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Asymmetric localization of mRNAs is a mechanism that constrains protein 

synthesis to subcellular compartments. In neurons, mRNA transcripts are 

transported to both dendrites and axons where they are rapidly translated in 

response to extracellular stimuli. To characterize the 3’UTR isoforms localized in 

axons and cell bodies of sympathetic neurons we performed 3’end-RNA 

sequencing. We discovered that isoforms transported to axons had significantly 

longer 3’UTRs compared to cell bodies. Moreover, more than 100 short 3’UTR 

isoforms were uniquely expressed in axons. Analysis of the long 3’UTR of IMPA1 

indicated that a multiprotein complex including Upf1, HuD and Ago2 mediated 

3’UTR cleavage. This event enhanced IMPA1 translation and was necessary for 

maintaining axon integrity. 3’UTR cleavage took place in axons and was not limited 

to IMPA1 but extended to other transcripts with similar expression patterns. We 

conclude that the 3’UTR of neuronal transcripts undergo post-transcriptional 

remodelling and describe an alternative mechanism that regulates local protein 

synthesis 
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HIGHLIGHTS 

• 3’end-Seq reveals distinct expression of alternative 3’UTR isoforms in axons and cell 

bodies of sympathetic neurons. 

• Short 3’UTR isoforms uniquely detected in axons are generated in situ by cleavage of 

longer precursors. 

• A protein complex containing Upf1, HuD, Pabpc4 and Ago2 mediates the cleavage of 

3’UTRs. 
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INTRODUCTION 

Neurons are cells with a complex morphology, which maintain their cellular structure 

through the compartmentalized expression of proteins essential for growth and plasticity. 

Asymmetric localization of RNA is an evolutionarily conserved mechanism that allows 

spatial restriction of protein synthesis to specific cellular compartments. Incorrect 

processing and delivery of mRNA causes developmental defects and severe human 

neurological disorders (Holt and Schuman, 2013; Wang et al., 2007). Eukaryotic mRNAs 

share common features that include exons and introns, 5’ and 3’ untranslated regions 

(UTRs), a modified base at the 5’ end named “cap”, and a stretch of adenosines at the 3’ 

end named poly(A) tail, which confers stability to the transcript preventing premature 

degradation and enables its translation. The information necessary for RNA processing 

can be stored anywhere along the transcript, however most elements that regulate mRNA 

transport and translation are found within the 3’ and 5’UTRs. 3’UTRs regulate multiple 

aspects of mRNA metabolism, including nuclear export, cytoplasmic localization, 

translational efficiency and mRNA stability, while the 5’UTR is primarily involved in 

controlling mRNA translation (Andreassi and Riccio, 2009; Hinnebusch et al., 2016). 

During neuronal development, transcripts are transported to both dendrites and axons, 

where they are rapidly translated in response to external cues (Holt and Schuman, 2013; 

Martin and Ephrussi, 2009). A number of studies have shown that stimulus-induced axonal 

translation of mRNAs is necessary for axon growth, axon steering and regeneration 

(Baleriola et al., 2014; Ben-Yaakov et al., 2012; Colak et al., 2013; Leung et al., 2006; 

Shigeoka et al., 2016; Yao et al., 2006). In sympathetic and sensory neurons for example, 

hundreds of transcripts are targeted to axons in response to Nerve Growth factor (NGF), 

which is necessary for both neuronal survival and differentiation (Andreassi et al., 2010; 

Willis et al., 2005). A localization element was first identified within the 3’UTR of b-actin 

and was named “zipcode” because it was necessary for delivering b-actin mRNA to the 
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leading lamellae of fibroblasts and to dendrites (Eom et al., 2003; Kislauskis et al., 1994). 

Following this seminal discovery, many localization elements have been found within the 

3’UTRs of transcripts transported to both dendrites and axons. In sympathetic neurons, a 

localization element within the 3’UTR is necessary and sufficient to target the IMPA1 

transcript to axons in response to NGF (Andreassi et al., 2010). Similarly, a 3’UTR variant 

of importin-b1 is responsible for axonal targeting of the transcript and for activating the 

injury response in adult sensory neurons (Perry et al., 2012). In hippocampal neurons, 

isoforms of the BDNF transcript with either short or long 3’UTRs are localized to dendrites 

in response to extracellular cues (Allen et al., 2013; An et al., 2008; Will et al., 2013). 

3’UTRs recruit RNA binding proteins (RBPs) through sequence-specific interactions, 

thereby generating multi-protein complexes with flexible functions (Singh et al., 2015). 

RBP complexes are assembled on the nascent mRNA, but along the way they change in 

composition to add proteins that mediate mRNA splicing, nuclear export and localization. 

Interestingly, RBPs may serve as molecular hubs that regulate axonal trafficking and local 

synthesis of functionally related mRNAs. The Splicing Factor Poly-Glutamine rich (SFPQ) 

protein for example, recognises a localization element present in a number of 3’UTRs that 

allows the coordinated transport of transcripts to sensory and motor neuron axons (Cosker 

et al., 2016) (Thomas-Jinu et al., 2017). Despite these recent findings however, the role 

of 3’UTRs in regulating mRNA metabolism remains largely unknown. 

We performed 3’end sequencing of mRNA isolated from either cell bodies or axons of 

sympathetic neurons and found that thousands of 3’UTR isoforms are expressed in axons. 

Interestingly, over 100 shorter 3’UTR isoforms were either highly enriched or uniquely 

detected in axons, suggesting that they are not transported from the cell bodies and may 

have been generated in situ. Analysis of IMPA1 transcripts, which are expressed in axons 

and encode a protein essential for maintaining axonal integrity (Andreassi et al., 2010), 

confirmed that an isoform bearing a short 3’UTR (IMPA1-SS) could not be targeted to 
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axons and was generated in situ by 3’UTR cleavage of the longer isoform IMPA1-L. 

IMPA1-SS is polyadenylated and efficiently translated, underscoring the critical role of 

3’UTR remodelling in enhancing protein synthesis. Cleavage of IMPA1-L 3’UTR was 

mediated by a multi protein complex that includes the RNA helicase Upf1, the RNA binding 

protein HuD and Ago2, the binding partner of short interfering and other small RNAs. A 

handful of recent studies demonstrated distinct expression patterns of 3’UTRs and coding 

sequences for thousands of neuronal (Kocabas et al., 2015) and non neuronal (Mercer et 

al., 2011) genes. Because 3’UTRs do not originate from independent transcriptional 

events (Mercer et al., 2011), it has been suggested that a yet unknown mechanism 

mediating the remodelling of 3’UTRs may occur post-transcriptionally. Here, we provide 

evidence that cleavage of 3’UTRs takes place in sympathetic neuron axons and 

demonstrate the impact of 3’UTR remodelling on local protein synthesis and in maintaining 

axon integrity. 
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RESULTS 

3’end-RNASeq of transcripts in axons and cell bodies of sympathetic neurons 

To characterize the 3’UTRs of transcripts localized in cell bodies or axons of rat 

sympathetic neurons, we performed stranded 3’end-RNASeq using mRNA isolated from 

neurons grown in compartmentalized chambers (Figure S1A). In this model system, distal 

axons are separated from the cell bodies by a 1 mm wide Teflon divider, allowing the 

isolation of mRNA from distinct cellular compartments. Prior to sequencing, mRNA was 

subjected to two rounds of linear amplification (Figure S1B) that generated anti-sense 

RNA. Although the samples were not suitable for conventional poly(A) sequencing, the 

linear amplification led to the accumulation of reads at the 3’ end of transcripts (Figure 

S1C), generating a read coverage profile similar to Poly(A)-Seq (Shepard et al., 2011). 

Because at least 65% of the reads accumulated in the last 500 nts of 3’UTRs irrespective 

of the transcript length, reads in these regions were used to measure 3’UTR isoform usage 

(Figure 1A and Figure S1C). The rat genome is poorly annotated compared with the 

mouse and human genomes, therefore RNA-Seq data were used to identify novel isoforms 

by re-annotating the 3’ ends to the Ensembl Rn5 database (v78). A segmentation 

algorithm was used to recognise regions of continuous coverage, which are expected to 

coincide with genuine alternative 3’UTRs (Figure 1B). Using this method, we identified 

26,468 new 3’UTR isoforms in addition to existing Ensembl annotations, and extended the 

3’UTR length for 7,506 transcripts (Figure 1C and Figure S1D). The reliability of these 

annotations was assessed by checking them against a comprehensive polyadenylation 

atlas compiled from a variety of independent sources, which include a) known 3’ end 

termini from RefSeq (Rn5 and Rn6) and Ensembl (Rn6), b) previously reported polyA sites 

from PolyA-DB2 (Lee et al., 2007) and APADB (Muller et al., 2014) , and c) PAS obtained 

from 3’-Seq data obtained from rat and human samples (Derti et al., 2012; Gruber et al., 

2016). Up to nearly 70% of newly identified 3’ ends in our dataset were found within 100 
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nts distance of annotations in these resources, demonstrating the suitability of our 

approach (Figure 1D and Figure S1E-G). Over 80% of previously annotated transcripts 

and around 67% of the extended 3’UTRs contained a PAS within 150 nts of the 3’end, 

with non-canonical PAS motifs being most frequently used. Longer isoforms showed a 

higher frequency of non-canonical PAS motifs such as AAGAAA and GATAAA (Figure 

1E and 1F). Greater enrichment of predicted PASs was observed with increasing 3’UTR 

length, suggesting that transcripts bearing longer 3’UTRs are more likely to generate 

multiple isoforms (Figure 1G). To further confirm that re-annotated transcripts were 

genuinely expressed isoforms, 3’ rapid amplification of complementary DNA end (3’RACE) 

was performed for the actin beta, stathmin 2 and Cofilin1 transcripts. For all transcripts 

analysed the 3’RACE isoforms matched the 3’ ends identified by the screen (Figure 1H 

and 1I). Based on these findings, we concluded that 3’end-RNASeq combined with in silico 

extension of 3’UTRs reliably allows the comprehensive identification of expressed 3’UTR 

isoforms. 

Unique distribution of 3’UTR isoforms in axons and cell bodies 

Distinct 3’UTRs are generated by alternative polyadenylation of the nascent mRNA, 

and the choice of poly(A) site is governed by tissue- and developmental stage-restricted 

factors (Lianoglou et al., 2013). To investigate whether specific 3’UTR isoforms were 

localized in axons or cell bodies, transcripts were divided into two categories, those 

present solely in cell bodies, or those present also in axons. Using this method 9,378 

3’UTR isoforms associated with 6,410 transcripts, were located in axons (Figure 2A and 

S2A and B). Gene Ontology (GO) analysis of genes transcribing axonal mRNAs showed 

enrichment of terms related to neurotrophin signalling, protein trafficking and neuronal 

projections, whereas genes related to nuclear functions were overrepresented in the cell 

bodies (Figure 2A). Moreover, transcripts localised in axons contained remarkably longer 

3’UTRs, when compared to transcripts restricted to cell bodies (Figure 2B). A larger 
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percentage of axonal transcripts presented multiple 3’UTR isoforms compared to cell 

bodies, with many transcripts showing three or more alternative 3’UTR isoforms (Figure 

2C). Thus, axonal transcripts bear longer 3’UTRs and undergo a more complex regulation 

through alternative polyadenylation than cell body transcripts. Moreover, the inclusion of 

alternatively spliced last exons (ALE) has been recently shown to be over-represented in 

transcripts localized in neurite-like protrusions and identified by conventional RNA-Seq 

(Taliaferro et al., 2016). 

Among transcripts with multiple isoforms, we compared the relative usage of promoter-

proximal and promoter-distal poly(A) sites (Tian and Manley, 2013) between cell bodies 

and axons. Transcripts containing two or more 3’UTRs isoforms were considered for 

further analysis (4,191 tandem pairs of 3’UTR isoforms, Figure 2D and Figure S2C) and 

the difference in log2 proximal-to-distal expression ratios of 3’UTR isoforms between cell 

bodies and axons was calculated. A difference below -1 (FDR<0.01, Fisher count test) 

indicated a distal shift of poly(A) usage in axons, compared with cell body. We found 737 

isoforms (17.7% of tandem 3’UTR isoforms) that displayed increased usage of distal 

3’UTR isoforms in axons (Figure 2D, dark blue dots). Conversely, differences above 1 

(FDR<0.01, Fisher count test) indicated a proximal shift of poly(A) usage in axons. Using 

these criteria, 689 shorter 3’UTR isoforms (16.5% of tandem isoforms) were found to be 

preferentially expressed in axons (Figure 2D, light blue dots). GO functional analysis 

revealed that terms associated with axon growth and energy and protein metabolisms 

were statistically overrepresented among axonal transcripts with shorter 3’UTRs, whereas 

terms associated with more general biological pathways, such as intracellular signalling, 

were enriched among axonal transcripts with longer 3’UTRs (Figure 2E). 

Interestingly, by applying a thresholding method (see Figure 2D legend and Methods 

for details) a subset of transcripts displayed extreme differences in isoform usage: 63 

transcripts with longer 3’UTR isoforms and 128 with shorter 3’UTR isoforms were either 
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uniquely detected or very highly expressed in axons (Figure 2D, inset). Lack of detection 

of some short isoforms in cell bodies may be due to the fact that they are generated co-

transcriptionally by alternative polyadenylation and rapidly transported to axons. An 

alternative explanation however is that at least in some cases, long 3’UTRs are subjected 

to local remodelling in axons, which results in their cleavage and shortening. Examples of 

transcripts with strikingly distinct poly(A) usage in cell bodies or axons are shown in Figure 

2F and 2G, and in Figure S2D and S2E. 

A short 3’UTR isoform of IMPA1 is present only in axons 

The finding that a number of shorter 3’UTR isoforms were detected solely in axons 

prompted us to investigate whether they may be the result of local remodelling. We 

previously discovered that IMPA1 transcript is expressed in sympathetic neuron axons 

and that local translation is necessary for maintaining axon integrity (Andreassi et al., 

2010). 3’end-RNASeq of IMPA1 transcripts identified the previously known 3’UTR 

isoforms IMPA1-S (1128 nts), IMPA1-L (bearing an additional 120 nts sequence, 1248 

nts) and a new isoform with a much shorter 3’UTR (IMPA1-SS, 582 nts) that was enriched 

in axons (Figure 3A). 3’ RACE using mRNA isolated from cell bodies or distal axons of 

sympathetic neurons grown in compartmentalized chambers confirmed that IMPA1-SS 

was found only in axons (Figure 3B). The apparent discrepancy between RACE and the 

more sensitive 3’end-RNA Seq is possibly due to the fact that the cell bodies compartment 

also includes proximal axons, which may explain the detection of IMPA1-SS, albeit at 

much lower levels than in distal axons by 3’end RNA-seq. It should also be noted that the 

extended annotation did not allow a clear distinction between isoforms generated by the 

usage of PAS located at a distance shorter than 500 nts, making it impossible to 

distinguish IMPA1-S from IMPA1-L. Northern blot analysis of mRNA isolated from 

sympathetic neurons and PC12 cells confirmed that at least four isoforms of IMPA1 are 
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present in both cell types, including IMPA1-L, IMPA1-S, IMPA1-SS and a shorter isoform 

(IMPA1-N) detected also by the 3’end-RNASeq (Figure 3C). 

To test whether IMPA1-SS 3’UTR was transported to axons, we generated vectors 

containing a modified green fluorescent protein (myrdEGFP) and a sequence encoding 

the super-short IMPA1 3’UTR (MyrdEGFP-IMPA1-SS). MyrdEGFP is a myristoylated, 

destabilized form of GFP that is rapidly inserted in the plasma membrane upon translation, 

preventing the intracellular diffusion of the protein (Aakalu et al., 2001). Because of the 

short half-life (ca. 2 hours), myrdEGFP provides a reliable readout of mRNA transport and 

local translation. As a control, we used myrdEGFP-IMPA1-L, which is efficiently targeted 

to axons (Andreassi et al., 2010). Both myrdEGFP-IMPA1-SS and myrdEGFP-IMPA1-L 

were expressed at similar levels when transfected in PC12 cells (Figure S3A and B). 

Sympathetic neurons were electroporated with the indicated vectors and GFP protein was 

visualized by performing GFP immunostaining (Figure 3D). As previously shown when 

axons of sympathetic neurons were electroporated with myrdGFP-IMPA1-L the GFP 

signal was clearly detected up to 1600µm away from the cell bodies. In contrast, 

myrdGFP-IMPA1-SS was restricted to cell bodies and proximal axons (Figure 3D), 

indicating that IMPA1-SS 3’UTR is incapable of targeting the transcript to distal axons and 

growth cones as it lacks the 120 nts localization sequence present in IMPA1-L (Andreassi 

et al., 2010). 

IMPA1 3’UTR is remodelled and polyadenylated in axons 

Because IMPA1-SS cannot be transported to distal axons, we reasoned that it may 

derive from the cleavage of IMPA1-L 3’UTR. To test this hypothesis, we generated DNA 

vectors containing the coding region of the firefly gene and the 3’UTR of either IMPA1-L, 

IMPA1-SS or IMPA1-L mutated at the two proximal poly(A) sites (firefly-IMPA1-

L D poly(A)). When PC12 cells were transfected with firefly-IMPA1-SS a band of the 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2017. ; https://doi.org/10.1101/170100doi: bioRxiv preprint 

https://doi.org/10.1101/170100
http://creativecommons.org/licenses/by-nd/4.0/


	 12	

expected size (2.3 Kb) was observed. However, when firefly-IMPA1-L was transduced into 

PC12 cells, two transcripts were detected, one of the expected size of firefly-IMPA1-L (2.9 

Kb) and a second that co-migrated with firefly-IMPA1-SS (Figure 4A). The ratio between 

IMPA1-SS and IMPA1-L isoforms decreased remarkably when cells were transfected with 

firefly-IMPA1-LD poly(A), indicating that mutation of IMPA1-SS poly(A) site inhibited the 

shortening of IMPA1-L. To rule out the possibility that the shortening of firefly-IMPA1-L 

observed in PC12 cells was due to nuclear alternative PAS choice, sympathetic ganglia 

explants were cultured in vitro for 10 days, then cell bodies were surgically removed and 

axons were exposed to cordycepin (2.5µM for 2.5 hours) (Figure 4B). Cordycepin is an 

analogue of adenosine that when incorporated in the poly(A) tail, induces synthesis 

termination due to the absence of a 3’ hydroxyl moiety (Chen et al., 2008). Axons were 

exposed to cordycepin or left untreated, and IMPA1-L mRNA was measured by reverse 

transcription followed by quantitative PCR (RT-qPCR). Blocking of polyadenylation in 

severed axons resulted in a remarkable accumulation of IMPA1-L, probably due to 

decreased remodelling of IMPA1-L (Figure 4C). 

Most 3’UTRs are polyadenylated co-transcriptionally in a two-step process that couples 

pre-mRNA cleavage with the synthesis of a poly(A) tail formed of 200 to 300 adenosine 

residues (Proudfoot, 2011). The length of the poly(A) tail correlates with stability and 

translational efficiency and is dynamically modulated by adenylation and deadenylation 

complexes present both in the nucleus and the cytoplasm (Jalkanen et al., 2014). To 

assess whether IMPA1-SS was efficiently polyadenylated, mRNA was isolated from PC12 

cells and subject to Tag addition and poly(A) test (TA-PAT) (di Penta et al., 2009). A 

tagged oligo(d)T primer was used in combination with a forward primer that specifically 

annealead to the most 3’ end region of IMPA1 shared by all isoforms. Amplification of 

IMPA1 poly(A) tail resulted in two distinct bands, one with a size compatible with IMPA1-
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L 3’UTR (813 nts) and a second of the expected size of IMPA1-SS 3’UTR (147 nts) + 

polyA tail (Figure 4D). The IMPA1-SS band was remarkably broader than that of IMPA1-

L because oligo(d)T primers annealed to multiple regions of the poly(A) sequence, 

indicating a longer poly(A) tail. 

Endonucleolytic cleavage of IMPA1 3’UTR in axons 

To explore the hypothesis that IMPA1-L remodelling in axons generates cleaved 3’UTR 

fragments, we performed 5’P-dependent RNA oligo-Mediated Ligation RT-PCR (RML RT-

PCR). In this assay, the 5’ phosphorylated ends of RNA fragments are ligated to a 

synthetic RNA tag and subject to random hexamer reverse transcription. Cleaved 

fragments are PCR amplified using primers matching the RNA tag and a region of IMPA1-

L 3’UTR, cloned and sequenced (Figure 5A). 5’P-dependent RNA oligo-Mediated Ligation 

of mRNA isolated from severed axons (Figure 5B) revealed that most clones (18/20, or 

90%) contained an insert amplified from the cleaved 3’UTR of IMPA1-L. Remarkably, 

fragments were very homogenous in size and mapped to 17nts located downstream of 

the predicted cleavage site (expected size of the insert 294bps, average length 267.4±45.2, 

5’end located ]-44,+172[nts from the putative cleavage site) (Figure 5B, upper and lower 

panel). A similar result was observed when RNA was purified from total sympathetic 

neurons cultures (Figure 5C, upper panel). In addition to IMPA1, cleaved fragments for 

Sms and Maoa, which are two transcripts also showing a marked shift toward proximal 

poly(A) site usage in axons, were easily detected (Maoa 3’UTR (14 out of 14 clones, 

expected size of the insert 138bps, average length 88.7±33.8, 5’end located ]-9,+89[ bps 

from the putative cleavage site; Sms 3’UTR (17 out of 18 of the clones, expected size of 

the insert 357 bps, measured average length 258.3±44.0 bps, 5’end 

located ]+64,+172[ nts from putative cleavage site) (Figure 5C, middle and lower panels, 

and Figure S2E). As expected, 3’UTR cleavage was not detected in transcripts that did 

not show alternative poly(A) site usage, such as Cops3, Fdxr and Maf1 (Figure 5D and 
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Figure S2F). It should be noted that the substantial lack of fragments whose 5’ end was 

located upstream of the cleavage site indicates that these fragments are not an 

intermediate product of 5’-3’ exonucleotic degradation. Thus, we conclude that IMPA1-L 

is capable of generating the shorter and efficiently polyadenylated isoform IMPA1-SS in a 

remodelling process of the 3’UTR that takes place in axons independently of nuclear 

alternative polyadenylation.  

Inhibition of IMPA1-L 3’UTR remodelling decreases IMPA1 translation 

To investigate whether axonal remodelling of IMPA-1 3’UTR may be necessary to 

remove elements that maintain the transcript translationally repressed, we first performed 

luciferase reporter assays. PC12 cells were co-transfected with either firefly-IMPA1-L, 

firefly-IMPA1-SS or firefly-IMPA1-LD poly(A) and a Renilla luciferase vector, as a control 

for transfection efficiency. Quantification of luciferase activity indicated that firefly-IMPA1-

SS was translated as efficiently as firefly-IMPA1-L. In contrast, mutation of the two 

proximal poly(A) sites of IMPA1-L, which impaired remodelling (Figure 4A) resulted in a 

40% decrease of translation and this was not due to changes of mRNA levels (Figure 6A 

and B). 

A more accurate measurement of translation is obtained by performing polysome 

fractionation, a technique that uses sucrose density gradients to separate mRNAs 

according to their association with either mono- or poly-ribosomes (Johannes and Sarnow, 

1998). The absorbance profile of a representative experiment is shown in Figure 6C. 

PC12 cells expressing either firefly-IMPA1-L, firefly-IMPA1-SS or firefly-IMPA1-LD poly(A) 

were loaded on a 10-50% sucrose density gradient and mRNA was isolated from each 

fraction and analysed by northern blot. As a control, the housekeeping gene GAPDH was 

measured in the same fractions. Quantitative analysis of northern blots confirmed that both 

firefly-IMPA1-L and firefly-IMPA1-SS preferentially co-sediment with the polysome-
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enriched fractions (Figure 6D). However, mutation of the proximal poly(A) sites induced a 

substantial shift of firefly-IMPA1-L D poly(A) toward the lighter, monosome-rich fractions. 

Thus, IMPA1-SS is translated as efficiently as IMPA-1L whereas the inhibition of IMPA-1L 

shortening to IMPA1-SS by mutating the proximal poly(A) sites decreases translation. 

Local synthesis of IMPA1 is necessary to maintain axon integrity in rat sympathetic 

neurons (Andreassi et al., 2010). To investigate whether IMPA1-SS was sufficient to 

rescue axon degeneration induced by IMPA1 silencing, we generated vectors containing 

HA-tagged mouse IMPA1 (ms HA-IMPA1) with either the long or the super-short 3’UTR of 

rat IMPA1. As expected, endogenous IMPA1 levels were decreased when cells were 

transfected with siRNA that targeted the coding region of rat IMPA1 (IMPA1 tot siRNA) or 

IMPA1-L isoform only (IMPA1-L siRNA) (Figure S4A). Transfection of ms HA-IMPA1-rat 

L rescued axon degeneration induced by IMPA1 total silencing (Figure 6E,F and S4B). 

Conversely, ms HA-IMPA1-rat SS, which cannot be transported to axons was incapable 

of rescuing axon degeneration induced by the silencing of either total IMPA1 or IMPA1-L. 

When the 120 nts sequence required to target IMPA1-L to axons was cloned to the 3’ of 

IMPA1-SS (ms HA-IMPA1-rat SS+120) and transduced in sympathetic neurons, we 

observed a complete rescue of axon degeneration induced by silencing of total IMPA1 

(Figure 6E,F and S4B). These findings confirm that IMPA1-SS 3’UTR lacks the 

localization elements necessary for axonal transport. They also show that when forcibly 

targeted to axons, IMPA1-SS is as efficient as IMPA1-L in maintaining axon integrity. 

A Upf1 complex mediates IMPA1-L 3’UTR remodelling in axons 

We next sought to identify the RNA binding proteins that may mediate IMPA1 3’UTR 

remodelling. Mass spectrometry analysis of RBPs associated with transcripts expressed 

in sympathetic neurons revealed that over two hundreds proteins interacted specifically 

with mRNA, with only a few recruited in a NGF-dependent manner (Aniko Ludanyi, M.G 

and A.R, unpublished observations). The DNA/RNA helicase Upf1 was one of the RBPs 
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that interacted with sympathetic neuron transcripts in response to NGF, a condition that is 

known to stimulate translation. Upf1 is part of the complex that mediates nonsense-

mediated decay (NMD) of mRNA, a protein synthesis-dependent RNA surveillance 

pathway that prevents the translation of potentially deleterious truncated proteins by 

inducing rapid degradation of transcripts harbouring a premature termination codon 

(Kurosaki and Maquat, 2013). Binding of Upf1 is enriched on longer 3’UTRs and 

contributes to maintain mRNAs in a translationally silent state (Hurt et al., 2013). Western 

blotting of proteins extracts obtained from cell bodies or axons showed that Upf1 is 

detected in both compartments (Figure 7A). Because RBPs seldom function in isolation 

and are found within large multi-protein complexes, we performed mass spectrometry 

analysis of proteins that co-immunoprecipitated with Upf1 (Figure S5A). 325 unique 

peptides that mapped on 72 proteins were identified (Figure 7B and Tables S1, S2 and 

S3), including known interactors of Upf1 (Polyadenylate-binding protein 1, ELAV-like 

protein 2, interleukin enhancer-binding factor 2, 

https://thebiogrid.org/111908/summary/homo-sapiens/upf1.html). Interestingly the 

neuron-specific ELAV protein ELAV-like protein 4 (or HuD) was one of the most abundant 

proteins that co-immunoprecipitated with Upf1. As for most RBPs, HuD regulates many 

aspects of RNA metabolism, including alternative splicing, alternative polyadenylation, 

mRNA stability and translation (Perrone-Bizzozero and Bird, 2013). The interaction of 

Upf1 with HuD and other RBPs identified by mass spectrometry analysis (protein 

argonaute-2 and Polyadenylate-binding protein 4) was confirmed in PC12 cells naïve and 

differentiated with NGF (Figure 7C). Similar results were observed when co-

immunoprecipitation experiments were performed on sympathetic neurons (Figure 7D). 

To study Upf1 and HuD binding to IMPA1-L, 3’UTR RNA immunoprecipitation (RIP) 

assay was performed in sympathetic neurons (Figure 7E). As a control, the binding of 

Upf1 to Arf1 transcript, a well-known target of NMD, was also tested (Figure S5B). We 
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observed a robust interaction of Upf1 and HuD with IMPA1-L 3’UTR (Figure 7E). 

Importantly, inhibition of HuD/B, Ago2 and Pabpc4 expression decreased the cleavage of 

IMPA1-L 3’UTR. PC12 cells were transfected with siRNA targeting each mRNA and 

mRNA was isolated and subject to 5’P-dependent RNA oligo-Ligation Mediated RT-qPCR 

(Figure 7F). For each condition, a significant decrease of IMPA1-L 3’UTR cleavage, that 

was consistent with the efficiency of silencing, was observed (Figure S5C). Thus, we 

conclude that a RBP complex that includes Upf1 is responsible for the remodelling of 

IMPA1 3’UTR and possibly other transcripts. 
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DISCUSSION 

The untranslated regions of mRNAs play a critical role in the regulation of transcript 

localization and translation in virtually all mammalian tissues. Global mapping of 3’ ends 

regions indicated that around 75% of mammalian genes contain more than one poly(A) 

site (PAS), giving rise to multiple 3’UTRs (Proudfoot, 2011; Tian and Manley, 2013). 

Noticeably, PAS usage and 3’UTR length vary remarkably between mammalian tissues. 

Transcripts in the nervous system are characterized by significantly longer 3’UTRs, when 

compared to blood and testis, for example (Miura et al., 2013). Switch in the usage of PAS 

has been observed in a variety of biological processes. Proximal PASs are preferentially 

used in proliferating cells, in response to inflammation or in cancerous cells, where they 

generate transcripts with shorter 3’UTRs (Miura et al., 2013; Pai et al., 2016; Sandberg et 

al., 2008). Conversely, tissue differentiation is often associated with a switch from proximal 

to distal PAS and 3’UTR lengthening. In neurons, 3’UTR lengthening of a magnitude 

greater than in any other tissue takes place during development, with many transcripts 

bearing unusually long 3’UTRs (Miura et al., 2013) and alternative last exons (ALEs) 

(Taliaferro et al., 2016). 

The 3’UTRs of axonal transcripts are longer and generate multiple isoforms 

Our 3’end-RNASeq analysis on mRNA isolated from either cell bodies or axons of 

sympathetic neurons revealed a preferential usage of distal PAS and 3’UTR lengthening 

in transcripts localized in axons, when compared to cell bodies (Figure 2B). This may be 

due to the fact that elements within longer 3’UTRs are required for mRNA transport over 

long distances. A handful of transcripts have been shown to target axons and dendrites 

through elements contained within the 3’UTR. In sympathetic neurons for example, a 120 

nts sequence at the 3’end of IMPA1-L 3’UTR is required for axonal localization in response 

to NGF (Andreassi et al., 2010). Similarly, the localization of importin b in sensory neurons 

depends on the presence of targeting elements within the longer 3’UTR (Perry et al., 2012). 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2017. ; https://doi.org/10.1101/170100doi: bioRxiv preprint 

https://doi.org/10.1101/170100
http://creativecommons.org/licenses/by-nd/4.0/


	 19	

We also observed that the number of PAS motifs increased with 3’UTR length (Figure 

1G), and that a higher number of 3’UTR isoforms are expressed in axons (Figure 2C). 

Thus, in the nervous system, PAS choice plays an important role in determining the 

localization of transcripts. Moreover, the generation of multiple isoforms for the axonal 

transcriptome axons may contribute to finely tune protein synthesis in response to ever-

changing environmental conditions. 

Cleavage and remodeling of 3’UTRs in axons 

Once transcripts have reached their peripheral destination they undergo local 

translation in response to physiological stimuli, including synaptic activation, neurotrophic 

factors and axon guidance cues (Holt and Schuman, 2013). In hippocampal neurons, a 

switch to proximal PAS usage and shortening of 3’UTRs was observed in genes that 

become transcriptionally activated in response to depolarization, perhaps indicating that a 

shorter 3’UTR enhances translation under these conditions (Flavell et al., 2008). 

Accordingly, we found 689 isoforms with shorter 3’UTR that were highly enriched in 

sympathetic neuron axons, when compared to cell bodies (Figure 2D and 2E). Although 

in most instances these isoforms were detected also in cell bodies (albeit at much lower 

levels), at least 128 axonal transcripts with a shorter 3’UTR were virtually absent in cell 

bodies. An interpretation of these findings is that isoforms with a longer 3’UTR are 

generated by distal PAS usage in the nucleus and transported to axons where they 

undergo a remodeling process that gives rise to shorter 3’UTR isoforms. We cannot 

exclude however, that despite extensive sequencing (in excess of 80 million reads in each 

axon and cell body sample), isoforms uniquely detected in axons may be generated co-

transcriptionally by proximal PAS usage and quickly transported to peripheral 

compartments. 
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PAS choice is thought to occur exclusively in the nucleus, where transcriptional 

elongation is coupled with 5’ end capping, splicing of pre-mRNA, cleavage and 

polyadenylation of the 3’ end (Tian and Manley, 2013). However, our findings indicate that 

at least for some transcripts, a remodeling of the 3’UTR takes place at the site of protein 

synthesis. Analysis of the IMPA1 transcript revealed that an isoform bearing a shorter 

3’UTR, IMPA1-SS (Figure 3A-C) was localized in distal axons despite lacking the 

localization element necessary for axonal targeting (Figure 3D). IMPA-1-SS is 

polyadenylated (Figure 4C) and efficiently translated (Figure 6A-D). When IMPA1-SS, 

which is normally restricted to cell bodies, was forcibly transported and expressed in axons, 

it rescued the axonal degeneration induced by IMPA1 silencing (Figure 6E and F). 

Importantly, we found that the 3’UTR of IMPA1-L undergoes cleavage in axons, 

generating IMPA1-SS and a 3’UTR fragment that was detected by 5’ end RNA ligation 

(Figure 5B). These findings support a model (Figure 7G) by which IMPA1-L is transported 

to axons where the 3’UTR is remodeled into IMPA1-SS and translated in response to local 

extracellular cues. Cleavage of the 3’UTR was also shown for Sms and Maoa (Figure 5C), 

two transcripts that display preferential usage of proximal PAS site in axons (Figure S2E). 

Thus, remodeling of long 3’UTRs is a mechanism shared by many axonal transcripts that 

allows local protein synthesis. 

An Upf1 complex mediates 3’UTR cleavage 

How is 3’UTR remodeling regulated? We found that in sympathetic neurons, Upf1 binds 

to RNA in a NGF-dependent manner (Aniko Ludanyi, MG and AR unpublished 

observations), and that one of the targets was Impa1-L 3’UTR (Figure 7E). Upf1 is a 

helicase involved in NMD, a highly conserved mRNA surveillance pathway that targets 

transcripts harboring premature termination code for degradation (Nicholson et al., 2010). 

Though IMPA1-L is not a putative target of NMD (Hurt et al., 2013), Upf1 is recruited to 

long 3’UTRs (>1500 nts) of transcripts that lack the features normally associated with 
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sensitivity to NMD (Hogg and Goff, 2010; Hurt et al., 2013). Mass spectrometry analysis 

of proteins that co-immunoprecipitated with Upf1 revealed that HuD, Pabpc4 and Ago2 

are part of a complex that mediate the cleavage of IMPA1-L 3’UTR (Figure 7C-F). A recent 

study has shown that maturation of miRNA precursors takes place in dendrites in response 

to depolarization (Sambandan et al., 2017). The finding that Ago2 and Pabpc4 are part of 

the 3’UTR remodeling complex suggests a potential cross-talk between local 3’UTR 

processing and miRNA machinery. Further investigation will be needed to elucidate the 

molecular mechanisms underlying Upf1-mediated remodeling of 3’UTRs and the potential 

signaling events that link environmental stimuli with 3’UTR cleavage. 

A secret life for 3’UTRs? 

The cleavage of 3’UTRs is not limited to IMPA1 and was demonstrated for at least two 

other axonal transcripts, indicating that it may represent a general mechanism by which 

localized mRNA transcripts are translated in neurons. Remarkably, our cleavage assay 

demonstrated that in addition to shorter 3’UTR isoforms, intact fragments are generated 

as a byproduct of 3’UTR remodeling (Figure 5B and C). Widespread endonucleolytic post-

transcriptional processing independent of miRNA targeting has been reported in 

mammalian cells (Karginov et al., 2010). Moreover, two recent studies have shown that 

3’UTRs are expressed independently of their coding sequence. Mercer and colleagues 

demonstrated that in mouse, 3’UTR-derived RNAs (uaRNAs) are widely expressed in a 

tissue- and cell-specific manner (Mercer et al., 2011). It should be noted that genome-

wide analysis of RNA Polymerase II binding revealed a lack of occupancy at these sites, 

indicating that they were not generated by transcriptional events originated from promoters 

located within the 3’UTRs (Mercer et al., 2011). Even more excitingly, differential 

expression of 3’UTRs and coding regions were observed for many genes expressed in 

the developing mouse brain (Kocabas et al., 2015). Here, we provide evidence for the 

mechanism that mediates the cleavage of 3’UTRs in sympathetic neurons, generating 
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remodeled 3’UTR isoforms and a new class of non-coding RNA fragments with yet 

unknown functions. 
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EXPERIMENTAL PROCEDURES 

Reagents 

Cell culture reagents, molecular biology reagents and kits were purchased from Thermo 

Fisher Scientific and all other chemicals from Sigma, unless stated otherwise. 

Compartmentalized cultures of sympathetic neurons and SCG explants 

All animal studies were approved by the Institutional Animal Care and Use Committees 

at University College London. Superior cervical ganglia were dissected from post-natal 

day 1 (P1) Sprague Dawley rats and used for explants or enzymatically dissociated and 

plated in dishes or in compartmentalized chambers, as previously described (Riccio et al., 

1997). Explants were cultured on poly(D)lysine-laminin for 9-10 days before surgical 

removal of cell bodies. For cordycepin experiments, explants were treated with pentostatin 

(1µM for 30 min) (Chen et al., 2008), then cell bodies were removed and axons were 

treated with cordycepin (2.5µM for 2.5 hrs) before harvesting. 

PC12 cells (purchased from ATCC) were maintained in DMEM containing 10% FBS, 

5% HS (Hyclone), 2mM glutamine. To induce cell differentiation serum concentration was 

reduced to 0.5% FBS and 0.25% HS and NGF (50ng/mL) was added for the indicated 

time. Cells were transfected with Lipofectamine2000 in OptiMEM according to the 

manufacturer’s instructions. 

RNA isolation, reverse transcription, linear amplification and 3’end-RNASeq 

To ensure that the axons were free of cell bodies, prior to each experiment axon 

compartments were incubated with Hoechst 33342 (10µg/mL in PBS for 20 min at 37˚C) 

and observed under an inverted fluorescent microscope. Cultures showing cell nuclei in 

the axon compartments or leakage of the dye in the central compartment were discarded. 

Total axonal and cell bodies RNA was purified from the lateral compartments of 52 or 36 

chambers and the central compartment of 7 or 6 chambers respectively obtained from 3 
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or more independent cultures. Total RNA was isolated using PureLink® RNA Micro Scale 

Kit, according to the manufacturer’s instructions with minor modifications. Briefly, axons 

and cell bodies were collected from chambers using lysis buffer (300µl) containing 

10% b-mercaptoethanol. Total mRNA bound to the columns was washed and eluted twice 

in elution buffer (12µl). Aliquots of each sample was reverse transcribed in a 20µL reaction 

volume containing random hexamer mix and 50U SuperScript III Reverse Transcriptase 

at 50°C for 1 hr. To check the quality of samples and the absence of cell bodies 

contamination in axon samples, first-strand cDNAs (5µL) were PCR amplified in a 25µL 

PCR reaction containing actin beta or histone H4 specific primers (0.20µM), dNTPs (200 

nM) and Go Taq polymerase (1.25U, Promega). Primer sequences and PCR conditions 

are provided (Table S4). 

For mRNA linear amplification, samples were purified as described above, 

concentrated by speed-vacuum centrifugation to 1µL (axons) or 5µL (cell bodies) volume, 

and used for two rounds of linear amplification as previously described (Baugh et al., 

2001). The volume of the first-strand reaction for the axons was scaled down to 5µL. After 

the second round of amplification contaminant cDNA was digested by treating the samples 

with RNAse-free DNAse (2U, Epicentre). Performance of the samples was tested by RT-

PCR. Linear amplified aRNA from cell bodies and axon samples (2 biological replicates 

each) was used to prepare RNASeq libraries using the strand-specific ScriptSeq protocol 

(Illumina). Paired-end sequencing (2x 150bp) of four indexed libraries was performed on 

the Illumina HiSeq2000 platform, generating in excess of 80M mappable reads per 

sample. Library preparation and sequencing were performed at the Liverpool Centre for 

Genomic Research (CGR, http://www.liv.ac.uk/genomic-research/). Statistics of the 

sequencing are shown in Table S5. 

Inference of 3’UTR isoforms from 3’-end RNA-seq 
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Paired-end stranded RNA-seq reads of 150 bp were mapped to the reference rat genome 

(UCSC, rn5) using TopHat2 (Kim et al., 2013) allowing up to 20 multi-alignments and 2 

read mismatches. Nucleotide-level stranded coverage was obtained for axons and cell 

body samples using genomecov from the BEDTools suite (Quinlan, 2014; Quinlan and 

Hall, 2010). Continuously transcribed regions were identified using a sliding window 

across the genome requiring a minimum coverage of 7 reads in more than 80 positions 

per window of 100 bp; neighbouring regions separated by low-mappable regions were 

merged as described in (Miura et al., 2013). Expressed fragments were associated with 

matching strand overlapping 3’UTR using Ensembl Rn5 version 78 (v78) (Flicek et al., 

2013). Isolated expressed fragments that did not overlap with any feature were associated 

with the closest 3’UTR if (1) the 3’UTR was <10kb and (2) there were no intervening 

annotations. We filtered assigned expressed fragments to exclude potential intragenic 

transcription, overlapping transcripts, and retained introns as described in (Miura et al., 

2013). If the expressed fragment continued beyond the end of the annotated 3’UTR, we 

took the fragment as the new 3’ end. A marked change in the level of coverage in the 3’ 

to 5’ end direction is expected to occur at the boundaries of alternative polyadenylation 

sites due to the accumulation of the reads in 3’ termini of the transcripts. To identify 

alternative 3’UTR isoforms we used Segmentor3IsBack R package (Cleynen et al., 2014) 

that modelled nucleotide level read coverage along 3’UTRs with a negative binomial 

distribution and identified segments of spatially coherent coverage along individual 

3’UTRs. Prior to coverage segmentation, nucleotide-level read coverage was smoothed 

using a running median of width 150 nts. As previously reported, each 3’ end can have 

multiple cleavage positions in a small window (Tian et al., 2005); we thus clustered 

together change-points located within 25nt from one another and selected the most 

promoter-distal change-point. We applied the algorithm to the raw coverage and log2-

scaled coverage of both cell body and axon-derived samples. We then merged all 4 
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annotations (cell body and axon samples, linear and log scale) and clustered 3’ end 

located within 50 nts distance, selecting the most promoter-distal annotation. We searched 

the -50 nts to +150 nts region surrounding the 3’ end termini of Ensembl annotated and 

newly annotated 3’UTR isoforms for 12 canonical and non-canonical PAS motifs listed in 

PolyA_db (Lee et al., 2007) (AATACA, ATTAAA, TATAAA, AATATA, AATAGA, AGTAAA, 

AATGAA, ACTAAA, CATAAA, GATAAA, AAGAAA, and AATAAA) using the matchPattern 

function from the Biostrings R package (Pages et al, 2008.). We tested for the statistical 

enrichment of the PAS motifs in 3’UTR isoforms using the Fisher’s exact test. A 

polyadenylation sites atlas was combined from the following sources: 1) poly(A) site 

annotation (Gruber et al., 2016) build using 3’-end sequencing libraries in human and 

mouse, lifted from hg19/mm10 to Rn5 using python library CrossMap (Zhao et al., 2014); 

2) 3’-end sequencing libraries from rat brain and testes (Derti et al., 2012); 3) 3’end 

annotation in Ensembl Rn6, RefSeq Rn5 and Rn6, and XenoRefSeq; 4) polyadenylation 

sites annotations from PolA_DB (Lee et al., 2007) and APADB (Muller et al., 2014). We 

next compared the percentage of newly annotated 3’ ends recovered from each source 

and from the compiled polyadenylation site atlas at several intervals from novel 3’ ends. 

 3’UTR isoform quantification and identification of transcripts localized to axons 

The number of reads mapped to -500 nts terminal region of each 3’UTR isoform was 

used to calculate the expression levels. The density of mapped reads in -500 nts terminal 

region of 3’UTR isoforms is bimodal, with a low-density peak probably corresponding to 

background transcription, i.e. 3’UTR isoforms of low abundance or 3’UTR isoforms to 

which reads were spuriously mapped, and a high-density peak corresponding to 

expressed 3’UTR isoforms. In order to identify 3’UTR isoforms expressed in axons and 

cell body, a two-component Gaussian mixture was fitted to the data using the R package 

mclust (Fraley et al, 2012). An isoform was called expressed if in both replicates there 
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were less than 5% chance of belonging to the background category or if in at least one 

replicate there was more than 10% chance of belonging to the expressed category. 

Differential 3’UTR isoforms expression analysis 

We focused the analysis on 4,191 tandem pairs of 3’UTR isoforms expressed in the 

cell body and/or in axonal samples. To identify transcripts displaying a change in the 

3’UTR isoform usage between axon and cell body samples, we scored the differences in 

promoter-proximal to promoter-distal poly(A) site usage: 

𝑆" = 𝑙𝑜𝑔'
𝐼)*+,-./0
𝐼1-23/0 45

− 𝑙𝑜𝑔'
𝐼)*+,-./0
𝐼1-23/0 7,+82

													 

𝑆' = 	
𝐼)*+,-./0

𝐼)*+,-./0 + 𝐼1-23/045
− 	

𝐼)*+,-./0
𝐼)*+,-./0 + 𝐼1-23/07,+82

∈ −1,1  

 

The statistical significance of the changes in proximal-to-distal poly(A) site ratio 

between cell body and axons was assessed by Fisher’s exact count test using summed-

up raw read counts of promoter-proximal versus promoter-distal 3’UTR isoforms 

originating in the cell body or axonal samples. We applied a False Discovery Rate adjusted 

threshold of 0.01. A shift towards the usage of promoter-proximal isoforms in axons 

compared to cell body was considered when 𝑆" 	≤ 	−1, 𝑆' 	≤ 	−15% and FDR<0.01. A 

shift towards the usage of promoter-distal isoforms in axons compared to cell body was 

considered when 𝑆" 	≥ 	1, 𝑆' 	≥ 	15% and FDR<0.01. Finally, a stringent threshold was 

applied to identify highly enriched isoforms in axons as following: for those tandem 3’UTR 

isoforms showing shift towards the usage of promoter-proximal isoforms in axons as 

compared to cell body, we required BCDEFGHIJ

BCDEFGHIJKBLGMNIJ45
≤ 0.2. Conversely for those tandem 

3’UTR isoforms showing shift towards the usage of promoter-distal isoforms in axons, we 

required BCDEFGHIJ

BCDEFGHIJKBLGMNIJ45
≥ 0.8. 
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Gene Ontology enrichment analysis 

GO analysis was performed by comparing pairs of gene lists using the Fisher test with 

the topGO Bioconductor package (Alexa and Rahnenfuhrer, 2016). Only GO terms 

containing at least 10 annotated genes were considered. We applied a P-value threshold 

of 0.05. We manually filtered biologically relevant and statistically enriched GO by 

removing redundant GO terms and those applying to fewer than 5 genes in the gene lists. 

RT-PCR and quantitative RT-PCR 

mRNA was isolated from sympathetic neurons or PC12 cells using TRIzol or RNAEasy 

mini Kit (QIAGEN) and reverse transcribed. qRT-PCR reactions (20µL ) contained 10µL 

of Flash SybrGreen Mastermix, or 12.5µL of SybrSelect Mastermix and 0.25µM primers, 

unless otherwise indicated. Reactions were performed in duplicate or triplicate with the 

Mastercycler® ep realplex qPCR machine (Eppendorf). For absolute quantification, each 

experiment included a standard curve, a no-RT control and a no-template control. 

Standard templates consisted of gel-purified PCR amplicons of known concentrations and 

each standard curve consisted of seven serial dilutions of the DNA template. For relative 

quantification, the Comparative Ct Method (ΔΔCt Method) was used. At the end of 40 

cycles of amplification, a dissociation curve was performed in which SybrGreen 

fluorescence was measured at 1ºC intervals between the annealing temperature and 

100ºC. Melting temperatures of amplicons varied between 80oC and 92oC. Primer 

sequences and PCR conditions are described in Table S4. 

Northern blotting 

RNA purified from SCG neurons cultured for 7 days or PC12 cells was separated by 

electrophoresis in denaturing conditions and transferred to nylon membrane by capillary 

blotting according to standard protocols. Probes corresponding to IMPA1, Firefly 

Luciferase or GAPDH coding sequences, or IMPA1L 120nt fragment were labeled using 
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Random priming Labeling Kits (Takara or Roche) and [a-32P] dCTP. Blots were exposed 

to films or phosphorimager screens. Radioactive signal was quantified using ImageQuant 

TL software (GE Healthcare). 

Tag Addition-PolyAdenylation Test (TA-PAT) 

The PAT assay was performed as described (di Penta et al., 2009) with minor 

modifications. Briefly, total RNA was purified from PC12 cells, tagged by annealing the 

TA-PAT template1 primer to the end of the mRNA, and extended with Klenow polymerase 

(NEB, 37°C for 60min). The tagged RNA was reverse transcribed by Superscript™ III 

Reverse Transcriptase (42°C for 60min) using the TA-PAT RT primer 1 and cDNA was 

amplified using the IMPA1-1351 forward primer that anneals just upstream of the IMPA1-

SS poly(A) and the TA-PAT RT primer 1 as reverse primer. Primer sequences and PCR 

conditions are described in Table S4. 

3’ rapid amplification of cDNA ends (3’ RACE) 

Full length 3’UTR of IMPA1, actin beta, stathmin 2 and cofilin1 mRNAs were amplified 

from axonal and cell body compartments by performing 3’ RACE reactions on total RNA 

isolated from compartmentalized chambers as previously described (Andreassi et al., 

2010). Samples were concentrated by speed-vacuum, RNA was divided in two equal 

samples and used for amplification with SMART RACE cDNA Amplification Kit (Clontech) 

according to manufacturer’s instructions. Gene specific primers for 3’ RACE assays are 

listed in Table S4. Amplification was performed using Advantage GC 2 PCR kit (Clontech) 

and PCR products were cloned and sequenced. 

Cloning 

IMPA1 Super-Short (IMPA1-SS) and Long (IMPA1-L) 3’UTR sequences were amplified 

by PCR from the corresponding RACE clones. After digestion with NotI/XhoI, IMPA1-SS 

DNA fragment was purified and used to replace IMPA1-L in myrdEGFP-IMPA1-L 

(Andreassi et al., 2010). Mouse IMPA1 coding sequence was PCR-amplified from mouse 
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brain cDNA using primers encoding the HA tag. After digestion with BamHI/NotI, ms HA-

IMPA1 DNA fragments were purified and used to replace dEGFP sequence in myrdEGFP-

IMPA1-L or myrdEGFP-IMPA1-SS. The 120 nts localization signal of IMPA1-L was cloned 

by PCR from a IMPA1-L RACE clone and cloned at the 3’ of ms HA-IMPA1-rat SS plasmid. 

To generate Firefly IMPA1-SS, -L or –LDpoly(A) vectors, Firefly luciferase coding 

sequence was PCR amplified from pGL3 vector (Promega) with primers containing 

restriction sites for BamHI and NotI. The DNA fragment was purified and used to replace 

the myrdEGFP sequence in myrdEGFP-IMPA1-SS or myrdEGFP-IMPA1-L. Mutation of 

IMPA1-SS and IMPA-1S poly(A) sites was performed by PCR site-directed mutagenesis 

(Agilent) of Firefly-IMPA1-L vector. In all Firefly constructs, the bovine Growth Hormone 

poly(A) sequence was removed by PCR site-directed mutagenesis to create an extra XhoI 

site, that was used for digestion and re-ligation. Primer sequences and PCR conditions 

are described in Table S4. 

Electroporation and analysis of mRNA transport in axons 

Neurons were electroporated with the indicated constructs as previously described 

(http://www.cellectricon.se/pdf/Sympathetic_neurons.pdf). MyrdEGFP was detected by 

GFP immunostaining. Confocal images were acquired with a SP5 confocal system (Leica) 

using LAS AF software and automated tiling over several z-stacks, to cover the whole 

thickness and length of the axons. Maximal intensity projections were processed with Fiji 

software. Axons were traced manually using NeuronJ plugin and grey value intensity over 

length was measured. Data analysis was performed using Excel software to calculate 

average values and standard error means of the intensity for each 100µm axonal segment. 

Quantification of axon degeneration 

SGC explants were grown for 36 hours before electroporation with the indicated siRNAs 

(150nM, GE Dharmacon) and a GFP expression vector (20ng/µL), in the presence of 
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either ms HA-IMPA1-rat SS, ms HA-IMPA1-rat SS+120, or m sHA-IMPA1-rat L DNAs, 

(200 ng/µL), as indicated. After 6 days, GFP fluorescence was detected with an inverted 

Leica epifluorescence microscope, and intact axon bundles that showed no sign of 

breakdown were quantified. For imaging, explants were fixed in 4% PFA and stained with 

anti-GFP and anti-neurofilament antibodies. Antibodies and probing conditions are 

described in Table S4. 

Co-immunoprecipitation and western blotting 

Co-immunoprecipitation samples were obtained by lysing cells in RIPA buffer (50 mM 

Tris-HCl pH 7.4, 150 mM NaCl, 1% NP-40, 0.5% Sodium deoxycholate, 0.1% SDS, 1 mM 

EDTA, Protease Inhibitors Cocktail) for 10min on ice. After centrifugation, protein 

concentration in the supernatants was assayed by PierceTM BCA Assay, and 0.5-1 mg of 

pre-cleared protein sample was incubated with 2µg of antibody as indicated, overnight at 

4ºC, on constant rotation. Immuno-complexes were precipitated by adding protein A-

agarose beads (GE Healthcare) at 4ºC for 2hrs. After extensive washes with RIPA buffer, 

immunocomplexes were eluted from the beads by boiling in 1X LDS-buffer +2.5% 

bmercaptoethanol. Samples were resolved on 4-12% PAA pre-cast gels and blotted on 

PVDF membrane (Amersham). For western blotting, cells were rinsed with PBS and lysed 

in the plates with 1X LDS-buffer +10% bmercaptoethanol. SDS-PAGE and blotting was 

then performed as described above. For immunodetection, membranes were blocked in 

5% milk for 1hr at room temperature and incubated overnight with the indicated antibodies. 

Antibodies and probing conditions are shown in Table S4. 

RNA ImmunoPrecipitation (RIP) 

RNA immunoprecipitation was performed as described (Napoli et al., 2008) with minor 

modifications. Briefly, protein A/G agarose beads (Santa Cruz) were incubated with 

antibody (5µg in 1% BSA in PBS) and heparin (1mg/ml) for 2hrs at 4ºC, washed with 
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washing buffer (150mM NaCl, 50mM Tris-HCl [pH 8.0], 1% Triton X-100), and incubated 

with 250-300µg of protein lysates 1 hr at 4ºC. Beads were extensively washed, and RNA 

was eluted in 0.2M Na Acetate, 1mM EDTA, and 0.2% SDS for 5 min at 70ºC. For 

normalization, 20pg of in vitro transcribed RNA synthesized from the T7 control DNA 

Template (AmpliScribe™ T7 Transcription Kit, Epicentre) was added to the samples. RNA 

from inputs and immunocomplexes was purified, subjected to DNAse digestion (Ambion), 

reverse transcribed and assayed by qPCR. Primer sequences and PCR conditions are 

described in Table S4. 

Dual luciferase assay 

PC12 cells were transfected with the indicated Firefly Luciferase-IMPA1 constructs and 

thymidine-kinase – Renilla Luciferase (Promega) using Lipofectamine 2000 for 48hrs. 

Samples were processed using the dual-luciferase reporter assay system (Promega), 

according to manufacturer’s instructions. 

Polysomal fractionation 

Polysomal fractionation was performed as described (Johannes and Sarnow, 1998).  

Briefly, PC12 cells were lysed in ice-cold gradient buffer (0.3M NaCl, 1mM MgCl2, 15mM 

Tris-HCl (PH7.4), 0.1mg/mL cyclohexamide and 1mg/mL heparin, 1% Triton X-100, 

500U/mL RNAse inhibitors). Samples were centrifuged and the supernatants layered onto 

10–50% sucrose linear gradients. The gradients were sedimented at 38,000 r.p.m., using 

a SW40Ti rotor (Beckman) or a Sorvall TH-641 rotor for 2 hrs at 4°C. Eleven fractions 

(1mL each) were collected from the gradients and transferred in 3ml of 7.7M guanidine-

HCL using a Foxy R1 gradient fractionator (Teledyne ISCO; ISCO peak Trak version 1.10 

software) with continuous measurement of the absorbance at 254nm. RNA was 

precipitated, treated with DNAse and purified using RNAeasy Mini Kit (QIAGEN). For 

fractions 1 and 2, protocol was modified as suggested by manufacturer for recovery of 
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small size RNA. Samples were concentrated by speed-vacuum and analysed by northern 

blot. 

Mass-spectrometry 

Immuno-complexes were precipitated from 20x106 PC12 cells naïve or differentiated 

with NGF for 4 days. On-bead digestion and nano LC-MS/MS analysis was performed as 

described (Bernaudo et al., 2015) with minor changes. The procedure is summarized in 

Figure S5, and described briefly below. Immuno-precipitated proteins were released from 

the resin by on-beads digestion for 15min at 37°C using 200ng of trypsin (Promega). The 

supernatants were collected and subjected to conventional in-solution tryptic digestion 

(overnight at 37ºC) in denaturing conditions (reduction by 10mM DTT for 1hr at 37ºC 

followed by 24mM iodoacetamide for 1hr at 37ºC quenched by addition of 2mM DTT for 

30min at 37ºC). Tryptic peptides were then subjected to differential labelling by either 

oxygen18 or dimethyl labelling (Boersema et al., 2009). Pairs of differently labelled samples 

were mixed, purified by StageTips (Rappsilber et al., 2007) and subjected to nano LC-

MS/MS analysis. Chromatography was performed on an Easy LC 1000 nanoLC system 

(Thermo Fisher Scientific, Odense, Denmark). The analytical nanoLC column was a pulled 

fused silica capillary, 75μm i.d., in-house packed to a length of 10 cm with 3μm C18 silica 

particles from Dr. Maisch GmbH (Entringen, Germany). A 60-min binary gradient was used 

for peptide elution. MS detection was performed on a quadruple-orbitrap mass 

spectrometer Q-Exactive (Thermo Fisher Scientific) operating in positive ion mode and 

data-dependent (Top-12) scanning mode. Data were processed using Proteome 

Discoverer 1.4 (Thermo Fisher Scientific), using Sequest as search engine, and querying 

the March 2015 RATTUS reference proteome sequence database 

(http://www.ebi.ac.uk/uniprot). The protein sequence database was merged with a list of 

common contaminants named “Common Repository of Adventitious Proteins” retrieved 

from The Global Proteome Machine website (http://www.thegpm.org/crap/index.html). In 
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total, 27,927 entries were searched. Peptide identifications were validated by Percolator 

(Kall et al., 2007) integrated in Proteome Discoverer. Percolator q-value was set to equal 

or less than 0.05. Quantification values based on < 3 peptides were manually checked in 

raw MS data. MS/MS data relative to protein hits identified by a single peptide are reported 

in Table S5. Protein H:L ratios obtained from all technical replicates of a given biological 

replicate were transformed into log2 space before their median was calculated. 

RNA oligo-Mediated Ligation (RML) RT-PCR 

RML RT-PCR was performed as described (Endres et al., 2011) with the following 

modifications. Cleaved fragments were isolated and cloned using 1.2ng of axonal RNA 

purified and pooled from 55 explants where the cell bodies had been surgically removed, 

or 1.5 µg or less of total cellular RNA. Total cellular RNA was DNAse-digested and purified 

by phenol:chloroform purification. Quality control of starting material was performed using 

Agilent Tapestation 2200 (UCL Genomics). Samples with a RIN value≥ 7.2 were used for 

RLM RT-PCR. RNA was denatured and tagged by ligation with 25ng or 250ng for axonal 

or total RNA, of RNA oligo and 30U of T4 RNA ligase (NEB) for 1hr at 37ºC followed by 

overnight incubation at 16ºC in a PCR machine. Ligated axonal RNA was then purified 

using buffer PB+10% b-mercaptoethanol (QIAGEN) and AMPure XP beads (Beckman 

Coulter) as per manufacturer’s instructions. Total RNA was purified as described above. 

Ligated RNA was reverse transcribed using random hexamers and 50U SuperScript IV 

reverse transcriptase (Thermo Fisher Scientific) for 1hr at 50ºC. After RNAseH digestion, 

cleaved fragments were amplified by PCR using Q5 DNA polymerase (NEB) and cloned 

in pCR™4Blunt-TOPO® vector according to manufacturer’s instruction. At least 15 

individual, random clones were analyzed by sequencing. When used for RT-qPCR, 

amplification of the cleaved fragments was carried out in 25µL reaction using SybrSelect 

MasterMix. Primer sequences and PCR conditions are described in Table S4. 
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Statistical analyses 

Data are expressed as averages ± SEM. One-way ANOVA with post-hoc test or t-test 

were used as indicated to test for statistical significance, which was placed at P < 0.05 

unless otherwise noted. 

Accession numbers 

The RNA-seq data and the new 3’UTR annotation will be available at Gene Expression 

Omnibus; the accession number is in preparation. The source code will available at Githb. 
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Figure 1: 3’ end-RNA-seq of linearly amplified RNA from axons and cell bodies of 

sympathetic neurons. (A) Accumulation of reads at the 3’ end of the transcripts. The 

read density (number of reads per nucleotide divided by the total number of reads) of 

4,975 transcripts between 2000 and 3000 nts long is shown. Dashed line indicates the 3’ 

end. (B) Identification of novel 3’ ends in the longest 3’UTR of Elovl5. Raw coverage was 

smoothed using a running median (window width = 100 nts) and potential 3’ ends were 

identified by segmenting sudden transitions in read depth. (C) Number of newly annotated 

3’UTR isoforms compared with Ensembl Rn5 annotations (Upper panel). Number of 

Ensembl transcript ID expanded with newly annotated 3’UTRs (Lower panel). (D) 

Percentage of newly annotated 3’ ends recovered from a polyadenylation site atlas 

compiled from multiple sources (see Experimental Procedures) at the indicated intervals 

from novel 3’ ends. (E) Frequency of canonical and variant PAS motifs detected between 

-100 to +50 of newly annotated (black) or Ensembl annotated (white) 3’ ends. (Left) Total 

PAS motifs. (Right) Canonical versus variant PAS motifs. (F) Relative occurrence of 

different PAS motifs in promoter-proximal and promoter-distal 3’UTRs. Upper column 

graph indicates the number of 3’UTR isoforms per range of 3’UTR length. Colour-scale: -

log10(P-value) of enrichment in PAS motif obtained by Fisher test of the number of 3’ end 

that contains at least one motif per range of 3’UTR length. (G) Enrichment of the number 

of PAS motifs in regions surrounding 3’ end with increasing 3’UTR length. (H) Genome 

browser view of the Actin beta, Stathmin 2 and Cofilin 1 3’UTRs. 3’ end isoforms annotated 

in Ensembl Rn5 or identified by RNA-seq data and by RACE are indicated by arrowheads. 

(I) Agarose gel analysis of RACE products to amplify actin beta, Stathmin 2 and Cofilin 1 

3’UTRs (left panels) and restriction digestions of representative clones obtained by cloning 

of corresponding RACE PCR products (right panels). See also Figure S1.
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Figure 2: Analysis of 3’UTR length and PAS choice in axonal and cell bodies 

transcriptomes. (A) Comparative analysis of 3’UTR isoforms and transcript IDs 

expressed in the cell body (yellow) and axons (grey) (Left). Statistically enriched GO terms 

of genes identified in cell bodies and axons samples (Right). (B) Maximum 3’UTR lengths 

for existing annotations in Ensembl Rn5 and newly identified in this study (*** p < 0.01; 

Wilcoxon rank sum test). (C) Percentage of cell body and axonal transcript IDs showing 

multiple 3’UTRs (Left) and distribution of 3’UTR isoforms per expressed Ensembl 

transcript ID (Right). *** P-value < 0.01 (Fisher exact count test). (D) Scatter plot of the 

relative usage of promoter-proximal and promoter-distal poly(A) sites in cell bodies and 

axons. FDR<0.01 between cell body and axonal compartment (Fisher exact test). Dark 

blue = distal shifts in axons compared to cell body. Light blue = proximal shifts in axons 

compared to cell body. (Inset) 3’UTR isoforms with proximal or distal shift uniquely 

detected in axons when we required that usage of promoter-proximal or distal 3’UTR 

isoform in cell body sample was less than 20% of total isoforms. (E) Statistically enriched 

GO terms for transcripts showing a proximal (Top) or distal (Bottom) shift in poly(A) site 

usage in axons. (F and G) Genome browser view of representative transcripts with a 

marked shift towards decreased (Atp5f1) or increased (Vps36) promoter-proximal poly(A) 

site usage in axons compared to cell bodies. See also Figure S2. 
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Figure 3: IMPA1-SS is detected but not transported in axons. (A) Genome browser 

view of IMPA1 transcript in NGF and NT-3 treated axons, and cell bodies transcriptomes 

by 3’end RNA-seq (grey arrowhead) and RACE (red arrowhead). Ensembl annotation 

(black arrowhead) is also shown. (B) RACE of IMPA1 3’UTR from transcripts isolated from 

either cell bodies or axons of sympathetic neurons. Clones from cell bodies 3’ RACE 

carried either IMPA1-S (Short) or IMPA1-L (Long) 3’UTR. 25% of the clones derived from 

axon 3’ RACE carried IMPA1-SS (Super-Short) 3’UTR and the remaining carried IMPA1-

L 3’UTR. (Cell bodies n=15, axons n=12). (C) Northern blot analysis of RNAs isolated from 

naïve, NGF-differentiated PC12 cells and sympathetic neurons using 32P-labelled probes 

annealing with IMPA1 coding sequence (Left panel) or IMPA-L 3’UTR (Right panel). (n=3).  

(D) Quantitative analysis of GFP protein immunofluorescence in axons of sympathetic 

neurons expressing either myrdEGFP-IMPA1-L or myrdEGFP-IMPA1-SS. Averages ± 

s.e.m. of three independent experiments. Inset: Statistical analysis of data in (D). Fisher’s 

exact test. **P<0.005. See also Figure S3. 
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Figure 4: IMPA1-SS is generated by remodelling of IMPA1-L. (A) (Left) Firefly 

luciferase northern blotting of PC12 cells transfected with either Firefly-IMPA1-SS, Firefly-

IMPA1-L, or Firefly- IMPA1-L Dp(A) vectors. The lower-than expected molecular weight 

observed for remodelled firefly-IMPA1-SS (compare lanes 2 and 3 to lane 1) may be due 

to a shorter poly(A) tail of the remodelled firefly-IMPA1-SS. (n=3). (Right) Quantitative 

analysis of three independent northern blots by phosphorimaging. *P<0.05 multiple t test, 

statistical significance determined using the Holm-Sidak method, with a=0.05. (B) a-

Tubulin immunostaining of representative SCG explants before (Top) or after (Bottom) the 

removal of cell bodies. Nuclei were stained with DAPI. Scale bar=200µm. (C) Cell bodies 

were removed from SCG explants and axons were exposed to either PBS (control) or 

cordycepin (2.5µM for 2.5hrs). Expression levels of IMPA1-L were tested by qRT-PCR 

and normalized to GAPDH. Values are shown as mean± s.e.m. ***P< 0.001 student t-test 

(n=3). (D) mRNA isolated from PC12 cells and subjected to TA-PAT assay to test the 

length of poly(A) tails on IMPA1 transcripts. Representative experiment of n=3. 
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Figure 5: IMPA1-L is cleaved in axons to generate IMPA1-SS. (A) Schematic 

representation of 5’P-dependent RNA oligo-Mediated Ligation (RML) experiments. (B) 

(Top) Restriction digestions of clones carrying an insert corresponding to IMPA1-L cleaved 

fragment in axons. (Bottom) Number of clones of cleaved IMPA1-L fragments purified from 

axonal RNA according to distance from the predicted cleavage site. Each bin=20nts. (C) 

Restriction digestion of representative clones with (Top) IMPA1-L, (Middle) Maoa and 

(Bottom) Sms cleaved fragments isolated from total cellular RNA by RML RT-PCR. (D) 

(Left) Absence of cleaved fragments in Cops3, Fdxr and Maf1 transcripts. (Right) The 

presence of corresponding cDNAs was assessed by regular RT-PCR to amplify Cops3, 

Fdxr and Maf1 transcripts. See also Figure S2. 
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Figure 6: Mutations IMPA1 poly(A) sites decrease IMPA1 translation. (A) PC12 cells 

were transfected with the indicated Firefly Luciferase vectors together with Renilla 

Luciferase and subjected to luciferase assay. Values are shown as mean ± s.e.m of at 

least 4 independent experiments. **** P < 0.0001, one-way analysis of variance, Tukey’s 

post hoc test. (B) qRT-PCR analysis of Firefly and Renilla luciferase mRNAs isolated from 

PC12 cells transfected with the indicated vectors. (C) Representative absorbance profile 

(A254nm) of polysomal fractions isolated from PC12 cells transfected with Firefly-IMPA1L-

Dp(A). Peaks representing the 40S, 60S and 80S ribosomal subunits and polysomal 

fractions are indicated. Line shows separation between free-monosomal and polysomal 

fractions. (D) Lysates of PC12 cells transfected with the indicated Firefly-IMPA1 3’UTR 

vectors were separated by polysomal fractionation, RNA was isolated from each fraction 

and subjected to northern analysis using 32P-labeled probes to detect Firefly (Upper 

graphs) or GAPDH (Lower graphs) transcripts. Bands were captured using a 

phosphorimager and quantified using ImageQuant 5.2 (right graphs) (n= 3-5). * p < 0.01, 

one-way analysis of variance, Tukey’s post hoc test. (E) Representative images of SCG 

explants electroporated with scrambled (scrm) siRNA, total IMPA1 siRNA, or IMPA1-L 

siRNA, in the presence of ms HA-IMPA1-rat IMPA1-SS or ms HA-IMPA1-rat IMPA1 

SS+120, and GFP. Explants were fixed 6 days after electroporation and stained with GFP 

and neurofilament antibodies. Expression of ms HA-IMPA1-rat IMPA1SS+120 and of ms 

HA-IMPA1-rat IMPA1L, but not of ms HA-IMPA1-rat IMPA1-SS rescued axonal 

degeneration induced by total IMPA1 silencing. Scale bar 75µm.(F) Quantitative analysis 

of the data shown in (E). Averages ± s.e.m. of 4 independent experiments. *P < 0.05, **P 

< 0.005, *** P ≤ 0.001 and ****P < 0.0001 one-way analysis of variance, Tukey’s 

multicomparison test. See also Figure S3. 
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Figure 7: A Upf1-HuD complex mediates remodelling of IMPA1 3’UTR. (A) Western 

blotting of Upf1 and PI3K subunit p85, as loading control, on axons and cell bodies of 

sympathetic neurons grown in compartmentalized chambers (n=3). (B) Partial list of 

endogenous Upf1 interactors in PC12 cells identified by mass-spectrometry n.d.= not 

detected. (C and D) Western blot analysis of Upf1 (Left) or HuD (Right) immuno-

precipitated proteins in extracts of naïve and NGF-differentiated PC12 cells (C) or primary 

sympathetic neurons (D). HuD, Ago2 and Pabpc4 co-immuno-precipitate with Upf1. a-

tubulin and hsp90 were used as loading controls. (n=3). The enrichment of the indicated 

interactors in the Upf1 immunoprecipitates of naïve or differentiated (+NGF) PC12 cells 

as measured by mass-spectrometry is shown in the table. (E) IMPA1-L mRNAs was 

assayed by qRT-PCR on sympathetic neuron lysates immunoprecipitated with normal IgG 

or Upf1 antibody (Top), or normal IgG and HuD antibody (Bottom). (n=3) *P< 0.05, 

**P<0.005 unpaired one-tailed t test. (F) Silencing of Upf1 interacting proteins decreases 

the remodelling of IMPA1-L 3’UTR. IMPA1-L cleavage was assayed by RML qRT-PCR on 

RNA purified from PC12 cells transfected with the indicated siRNAs. Averages ± s.e.m. of 

at least 3 independent experiments *** P < 0.0005 and **P < 0.005, one-way analysis of 

variance, Dunnett’s multiple comparison test. See also Figure S5. 
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Figure S1: 3’ end-RNA-seq of linearly amplified RNA from axons and cell bodies of 

sympathetic neurons. Related to Figure 1. (A) (Upper panel) Schematic representation 

of a compartmentalized chamber. Neurons are plated in the central compartment and 

axons grow into the lateral compartments. (Lower panel) Immunofluorescence of 

sympathetic neurons grown in compartmentalized chambers for 10 days and stained with 

DAPI (blue) and b-tubulin (white) antibody. Scale bar 500μm. (B) Schematic 

representation of linear amplification of mRNA. (C) Reads accumulation at 3’ end of the 

Ensembl transcripts in function of transcript length. (Upper) Read density coverage and 

(Lower) cumulative read density along transcript are shown. (D) Average length of the 

3’UTRs of 7,506 Ensembl transcript ID extended by intersecting expressed genomic 

fragments with Ensembl Rn5 annotation. (E-G) Percentage of 3’UTR isoforms for which 

the indicated region surrounding the 3’ end intersects with a PAS obtained from 3’-Seq 

data (E), a 3’ termini annotated in RefSeq (Rn5, Rn6 and XenoRefSeq) or Ensembl (Rn6) 

(F), or a PAS annotated in APADB or PolyA-DB2 (G). Comparison between combined 

(Left) and individual (Right) datasets is shown in each panel. 
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Figure S2: Analysis of 3’UTR length and PAS choice in axonal and cell bodies 

transcriptomes. Related to Figure 2. (A) Identification of 3’UTR isoforms expressed in 

cell bodies (blue) and axons (green) performed by fitting bimodal distribution on log2-raw 

count mapping the 500 nts distal region of 3‘ end. (B) Number of 3’UTR isoforms (left) and 

Ensembl transcript ID (right) expressed in cell bodies and axons. (C) Scatter plots of the 

relative use of promoter-proximal and promoter-distal poly(A) sites in two biological 

replicates each of cell bodies (upper panel) and axons (lower panel) samples. (D and E) 

Examples of transcripts with a marked shift towards increased promoter-distal poly(A) site 

usage in axons compared to cell bodies (D) or with a marked shift towards increased 

promoter-proximal poly(A) site usage in axons compared to cell bodies (E). (F) Examples 

of 3 transcripts with single 3’UTR isoforms. 
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Figure S3. Controls for construct expression and antibody specificity. Related to 

Figure 3. (A) Western blotting analysis of GFP and a-tubulin on protein extracts of PC12 

cells transfected with either MyrdEGFP-Impa1-L or MyrdEGFP-Impa1-SS. Ctr: non 

transfected cells. (B) Representative images of naïve PC12 cells transfected with empty 

vector pcDNA3 or myrdEGFP-IMPA1SS or myrdEGFP-IMPA1L, and mCherry plasmids. 

Cells were fixed 3 days after transfection and stained with GFP and DsRed antibodies. 

Nuclei are counterstained with DAPI. The non specific band present in western blot (A) 

does not affect immunofluorescence staining. Scale bar 75µm. (n=3). 
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Figure S4: Specificity of silencing and rescue constructs. Related to Figure 6. (A) 

IMPA1, hemagglutinin (HA) and α-tubulin western blotting of PC12 cells transfected with 

the indicated siRNAs and vectors encoding HA-tagged mouse IMPA1 with either the long, 

the super-short or the super-short+ IMPA1L localization signal (SS+120) rat Impa1 3′ UTR 

(ms HA-IMPA1-rat IMPA1L, ms-HA IMPA1-rat IMPA1-SS and ms HA-Impa1-rat IMPA1 

SS+120, respectively). Higher band in top panels is HA-tagged mouse IMPA1 and lower 

band is endogenous rat IMPA1 (n= 3). (B) Summary table of the localization ability and 

silencing susceptibility of the constructs used in A and in Figure 6. 
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Figure S5. Remodelling of IMPA1 3’UTR depends on Upf1 and HuD complexes. 

Related to Figure 7. (A) Workflow employed for the discovery of UPF1 interactors in naïve 

and NGF-stimulated cells. (B) Arf1 mRNA was quantified by qRT-PCR in sympathetic 

neurons lysates immunoprecipitated with normal IgG or Upf1 antibody (top). Normalized 

expression of IMPA1-L in sympathetic neurons lysates used in RIP experiments (bottom). 

(n=4). *P < 0.05 unpaired one-tail t-test. (C) RT-qPCR to evaluate efficiency of HuB, HuD, 

Ago2 and Pabpc4 silencing. n=4-6. * P < 0.05, ** P < 0.005, *** P < 0.0005 Paired t-test. 
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