components, many clustering coefficients values are very
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close and their variation is mainly an effect of noise. Introducing a rounding
factor when computing the ClCo results in a neat decrease in the number of dif-
ferent values observed, which drastically limits the number of iterations required
for the main loop, while providing a very good approximation of the minimal
cut. In addition, an upper bound is set on the number of sampled values (100
by default).

We also chose to disconnect the articulation points of the graph to remove nodes
that can be targeted as potential bridges between two correct clusters. These
are nodes whose removal increases the number of connected components in the
graph. Such nodes can be spotted as problematic as we do not expect a single
read to be the only link between many others. Their detection can be done with
a DFS in linear time for the whole graph.

Our algorithm has been also carefully designed with respect to the features of
long read clustering. To obtain a O(n.log(n)) complexity with respect to the
number n of reads, we have made the following assumption: The degree of each
node is bounded by a constant, i.e. there is a limited number of transcripts that
share similar exons. This ensures that the clustering coefficient of all nodes is
calculated in linear time. The most complex operation is the initial sorting of
nodes, first by decreasing degree value, then by decreasing ClCo value, which
can be achieved in O(n.log(n)). Moreover, since each cluster is initially built on
a seed read (see paragraph Selection of community founding nodes), it intersects
with a bounded number of clusters. Since the loop for making a partition from
overlapping clusters is based on a scan of intersections, it is achieved in linear
time wrt the number of reads.

2.3 Validation procedure
2.3.1 Production of validation material

RNA MinION sequencing c¢DNA were prepared from 4 aliquots (250ng
each) of mouse commercial total RNA (brain, Clontech, Cat# 636601 and
636603), according to the Oxford Nanopore Technologies (UK) protocol “1D
c¢DNA by ligation (SQK-LSK108)”. The data generated by MinION software
(MinKNOWN, Metrichor) were stored and organized using a Hierarchical Data
Format. FASTA reads were extracted from MinlON HDF files using pore-
tools [53]. We obtained 1,256,967 nanopore 1D reads representing around 2Gb
of data with an average size of 1650bp and a N50 of 1885bp.

Mapping to obtain reference clusters for validation We compute “ground
truth” clusters for validation purpose, using a sensitive third-party protocol
based on mapping on a reference. Nanopore reads from the mouse brain tran-
scriptome were aligned to the masked mouse genome assembly (version GRCm38)
using BLAT [54]. For each read, the best matches based on BLAT score (with
an identity percent greater than 90%) were selected. Then, those matches were
realigned on the unmasked version of the genome using Est2genome [55] that
is dedicated on precise spliced-mapping on reference genome. Reads that cor-
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responded to mitochondrial and ribosomal sequences were discarded. Next,
Nanopore reads were clustered according to their genomic positions: two reads
were added in a given cluster if sharing at least 10nt in their exonic regions.
For the whole data experiment, all reads that could be mapped on the reference
were taken into account (501,787). Due to repeats (paralogy, transposable ele-
ments...), some reads were mapped at multiple loci on the reference. When a
given read maps on several loci, such loci are gathered in a single expected clus-
ter (12,596 expected clusters). This means that for instance reads from copies
of paralog genes that have not diverged to much or reads containing a copy of
a transposable elements are expected to be in the same cluster.

2.3.2 Clusters’ goodness assessment metrics

To assess the results, we used recall and precision measures, which are stan-
dard measures to assess the relevance of biological sequence clustering [56].
The recall and precision measures are based on reference clusters obtained
by mapping for this validation. They are computed based on representative
graphs [57]. These measures were already used to assess the relevance of biolog-
ical sequence clustering [56]. Let {C1,...C;}1<i<r be the set of clusters found by
the clustering method tested, where L is the number of predicted clusters. Let
{K1,...K;}1<j<k be the set of “ground truth” clusters, where K the number of
expected clusters. Let R;; be the number of nodes from C; that are in “ground
truth” cluster ;. We compute the recall and the precision such as:

max; (Rij)

1

Recall =

Precision =" (4)

Note that the “ground truth” is not really available and that it is estimated from
mapping results on the reference genome. The recall expresses the mean over all
clusters of the fraction of relevant reads in a result cluster out of the expected
read population of this cluster. It presents to which extent cluster are complete.
The precision expresses the mean over all clusters of the fraction of relevant
reads among the population of a result cluster. It shows the clusters’ purity.
The F-measure is a summary measure computed as the weighted harmonic mean
between precision and recall. Recall and precision are tailored to express the
confidence that can be placed in the method, according to its ability to retrieve
information and to be precise. We complementary assess the closeness of the
computed clusters as compared to mapping approaches. Let X be the reference

11


https://doi.org/10.1101/170035
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/170035; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

partition (set of clusters obtained by mapping), and X’ the partition obtained
using a given clustering method. Then ai; is the number of pairs of nodes that
are placed in a same cluster in Xy and X. agg indicates the number of pairs for
which nodes are placed in different clusters both in Xy and X;. aqg (resp. ap1)
is the number of pairs of nodes placed in the same cluster in the reference X
(resp. X) but in different clusters in X (resp. Xp). Based on those, a metric
such as the Jaccard index shows the match between the reference and computed
partitions: "
11

I (%o, ) ai1 + aio + ao1 ©)
The Jaccard index is between 0 and 1. The closer to 1, the more the set of
clusters computed by a method is close to the “ground truth” set of clusters
predicted.

3 Results

All experiments were run on Linux distribution with 24 Intel Xeon 2.5 GHz
processors, 40 threads and 200 GB RAM available. First we present the tool
we have developed and made available for large scale long-reads clustering. We
demonstrate it performs well on a canonical example on which other clustering
approaches were assessed (section “Results on theoretical instances)”. We com-
pare our approach to well established community detection methods and demon-
strate its relevance on long read application. Then we validate our method’s
results by comparing them with independent clusters obtained by mapping on
a real size dataset. In these two parts (sections “Comparison to state of the art
clustering algorithms” and “Biological relevance”), reads from the brain mouse
transcriptome were used in order to access a “ground truth” via a reference.
Then we show that our approach can offer an alternative to the classical map-
ping approach even when a reference is available.

3.1 CARNAC-LR, a software for long read clustering
3.1.1 Input/Output

We implemented our novel algorithm presented in section “MATERIALS AND
METHODS” in a tool called CARNAC-LR . CARNAC-LR comes with a pipeline.
It starts with the computation of long read similarities by a program called Min-
imap [58] and then produces the clusters using CARNAC-LR. The pipeline’s
input is a FASTA file of reads. The output is a text file with one line per
cluster, each cluster containing the read indexes. Each read is represented by
its index in the original FASTA file during CARNAC-LR computation. Then
each cluster can easily be converted to a FASTA file, where using indexes, each
read’s sequence is retrieved from the original file (a script is proposed for doing
this task).
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3.1.2 First step: computing similarity between long reads

We chose the tool Minimap for its efficiency and its very high level of precision on
ONT and PB [59], among other recent methods that can compute similarity or
overlaps between long reads despite their error rate [60, 61, 62, 63]. To generate
the similarity graph for CARNAC-LR, Minimap version 0.2 was launched with
parameters tuned to improve recall (-Sw2 -L100 -t10). It produces a file of
read overlaps in .paf format.

3.1.3 Second step: clustering

Minimap’s output is converted into a graph of similarity file, where a node repre-
sents a read and an edge a sequence similarity between two reads above a certain
threshold (see [58]). Such graph is then passed to CARNAC-LR that retrieves
and outputs the gene clusters. CARNAC-LR benefits from parallelization. A
thread can be assigned to the treatment of a single connected component, thus
many connected component can be computed in parallel. Further results on
scalability are provided in the “Supplementary material”.

3.2 Method validation

3.2.1 Results on theoretical instances

Fortunato et al. [64] proposed to test the resolution limit of community detection
on a ring of 30 cliques of 5 nodes interconnected through single links. The
Louvain algorithm finds the partition in cliques at the first level of the hierarchy
and build groups of 2 cliques at the second and last level. CARNAC-LR finds
the correct partition in cliques without its articulation node filter. As this
instance was easy to retrieve, we slightly complicated the initial example: we
made the cliques bigger (size 7) and cliques are interconnected through two links
on different nodes (see Figure 3, left). We provide an example of the resolution
achieved by Louvain’s algorithm on this new problem to illustrate its difficulty
(see Figure 3, right). It cannot find the partition in cliques and moreover, the
cliques are not always split at the same place. Contrary to modularity-based
approaches [64, 46] CARNAC-LR successfully reported the 30 expected clusters
of cliques (Figure 4).

3.2.2 Comparison to state of the art clustering algorithms

We show results of state of the art algorithms and compare them to our tool’s
results. For scaling purpose, we chose to perform the benchmark on a sub-
set of 10K reads (10,183 mouse reads within 207 reference clusters determined
by mapping, section “Production of validation material’). Such sampling can
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Figure 3: On the left we provide an example to show how 7-cliques are connected
in our example design. In total, a ring of 30 7-cliques is used. On the right we
illustrate Louvain’s result on this instance. The clusters formed by Louvain are
in red, spanning several cliques.

‘;)i\i

Ceped”
Figure 4: CARNAC-LR result clusters on the ring of 7-cliques. A close-up
on two cliques is shown on the left. Each cluster output by CARNAC-LR is
represented by a green circle. It can be seen that cliques are separated from
each other as our method identifies them as independent clusters.

accentuate the low expression effect in the subset. We have thus checked on
a second 10K sample from chromosome 1 only to also account for highly ex-
pressed genes that results have the same trend than those presented (shown in
“Supplementary material”). We compared CARNAC-LR results to algorithms
we identified as close to the solution we propose. We evaluated four state-of-
the-art methods that were previously applied to similar problems of biological
clustering: single linkage transitive-closure [36, 37, 38], modularity [40, 65, 66],
Clique Percolation Method [43, 44] and Louvain [45, 67]. Results are presented
in Table 3.2.2. Our method has the best precision and the best overall trade-off
between precision and recall as shown by the F-measure. It also has the highest
Jaccard index among all tested approaches. The transitive closure approach
suffers from low precision. The modularity-based approach fails to find good
clusters for this graph, with both low recall and precision. CPM was tested
with values for input parameter k ranging from 3 to 50 (no community found
for greater values). Results are presented for k=5 and k=50 and summarize the
behavior of this approach on our input graph. For low values of k&, CPM outputs
more clusters and has better recall than for high values. However its precision
is globally low. For higher values of k, the results are strongly enhanced but
represent only a small fraction of the input. Louvain’s results are presented for
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Table 1: Comparison with state of the art methods. The benchmark was realized
on a 10K reads dataset from the mouse brain transcriptome. Recall precision
and Jaccard Index are presented (see Equation 5, 3 and 4) to assess for the
goodness of communities detection. CPM5 (resp. CPM50) designates the CPM
algorithm using k = 5 (resp. k = 50).

Recall (%) Precision (%) F-measure (%) | Jaccard index
Transitive closure 75.74 5.614 13.62 7.3E71
Modularity 60.70 71.16 65.51 9.7E2
CPM5 79.00 69.35 73.86 3.5E71
CPM50 49.21 89.92 63.60 7.6E72
Louvain 88.58 14.91 25.53 11573
CARNAC-LR 65.0 98.41 86.62 7.9 E!

the last iteration of their algorithm. We also tested results after the first iter-
ation, with similar trends. Despite showing the best recall, Louvain’s precision
is too low to reach a high F-measure or Jaccard index. As CARNAC-LR is
conceived for general pipelines making the complete analysis of gene variants, it
is important that is does not mix two unrelated genes in a same cluster. Thus
our approach is more conservative than CPM, and it shows comparatively good
results in any case, and furthermore needs no input parameter.

3.2.3 Comparison to other nucleic sequence clustering tools

We have just situated the CARNAC-LR algorithm in relation to existing general
cluster detection methods, but we still have to compare our pipeline to other
tools dedicated to the comparison of nucleic sequences that have been developed
for the same clustering task. We started from one of the most powerful tools
currently available, Starcode [68], which was designed for reads correction and
offers a benchmark that we have adopted of the most widely used clustering
tools. It includes CD-HIT [31], SEED [32] and Rainbow [69]. We emphasize
that none of these tools have been designed to work with ONT reads. Created
before the full development of long reads technology, they have not surprisingly
proved completely ill-suited to clustering these long reads. For this test, we
used the same mouse dataset as in the previous section. The methods stumble
on two data features, the error rate and the length of the sequences. SEED for
instance is designed to create clusters with sequences that differ from at most 3
mismatches, thus finds no clusters. Starcode is not adapted to the size of ONT
sequences and terminates with an error message. We have tried to increase
the maximum size allowed for sequences (initially set at 1024) but the memory
consumed is growing rapidly and reasonable capacities (200GB) are quickly
exceeded. We then tried to perform the calculation by rejecting the longest
reads but as well as SEEDS, Starcode authorizes a limited distance between
pairs of sequences (a maximum Levenshtein distance of 8) which is far too small
for ONT reads, resulting into singleton clusters. Rainbow only accepts paired
reads such as those sequenced in RAD-seq short reads experiments and cannot
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be adapted to our problem. Finally the most flexible tool, CD-HIT, was the
sole to give results. It has been used in its “EST” version. We tested different
values for sequence identity threshold (-c), that can be decreased down to 0.8.
We report only the best result, reached for -c 0.8. It is far below the result
obtained by CARNAC-LR (F-measure up to 41.96% due to low recall, against
86.62% for CARNAC-LR). In addition, our pipeline is substantially faster with
memory consumption in the same range (within a factor of 2). In view of
these results, we added to the benchmark the only other de novo clustering
tool that, to our knowledge, is designed to work with long reads, Tofu [49].
Unfortunately, Tofu highly relies on the specificity of Pacific Bioscience RNA
protocol (Isoseq) sequences, and cannot be run with ONT reads. Incidentally,
the aim of Tofu differs from CARNAC-LR as it is expected to retrieve one
cluster per isoform rather than one cluster per expressed gene. A detailed
summary of this benchmark result is presented in “Supplementary materials”.
Again, another sampling on mouse chromosome 1 was used to perform a second
benchmark that presents same conclusions, as also shown in “Supplementary
material”.

3.3 Biological relevance
3.3.1 Validation on a real size dataset

Clusters goodness In this experiment we demonstrate the quality of de novo
clusters obtained by CARNAC-LR. We used the subset of reads that could be
mapped to the mouse genome reference (501,787 reads) as a way of comparison
to assess the biological relevance of our clusters. CARNAC-LR’s results were
computed using 43GB RAM and 18 minutes.

The mean recall for CARNAC-LR was of 75.38% and the mean precision was
79.62%. In other words, retrieved clusters are 75.38% complete on average,
and an average 79.62% portion of the clusters is composed of unmixed reads
from the same gene. In order to evaluate if our method’s recall and precision is
consistent independently of the genes’ expression levels, we computed expression
bins. For a given gene, we use the number of reads of the “ground truth” cluster
to approximate an expression. Any “ground truth” cluster with 5 or less reads
is placed in the first bin, and so on for 5-10, 10-50 and > 50 reads categories.
Each of the four bin represents quartiles of expression, which means there is an
equal number of clusters in each bin. Figure 5 presents the recalls obtained for
binned expression levels and shows our approach’s recall and precision remain
consistent despite the heterogeneous coverage in reads.

Furthermore, we can deduce from this plot that the numerous rather small
clusters do not bias the presented mean recall and precision as even for big
clusters that are more prone to loose a few reads, (i.e. > 50 expression bin)
these metrics remain high.

Output excerpt Once CARNAC-LR is run, one can extract FASTA files for
each cluster. We selected the sequences contained in a cluster after CARNAC-
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Figure 5: Assessed mean recall and precision of CARNAC-LR+Minimap. They
were computed on mouse reads using clusters found by mapping on a reference
as a “ground truth” (see Equations 3 and 4). Expression bins are computed
from quartiles of expression predicted by mapping and represent the number
of mapped reads by gene. Mean precision and recall over all clusters falling in
theses bins were then calculated.

LR’s pass on the mouse transcriptome. In order to present a visual example of
the output, we used a genome browser to display reads grouped by our approach
(Figure 6). We have selected a cluster of sufficient size to be able to present
a variety of isoforms. It corresponds to a gene for which mapping retrieved
120 reads. In this example, our approach retrieved 93% of the predicted gene’s
reads in while including no unrelated read in the cluster. Two types of missed
reads can be distinguished: 1) A group of black reads that share no genomic
sequence with the majority of the gene’s transcript, because they come from
an intronic region. These reads could not be linked to the others by Minimap,
thus are never clustered with them, as shown in the particular case described in
Figure 1. 2) Two other reads for which local connectivity was not detected by
Minimap were discarded from the cluster. The plot shows different exon usage
in transcripts, which reveals alternative splicing in this cluster. Thus different
alternative isoforms were gathered in a single cluster as expected (see Figure 1).
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Figure 6: Example of CARNAC-LR’s output cluster in mouse. The output of
CARNAC-LR is a text file with one line per cluster, each cluster containing the
read indexes. We selected an example of 112 reads (purple) from a cluster output
by CARNAC-LR. For validation purpose these reads were mapped with BLAST
on an in-house igv [70] version for mouse genome. Reads are spliced-mapped,
bold parts are the mapped sequences from the reads and thin parts represents
the gaps between the different mapped parts of the reads. Despite the staircase
effect observed in the data, this allows to notice that several types of variants
were gathered. They could all be assigned to gene Pip5klc (chr 10:81,293,181-
81,319,812), which shows no false positive was present in this cluster. 8 reads
(black) present in the data are missed in this cluster. The group of 6 black reads
on the left represent intronic sequences and share no sequence similarity with
the others and thus could appear in the same cluster.

3.3.2 Complementary of de novo and reference-based approaches

Intersection and difference with the set of mapping clusters As it does
not rely on any reference information, our approach putatively yields different
results than classical mapping approaches. In this section, to demonstrate the
interest of CARNAC-LR even if a reference is available, we investigate the
differences between the two approaches. We ran it on the full mouse brain
transcriptome dataset (1,256,967 reads). We compared the intersection and
difference of results of our approach and mapping. CARNAC-LR+Minimap
pipeline took less than three hours (using 40 threads). In comparison, the
“ground truth” clusters took 15 days to be computed (using up to 40 threads).
Our approach was able to place 67,422 additional reads that were absent in the
mapping procedure. It resulted into 39,662 clusters. These clusters fall in two
categories (i) common clusters with a mix of reads treated by our approach
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and/or processed by mapping, or (ii) novel clusters that contain reads treated
by our approach or mapping exclusively. Each approach performed differently
on these categories.

Common clusters For category (i), mapping complemented many common
clusters with small amounts of reads left aside by our approach. As some reads
are processed by mapping, a recall and precision can still be calculated us-
ing mapping as ground truth. We computed recall and precision based on the
read fraction of clusters that could be compared with mapping. They are quite
similar compared to the values obtained in the previous section (75.26% and
79.30%). This demonstrates that CARNAC-LR efficiently used the supplemen-
tary connectivity information despite the addition of potentially noisy reads.

Novel clusters Conversely CARNAC-LR shows a better ability to group
reads unprocessed by mapping into novel clusters (Figure 7). CARNAC-LR
output 824 novel clusters (17,189 reads) of category (ii) containing at least 5
reads. In order to evaluate the relevance of these novel clusters, we remapped
reads a posteriori, separately for each cluster, on the reference genome using
a sensible approach (GMAP [71] version 2015-09-29). This operation took ap-
proximately 10 hours (using 4 threads). 19.68% of mapped reads were assigned
to the MT chromosome, then chromosome 11 represented 10.85% of the reads,
and other chromosomes each less than 10% of mapped reads. A third of the
reads were multi-mapped (36.7%). However, on average, for each cluster 98.89%
of the reads shared a common genomic locus. This is consistent with the ex-
pected results of the clustering for reads containing repeats or paralog regions
(Figure 1). Finally, 5.7% of the clusters contained exclusively reads mapped at
a single locus. All of them could be assigned to an annotated gene. Thus even
if a reference was available, our approach was able to retrieve de novo expressed
variants of genes that were completely missed by the mapping.

Correlation of expression levels Another way to look at these results is two
consider the number of reads predicted by each method as the gene’s expression,
and to compare expression levels predicted by our approach and by mapping.
We shown that, despite the previously described differences, they are highly and
linearly correlated, with a Pearson correlation coefficient of 0.80 (Figure 8).

4 DISCUSSION

4.1 CARNAC-LR is well-suited on transcriptome instances

We demonstrated that our approach can compete with the state of the art algo-
rithms to detect communities. On a rather small instance already, state of the
art approaches show at least a lack of precision in comparison to our approach.
We showed that a modularity-based algorithms such as Louvain algorithm are
not well-tailored for this problem, probably because of the heterogeneous size
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Figure 7: Complementarity of CARNAC-LR and mapping approaches. Only
clusters of size > 5 are represented. Mapping complemented common clusters a
with a mean 13 reads per cluster in 90% of clusters. CARNAC-LR’s supply was
tenfold lower with a mean 1,3 read added to 100% of common clusters. On the
other hand, CARNAC-LR retrieved 15 fold more novel cluster than mapping.

distribution of the clusters, and because of overlapping effects due to the re-
peats. Among tested state of the art approaches, only the CPM qualifies for
retrieving clusters in our input graphs. However, by concentrating its results in
a small subset of clusters, it obtains a poor recall and not all its predicted clus-
ters can be trusted. On the other hand our approach shows a good consistency.
We supplemented these results with a comparison with tools extensively used
for clustering nucleic sequences, including developments used for EST clustering
such as CD-HIT EST. We have shown that no published tool is currently capable
of producing quality clusters from ONT RNA reads. We validated CARNAC-
LR’s results using mouse transcriptome ONT reads, showing we can compute
high confidence clusters for many genes. We highlight that the mapping proce-
dure used for producing reference clusters for validation has its own limitations,
thus the “ground truth” we refer to for the sake of clarity is in fact only partial.

4.2 CARNAC-LR can complement mapping approaches
with respect to data with reference

Long reads enable to skip the transcript reconstruction step that is necessary
with short reads, though difficult in particular when it involves assembly. There-
fore, long reads constitute an interesting novel way to obtain reference tran-
scripts. However, only a fraction of long reads are processed by mappers and
downstream analysis is made difficult because of the error rates. In this con-
text, our approach is shown to be an alternative approach to mapping for the
identification of genes’ transcripts. We have shown that our pipeline could be
a complementary procedure when reads can be mapped to a reference. Thus it
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Figure 8: Comparison of clustering and mapping approaches. Comparison and
correlation of expressions levels. Gene’s expression can be inferred by counting
the number of reads by gene. For each gene we counted the number of reads
retrieved by mapping and we compared it to the number of reads reported by
our pipeline and validated by mapping. We computed the Pearson correlation
coefficient between the two (in green). Density is the number of points counted
in a colored region. Despite a few outliers, we can see a strong linear correlation
between the two expression levels estimations (plotted in black). 7 outliers
above 750 on Y axis (up to 3327) are not shown.

tends to recover some clusters missed by mapping and allows a more efficient
use of data. We have demonstrated a straightforward use case of our pipeline as
a good proxy to access the expression levels by gene. ONT sequences have been
shown to qualify for transcript quantification in [9]. In a long read sequencing
experiment, it is likely that some reads contain too many errors to be mapped
on a genome. CARNAC-LR can help identifying the origin gene of such reads, if
they are put in cluster with other mapped reads. Moreover CARNAC-LR pro-
vides structured information that can be a sound input to other applications.
For instance, a read correction step can be performed on each cluster instead of
processing the whole data, in order to obtain high quality reference transcripts.
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4.3 CARNAC-LR applies on non model species and ONT
data

Non model species require de novo approaches, and two bioinformatics tools ded-
icated to them have emerged so far [49, 48]. Both comprise a pipeline conceived
to process Pacific Biosciences Isoseq [3] reads only and require high quality long
reads. Thus they could not be used on the data presented here. On the other
hand CARNAC-LR is a generic approach that is designed to be used regardless
of Third Generation Sequencing error profile and protocol. As a consequence it
is the first method to perform de novo clustering on RNA reads from ONT.

4.4 Paralogy and repeats

The clustering of sequences from transcriptome reads is made difficult by the
existence of multiple repeats. This first attempt to cluster RNA reads by gene is
not designed to precisely assign reads from paralog genes to their original locus.
We argue that particular instances such as paralog genes constitute research
themes on their own and the clustering provides first-approximation results in
these cases. We can think of a second clustering pass with the development of
an adapted similarity calculation. CARNAC-LR gathers all reads from a gene
family together, provided the different copies have not diverged too much and
can thus be seen as a useful pre-processing step for the analysis of paralogs. A
related research axis would be to describe how repeats like transposable elements
that can be found in exons or retained introns are treated by the clustering
procedure.

5 Conclusion

We propose a method designed for clustering long reads obtained from tran-
scriptome sequencing in groups of expressed genes. New algorithmic challenge
arises of the combination of a high error rate in data [7, 8|, a high heterogene-
ity of coverage typical from expression data and an important volume of data.
To this extent our question differs from EST clustering problems for instance.
We demonstrated our method’s relevance for this application, in comparison
to literature approaches. It takes reads early after their generation, without
correction or filter. From the clusters, the expressed variants of each gene are
obtained and related transcripts are identified, even when no reference is avail-
able. To make our solution practical for users, we provide an implementation
called CARNAC-LR that, combined to Minimap, scales and is able to process
quickly real data instances, as demonstrated by the processing of the whole
mouse brain transcriptome.

As a consequence of the quick evolution of TGS, the sequencing field is fre-
quently upgraded with new types of sequences. or instance, recent long read
technology ONT RNA-direct could unlock amplification biases issues in RNA
sequencing and thus is promising for gene expression studies (see Garalde et
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al., Highly parallel direct RNA sequencing on an array of nanopores, bioRziv,
2016). But it shows higher error rates, at least comparatively to reads presented
in this study, according to unpublished works. By proposing a generic tool that
is tailored to these technologies, we wish to promote and encourage a broader
use of long reads for transcriptome analysis.

Data availability and Implementation CARNAC-LR is written in C++,
open source and available for Linux systems at github.com/kamimrcht/CARNAC-LR
under the Affero GPL license.

The nanopore reads from the mouse RNA sample are available from the ENA
repository under the following study : ERP107503.
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