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Abstract

Most choices people make are about “matters of taste” on which there is no universal, objective truth.
Nevertheless, people can learn from the experiences of individuals with similar tastes who have already
evaluated the available options—a potential harnessed by recommender systems. We mapped recommender
system algorithms to models of human judgment and decision making about “matters of fact” and recast
the latter as social learning strategies for “matters of taste.” Using computer simulations on a large-scale,
empirical dataset, we studied how people could leverage the experiences of others to make better decisions.
We found that experienced individuals can benefit from relying mostly on the opinions of seemingly similar
people. Inexperienced individuals, in contrast, cannot reliably estimate similarity and are better off picking
the mainstream option despite differences in taste. Crucially, the level of experience beyond which people
should switch to similarity-heavy strategies varies substantially across individuals and depends on (i) how
mainstream (or alternative) an individual’s tastes are and (ii) how much the similarity of the individual’s
taste to that of the other people in the population differs across those people.

Keywords: Social learning; wisdom of crowds; expert crowd; recommender systems; learning.

1 Introduction

Where should I go for my next vacation? Which novel should I read next? Most choices people make are

about “matters of taste” on which there is no universal, objective truth. Can people increase their chances of

selecting options that they will enjoy? One promising approach is to tap into the knowledge of others who have

already experienced and evaluated the available options. The recommender systems community has leveraged

this source of knowledge to develop collaborative filtering methods, which estimate the subjective quality of

options for people who have not yet experienced them [66, 1]. One key insight from this field is that, because

tastes differ, building recommendations based solely on the evaluations of individuals similar1 to the target

individual often improves the quality of the recommendations [42]. Although the consumer industry enables

1Similarity is typically defined as the Pearson correlation between the ratings of options evaluated by both the target and another
person.
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people to benefit from recommender systems in some domains (e.g., choosing a movie to watch online), neither

algorithms nor “big data” are at hand for many everyday decisions. It thus remains unclear how individuals

who share prior experience about the available options with only a relatively small community of peers can

best leverage the experience of others. Should they use strategies that aggregate the opinions of several other

individuals or is it better to rely on the opinions of just a few similar others? Although most everyday decisions

are about “matters of taste,” there has been surprisingly little study of the social learning strategies applied.

Research on advice taking, social learning, and judgment aggregation in cognitive science, judgment and

decision making, the social sciences, and biology has focused almost exclusively on social learning strategies

for “matters of fact” with an objective ground truth [80, 9, 41, 38, 63, 55, 23, 54, 4]. Despite studies empirically

showing that people are swayed more by the opinions of similar individuals than by those of less similar others

[5, 76, 10, 7, 33, 24, 18], the precise cognitive strategies that people could use to inform their own tastes

remain unclear. Should everybody use the same strategies and, if not, what are the crucial factors deciding

what strategy works best for whom and why?

In this article, we go beyond the small body of literature on social learning strategies for “matters of taste”

[85, 59, 70] in three main ways. First, we undertake an exercise in theory integration by capitalizing on

the striking conceptual similarities between seminal recommender system algorithms and both (i) models of

judgment and categorization and (ii) models of social learning and social decision making about matters of

fact; specifically, we recast the latter two classes of models as social learning strategies for matters of taste.

Second, guided by this mapping, we investigate how ordinary people with limited experience can use different

strategies to leverage the experience of others to make better decisions about matters of taste. To this end, we

examine the inevitable trade-off between harnessing the apparent (dis)similarity between people’s tastes—to

discriminate between more and less relevant people—and estimating those similarities accurately enough on

the basis of limited shared experience (i.e., the number of options both the decision maker and the others in

the community have experienced). Third, we explore how this trade-off plays out for different individuals

depending on how similar their tastes are to those of the other people in the population (e.g., for people with

mainstream vs. alternative tastes).

We studied the role of experience and inter-individual differences in taste using a large-scale empirical

dataset on people’s ratings of 100 jokes. This dataset has been widely studied by the recommender systems

community as a benchmark dataset [34]. It is unique in the literature because several thousand people have

evaluated all the available options—in contrast to other well-known recommender datasets (e.g., MovieLens,

LastFM, or Netflix), where the evaluations of even the most popular items are very sparse. Using such a dense

dataset allowed us to treat the ratings of each individual and her peers as a unique prediction environment, in

which a given individual’s rating is the ground truth to be predicted. In total, this approach yields 14,000 unique

prediction environments with a total of 1,400,00 item evaluations, allowing us to study how the performance of

different strategies is affected by the statistical characteristics of each prediction environment. For comparison,

the largest testbeds of unique prediction environments for factual problems with informational and social cues

contain 63 and 90 environments, respectively [77, 56].

Using this large-scale dataset, we will show that the level of an individual’s previous experience within a

domain determines the effectiveness of different social learning strategies. Experienced individuals can benefit

from applying strategies that rely on the estimation of similarity. Inexperienced individuals, by contrast, should
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apply strategies that unconditionally aggregate the opinions of many individuals, despite differences in taste.

This result holds across a number of settings (differing in, e.g., the size of the community of peers or the average

number of items experienced in the population) and for almost all individuals in the dataset. Unless they have

a considerable level of experience, people’s estimates of similarity are likely to be error-prone, and relying

on them does more harm than good. People with alternative (or less mainstream) tastes and high dispersion

in taste similarity with other people can benefit most from accurately identifying similar others—for them,

the average experience of the community is typically uninformative. People with mainstream tastes and low

dispersion in taste similarity with others, in contrast, are already doing well by unconditionally aggregating

the opinions of the crowd. For such people, strategies that rely heavily on similarity cannot beat this simple

aggregation strategy—even at high levels of experience.

2 Mapping Recommendation System Algorithms to Informational and Social
Cue-Based Strategies

Only a handful of studies have formalized and explored social learning strategies for matters of taste, where

people use the experiences of others to make predictions about their own future taste experiences, and the

conditions under which different strategies thrive or fail. Yaniv et al. [85] studied experimentally the conditions

under which people give more weight to the expressed preference of a similar individual than to that of a group

of randomly sampled individuals; in a simulation study with synthetic data, they demonstrated the prescriptive

appeal of these two simple strategies. Müller-Trede et al. [59] investigated the conditions under which people

can benefit from taking the advice of a crowd of similar or randomly chosen individuals, as opposed to focusing

on the opinion of just one other individual, sampled either at random or on the basis of similarity. They

theoretically studied how people can leverage the advice of several similar others to predict their own future

taste experiences and corroborated their predictions using data on people’s preferences for music and short

movies. Finally, Gershman et al. [70] proposed a model in which people rely on the revealed choices of other

individuals to infer the latent preference groups to which these individuals belong and then use this information

to weight the opinions of similar others. The authors observed a good correspondence between their model

and human behavior in a series of experiments.

Here we formalize several social learning strategies for matters of taste and study the extent to which

applying these strategies would lead people to choose experiences they will enjoy. We started by identifying

conceptual similarities between early recommender system algorithms and models typically applied to the task

of predicting matters of fact—that is, where people have access to either informational cues potentially related

to an objective criterion (e.g., using number of movie theaters in a city to predict its population size) or social

cues (i.e., opinions of others on the same objective criterion). We used this correspondence to recast these

models as social learning strategies for matters of taste. Table 2 displays several candidate social learning

strategies—some of which were inspired by seminal algorithms from recommender system research—that can

be used to predict an individual’s future evaluations of an option based on the past evaluations of others.

In the following, we illustrate some of the strategies using the example of deciding which movie to watch

based on other people’s recommendations. This fictional dataset (see Table 1) has the same structure as the

large-scale datasets used in recommender system research and in our own study below. Sofia likes superhero
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movies and wants to decide whether to watch Batman or Fantastic Four. Her friends have already seen both

movies. She and her friends have all watched and evaluated several other movies. From Sofia’s perspective, her

own future taste experiences are the criterion values she seeks to predict, and her friends’ evaluations are cues

she can use to predict them. Based on their past evaluations, Sofia thinks that she and Bob have similar tastes.

If Bob truly were her “taste doppelgänger” she could simply imitate his evaluations and arrive at accurate

estimates of her own future enjoyment (doppelgänger strategy, see Table 2). But it is unclear to what extent

this apparent similarity—in just a small set of shared past experiences—will generalize to future cases. Sofia

may thus prefer to take other people’s evaluations into account as well. One approach would be to assign

equal weights to all individuals and simply use the average evaluation (i.e., the “mainstream” opinion; whole

crowd strategy; see Table 2). Yet that would also incorporate the evaluations of individuals with possibly

very different—or even antithetical—tastes (e.g., Lou). To avoid this problem, Sofia could instead rely on

the opinions of a select few similar people, such as Bob and Linda (clique strategy; see Table 2) or people

whose tastes are at least minimally similar to hers (and thus exclude Lou; similar crowd strategy; see Table 2).

Alternatively, she could assign weights to people’s opinions in proportion to their similarity to hers (similarity-

weighted crowd strategy; see Table 2). Finally, she could search for movies that the others rated similarly to

Batman and movies they rated similarly to Fantastic Four. She would then weight her past evaluations of these

proxy movies according to their similarity to the target and choose the one which shows the highest promise

(similar options strategy, see Table 2; (e.g., Spiderman could serve as a proxy movie for Batman). 2

Movie John Linda Bob Mary Lou Average Sofia
Superman 3 4 2.5 4.5 3 3.6 2.5
Spiderman 4 4.5 3 2 2 3.1 3
Batman 5 5 2 1 3 3.2 ?
Fantastic Four 2 3 2.5 3 2.5 2.6 ?
X-Men 1 1.5 2 1.5 4 2 2

Table 1: Fictional dataset illustrating the strategies potentially used by humans and recommender algorithms
to predict the taste of an individual. Sofia is the target individual trying to predict which movie— Batman
or Fantastic Four—she will enjoy more based on the ratings of five friends. The movies are rated on a scale
ranging from 1 to 5, where higher values indicate more positive reviews. This prediction challenge is the same
for both recommender algorithms relying on collaborative filtering, which predict a user’s taste by considering
the ratings of all other users, and for humans who try to predict their own future taste experience based on the
experiences of their peers. Some key differences between the two domains are the amount of data available
and the respective computational demands: Recommender algorithms operate on very large matrices with
thousands of users and items and can do calculations effortlessly, whereas humans are constrained by the
limits of their social network and their bounded cognitive capacities.

2Here we defined similarity as the correlation between the expressed opinions of different people. Past studies on the role of
similarity in social influence have defined similarity either by overlap in observed past choices [5, 76, 10, 24, 85], similar demographic
profiles [5, 76, 7, 33, 85], or friendship relations [18]. Cognitive scientists have mostly investigated similarity between different objects
and the role it can play in inference or categorization [60, 37]; the similar options strategy examined in this paper relates to this latter
interpretation of similarity.
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Social learning strategy Parallels in the literature

Strategy Verbal description Formal definition Informational cues Social cues Recommender systems

Doppelgänger
[85]

Find individual s with the
most similar taste and adopt
that individual’s evaluations
as your own estimates.

ûi = us
Take the best [30], single
attribute [49]

Imitate the best, best
member [68, 87]

Nearest neighbors
(k = s = 1)

Whole crowd
[85, 59]

Average the evaluations of all
N other individuals (i.e., go
with the mainstream).

ûi = 1/N×∑
N
j=1 u j Equal/unit weights [15] Averaging [20]

Nearest neighbors
(k = N), often used as a
benchmark [74]

Clique [59] Average the evaluations of
the k most similar individuals. ûi = 1/k×∑

k
j=1 u j –

Select crowd [56], expert
crowd [35]

Nearest neighbors
1 < k < N [74]

Similar crowd

Average the evaluations of all
k individuals whose taste is
correlated with yours above a
similarity threshold t.

ûi = 1/k×∑
k
j=1 u j – –

Common implementation
of nearest neighbors [16]

Similarity-
weighted
crowd

Weight the evaluations of all
N individuals according to
their similarity to your taste.

ûi =
1

∑
N
j=1 w j

∑
N
j=1 w j×u j

Weighted average
[40, 11] Weighted crowd [13] Weighted neighbors [65]

Similar options

Find the k most similar
options (i.e., with similar
evaluation profiles across
people) and weight your own
evaluations of them according
to their similarity.

ûi =
1

∑
k
l=1 wl

∑
k
l=1 wl×ul Exemplar models [53, 50] –

Item-based algorithms
[72]

Random other
[32]

Select an individual r at
random and adopt that
individual’s evaluations as
your own estimates.

ûi = ur Minimalist [30] Random copying [8] Occasionally used as
benchmark strategy

Table 2: Social learning strategies for matters of taste conceptually similar to strategies using informational cues or social cues (i.e., people’s opinions). “–” denotes
that we could not find examples for that combination of strategy and research stream in the literature. Strategies incorporating similarity information are typeset in
italics and those averaging across several individuals’ evaluations are typeset in bold. All strategies are person based, except similar options, marked in blue. All
strategies first estimate the expected utility ûi (i.e., enjoyment) of each option i and then select the option with the highest estimated utility; when several options have
the same estimated utility, one of the tied options is chosen at random.
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The proposed mapping (Table 2) emphasizes the close correspondence between recommendation algo-

rithms on the one hand and informational and social cue-based decision strategies on the other. The social

learning strategies can be placed on a continuum between strategies relying solely on similarity information

and strategies relying solely on a simple aggregation of opinions irrespective of similarity. Strategies in be-

tween those two endpoints put more or less weight on aggregation or similarity, respectively. Note that for

some of the combinations of strategy and research stream, we could not find any examples in the literature.

For instance, the similar crowd strategy has been implemented in the recommender system literature, but it has

not yet been studied as an informational or social cue-based strategy in other domains. Likewise, the similar

options strategy corresponds to exemplar models from the informational domain and to item–item algorithms

in collaborative filtering, but it has not been yet studied in the social-cue domain. These unexplored strategy–

domain combinations indicate possibilities for future research and thus illustrate the value of theory integration

in revealing promising research avenues.

3 When and Why Are Social Learning Strategies for Matters of Taste Ex-
pected to Perform Well?

The performance of strategies using either informational or social cues to predict matters of fact (see Table 2)

has been studied extensively in cognitive psychology, forecasting, and machine learning [84, 31, 14, 78, 56].

There are two important insights from these investigations. First, the amount of data that is used to train a

given strategy is crucial for its performance. Strategies that rely on the accurate estimation of many parameters

require a decent amount of data before they start paying off [29, 25, 49, 56]. Second, the performance of

any strategy depends on the structure of the task environment in which it is applied. Two key factors typically

affecting the performance of strategies are the mean correlation between cues and the criterion value (i.e., mean

cue–criterion correlation) and the dispersion across those cue–criterion correlations ([56, 77].

Strategies assigning equal weights to all informational cues or averaging the opinions of many individu-

als tend to perform relatively well when the mean cue–criterion correlation is high and the dispersion in the

predictive power of cues is low [20, 49, 56]. Single-cue strategies, which rely only on the seemingly most

important cue, tend to perform well relative to more complex strategies when (i) there is a high correlation

between the criterion value and the cue deemed most important and (ii) this cue is positively correlated with

the other cues, implying that it already captures the predictive information contained in the additional, less pre-

dictive cues [49, 14, 13, 56]. Strategies that rely on a few very good predictors or assign different weights to

predictors fall in between averaging and single-cue strategies and are expected to perform better as the disper-

sion in the predictive power of the cues in the environment increases, because (i) it is easier to identify highly

valuable predictors and forecasters [56, 58, 35] and (ii) differential weighting can reflect large differences in

the predictive values of the cues [49]. How do these results transfer to the domain of taste?

Experience—Amount of learning data in a domain: In the domain of taste, the size of the training

sample corresponds to the number of options individuals have experienced in the past. Strategies that rely on

estimates of taste similarity cannot leverage the knowledge of similar others unless an individual shares enough

experiences with other people to be able to estimate their similarity. A comparable challenge, commonly re-

ferred to as the user cold start problem [22], is faced by recommender system algorithms when recommending
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options to new users about whom they know little or nothing. Strategies relying heavily on similarity are ex-

pected to improve in performance as an individual acquires new experiences. In contrast, aggregation-heavy

strategies, which place little (to no) weight on similarity should perform well even with little experience, be-

cause they do not require accurate estimates of similarity. In sum, a large pool of shared experiences between

an individual and her peers should lead to better estimation of similarity and give similarity-heavy strategies

an edge over aggregation-heavy strategies.

Similarity to the average person in the crowd—Mean cue–criterion correlation: How does the mean

cue–criterion correlation translate to the domain of taste? People’s tastes are subjective. The tastes of each

individual in the population can therefore be seen as a unique criterion value that he or she seeks to predict.

Because the opinions of others can be treated as predictive cues, it is crucial to know how an individual’s taste

correlates with the tastes of her peers. In this setup, the mean correlation between an individual and her peers

(i.e., mean taste similarity) corresponds to the mean cue–criterion correlation in “matters of fact” problems

(see also [59]). Depending on people’s mean taste similarity, the relevance of mis-estimating similarity will

vary widely across a population. For people who are, on average, a lot like their peers (i.e., have mainstream

tastes), strategies aggregating the opinions of many different peers can be expected to perform quite well, even

when experience is limited (see [15, 19, 11]). People with alternative tastes (i.e., mean taste similarity < 0),

in contrast, will perform worse than chance by unconditionally following the whole crowd’s opinion. Rather,

they can be expected to benefit considerably from finding and relying on just a few similar others.

Dispersion in taste correlations—Dispersion in the predictive value of cues or experts: For all strate-

gies relying on similarity, the dispersion in the predictive power of the cues is also crucial [51, 56]. Even if

the mean predictive power of cues is low, one cue or several cues might still be of appreciably higher quality

than the others and capture most of the predictive information in a problem. Because every other individual

in the population is a potential predictor of one’s taste, “dispersion in taste similarity” can be operationalized

as the standard deviation of the similarity correlations between an individual and everybody else. Individuals

with low dispersion in taste similarity can reap only limited benefits from using similarity-heavy strategies and

correctly estimating similarity. For them, any weighting scheme will work equally well (see [15, 11]). People

with higher dispersion in taste similarity, in contrast, can learn much more by correctly estimating similarity.

For them, assigning the right weights to the right people is crucial. Individuals with low or negative mean taste

similarity with others and high dispersion in taste similarity can be expected to benefit the most by correctly

assigning weights to other people or by finding a few very similar individuals.

Regions of best performance: Having established the connection between predicting matters of fact and

matters of taste, we can derive predictions about when specific social learning strategies for matters of taste can

be expected to perform well: Strategies that rely on the estimation of similarity information should perform

better as the level of shared experience increases, whereas strategies ignoring similarity information should

have an edge when individuals have little experience in a domain. Yet the level of experience at which people

will benefit from switching from aggregation-heavy strategies to similarity-based strategies can be expected to

vary considerably depending on their mean taste similarity and the dispersion in taste similarity. For individuals

with low mean taste similarity and high dispersion in taste similarity, we expect little experience to be needed

for similarity-heavy strategies to outperform aggregation-heavy strategies. For individuals with high mean taste

similarity and low dispersion in taste similarity, we expect more experience to be required before similarity-
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heavy strategies outperform aggregation-heavy strategies.

4 Simulation Study

To investigate how the amount of experience and individual tastes impact the performance of the proposed

social learning strategies (see Table 2), we simulated the performance of those strategies in Jester, a large-scale,

real-world dataset [34]. The Jester dataset has been used extensively to study collaborative filtering algorithms.

It contains 4.1 million evaluations of 100 jokes by 73,421 participants. In contrast to other datasets studied by

the recommender system community, a large number of participants in the Jester dataset evaluated all options.

To the best of our knowledge, although the other established recommender datasets may contain millions of

evaluations, even the most popular items have been evaluated by only a small subset of users. Using the rich

Jester dataset allowed us to study the principles underlying the success of different social learning strategies at

a very large scale [36, 61].

To test our predictions on how the amount of shared experience influences the strategies’ performance,

we experimentally varied the number of evaluations used for each of the simulated decision makers (i.e., the

number of options previously experienced and rated in that domain; e.g., the number of rows in Table 1). As

experience increased, the strategies relying on similarity could thus base their similarity estimates on more

data. Furthermore, the social network from which a person can leverage vicarious experience is likely much

smaller than the thousands of people available in typical recommender system datasets. The cognitive limit of

the number of stable relationships that people can maintain is estimated to be around 250 [17]. To mirror this

real-world feature, we therefore opted to simulate small “communities” of 250 members each (as opposed to

letting decision makers have access to all other individuals in the population). In the Supplementary Material,

we present variations on the main simulation in which the community size is much smaller (i.e., 25) or equals

the entire population (i.e., all 14,000 participants). For all three community sizes, the patterns of results are

qualitatively similar and lead to the same conclusions.

4.1 Method

The Jester3 dataset was created by an online recommender system that allowed Internet users to read and rate

jokes on a scale ranging from not funny (–10) to funny (+10) (see also Figure S1 in the Supplementary Mate-

rial). We used the participants’ funniness ratings both as criterion values and to estimate similarity between

individuals.

For simplicity, we only used the data of participants who evaluated all jokes (reducing the number of partic-

ipants from 73,421 to 14,116). We randomly selected 14,000 participants in order to be able to partition them

into evenly sized communities of 250 members each. In line with previous work in the recommender system

literature, we used the Pearson correlation coefficient as a measure of similarity [43].4 In each simulation run,

we performed the following steps:

• From the 14,000 individuals, we randomly generated 56 communities with 250 members each (14,000/250).

3http://eigentaste.berkeley.edu
4The Pearson similarity coefficient between two individuals or two items i and j is defined as w(i, j) = ∑

k
n=1(uin−ūi)(u jn−ū j)

∑
k
n=1

√
(uin−ūi)2(u jn−ū j)2
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• We randomly divided the jokes into a training set (x jokes) and a test set (10 jokes); this assignment was

the same for all individuals within a particular community but differed across communities. For each

individual within each community, the different social learning strategies were fitted to the training set,

assuming that individuals could only access the ratings of their peers within their own community.

• For each individual (within each community), we generated all 45 possible pair comparisons within the

test set [10× (10−1)÷ 2] and examined the strategies’ performance in predicting which of the two

jokes in a pair that individual rated higher, resulting in 45 pair comparisons per individual, 11,250 per

community (45×250), and 630,000 in total (11,250×56).5

• For each strategy and level of experience (x = 5, 10 ... 85, 90) we recorded the proportion of correct

predictions.

This procedure was repeated 100 times and results were averaged. We investigated how the strategies’

performance changed as a function of experience by repeating the procedure for different numbers (x) of jokes

experienced in the training set (varying from 5 to 90 in steps of 5). In the Supplementary Material, we also

present the results for several variations of this baseline simulation, all of which yielded similar qualitative

results and the same conclusions.

4.2 Results

We start by looking at the average performance across all 14,000 participants and examining how the different

strategies perform as a function of experience (i.e., the number of jokes used to estimate similarity). Going

one step further, we then investigate how the strategies perform for different individuals, depending on how

their tastes correlate with those of others. We examine whether an individual’s mean taste similarity with

other participants and dispersion in taste similarity impact the success of different social learning strategies

as predicted in the previous section. Figure 1A shows the average performance of each strategy as a function

of experience; Figure 1B shows the proportion of individuals for whom a given strategy performed best at

different levels of experience.

4.2.1 How does the strategies’ performance change as experience increases?

Although strategies that use a combination of similarity and aggregation perform best when people have ex-

perienced many options (Figure 1A), this is not the case at low levels of experience. For the lowest levels of

experience, following either the whole crowd or a similar crowd is the best performing strategy. Following a

similarity-weighted crowd or a clique starts outperforming the whole crowd, which aggregates opinions uncon-

ditionally, only after approximately 15 options have been experienced. The similarity-weighted crowd strategy

outperforms the similar crowd strategy after approximately 20 options; the clique strategy needs to experience

35 options to do so. These aggregate results are corroborated by individual-level analyses (i.e., proportion of

people for whom a strategy performed best; Figure 1B). At the lowest level of experience, the aggregation

strategies perform best for more than four fifths of the population. As people become more experienced, the

5In the very few cases where two jokes had exactly the same funniness rating, we picked one of the jokes at random.
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Figure 1: Panel A: The performance of social learning strategies as a decision maker’s experience increases
(i.e., with the number of jokes experienced and evaluated). The curves show the average performance across
all 14,000 participants. The strategies are grouped by color into those that rely primarily on aggregation (blue),
those that rely primarily on similarity (red), and three benchmark strategies (i.e., the random other strategy, in
black, see also Table 2; a joke length strategy, which uses the length of the joke to infer its quality, in grey;
and the similar options strategy, which corresponds to an item–item collaborative filtering algorithm and uses
people’s ratings for the k most similar options as a proxy to decide which of the two unevaluated options to
choose, in brown). The random other strategy predicted 54% of pairs correctly, which indicates that there is
a small shared sense of humor in the population (i.e., slightly better than chance; see also Figure S8 in the
Supplementary Material). Panel B: The percentage of people for whom each strategy performed best (y-axis)
as a function of the number of options experienced (x-axis). The doppelgänger and random other strategies
are barely visible because they almost never performed best for any participant at any level of experience.

proportion of the population for which these strategies perform best wanes. At the highest level of experience,

they perform best for only 10% of the population. Overall, the performance of strategies that heavily rely on

similarity improves markedly as experience increases, whereas strategies that rely more on aggregation (and

less on similarity) start out at high performance levels—even with little (or no) experience—but improve only

little, if at all.

4.2.2 The informational value of dissimilar others

To sum up the results so far, decision makers who have not yet experienced many options are well advised to

simply aggregate the evaluations of individuals who seem to have at least minimally similar (i.e., positively

correlated) tastes (similar crowd) or even to unconditionally aggregate the evaluations of all individuals (whole

crowd). Although the opinions of truly similar individuals are more informative than those of truly dissimilar

individuals, relying more on seemingly similar individuals is only beneficial to the extent that the similarity
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Figure 2: Strategies’ performance depending on how people’s tastes correlate with those of others in the
population after experiencing 25 options. The scatter plots represent the strategies’ performance for each
of the 14,000 individuals (i.e., proportion of correct predictions, color coded). Each point represents one of
the 14,000 individuals and thus represents a unique prediction environment for social learning strategies for
matters of taste. Each individual is positioned according to their mean taste similarity with all other 13,999
individuals (x-axis) and the dispersion in taste similarity with other individuals (i.e., standard deviation of these
correlations; y-axis). Dashed horizontal and vertical lines show the overall average of the mean correlations
(0.11) and standard deviations (0.13). All strategies perform better for individuals with more mainstream tastes
and higher dispersion in taste similarities with their peers except for random other, which randomly selects a
person to imitate.

estimates are accurate enough. When experience is limited, estimates of similarity are apparently often not

accurate enough to be of much—or any—use. The doppelgänger strategy (i.e., relying solely on the most

similar people) does not perform that well because of the difficulty of reliably estimating similarity based

on limited experience. Mirroring results from research on the wisdom of small crowds [35, 56], our findings

showed that taking into account additional—although less similar—peers and averaging their recommendations

markedly improves performance. This point can be seen in the clique strategy, where the number of peers (k)

whose evaluations are averaged determines how selectively or broadly this strategy relies on similarity. In

the results presented in Figure 1, k was fixed at 10. Additional simulations that varied the value of k showed

that with little experience it is better to rely on large cliques (approx. 100), whereas with the highest level of

experience, performance peaks with moderately sized cliques (approx. 30; see Figure S8 in the Supplementary

Material).

4.2.3 Interindividual variability in tastes

So far we have examined how strategies perform irrespective of the interindividual differences in how people’s

tastes correlate with those of other people. Yet, as outlined in the previous section, the cost of mis-estimating
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similarity can be expected to be largest for people whose tastes differ markedly from their peers’ average tastes

and whose peers differ considerably among themselves in how similar they are to the target person. To in-

vestigate the relation between the statistical structure of taste and the strategies’ performance, we first need to

quantify these two aspects of people’s tastes. To this end, we calculated for each of the 14,000 individuals the

mean and standard deviation of their taste correlations with all 13,999 potential peers, indicating the average

similarity with their peers and the dispersion in those taste similarities, respectively. The overall average simi-

larity and dispersion were µ = 0.11 and σ = 0.13, respectively, which indicates a relatively low level of shared

taste in the population. By statistical necessity, the tastes of the majority of people are positively correlated

with those of other individuals, yet a sizable minority of individuals have neutral—or even antithetical—tastes

when compared to the mean evaluations of the entire population (as reflected by near zero or negative mean

correlations; see Figure 2). On both sides of this spectrum, we can observe individuals with both high and

low dispersion of taste similarity across peers (as indicated by the standard deviations). To put the observed

values in context, we can contrast them with those of two idealized, synthetic individuals. First, a perfectly

mainstream individual whose tastes are identical to the predictions of the whole crowd (i.e., whose evaluation

of each joke is identical to the average evaluation across all participants) would have a mean taste similarity of

0.33 and a dispersion of 0.18. Second, an idiosyncratic individual whose appreciation of the jokes is random

(i.e., sampled from uniform distributions covering the whole range of the evaluation scale) would have a mean

taste similarity of 0.01 and a dispersion of 0.08. This comparison shows that people differ markedly in how

similar their tastes are to those of their peers and that every individual thus represents a unique environment

for contrasting the performance of the social learning strategies.

4.2.4 How well do the strategies perform for different individuals?

Figure 2 shows how well the strategies perform for individuals with different tastes, ranging from mainstream

to alternative, and with different dispersions in taste similarity. For illustration, we focus on the level of expe-

rience at which the best-performing similarity-heavy strategies and the aggregation-heavy strategies perform

similarly well (approx. 25 options; see Figure 1) and highlight the interaction between mean taste similarity

and dispersion in taste similarity (for results at other levels of experience, see Figure S9 in the Supplementary

Material). First, as expected, all strategies perform best for individuals with high mean taste similarity. The

whole crowd strategy correctly predicts more than 70% of the choices for individuals with a high mean taste

similarity, but performs worse than chance for individuals with alternative tastes. Crucially, for all strategies

that rely on similarity to some extent, this result is moderated by dispersion in taste similarity, as comparing

two individuals with the same mean similarity shows (see Figure 2): As we move towards lower mean sim-

ilarity, the losses in predictive ability are smaller for individuals with high (as compared to low) dispersion

in taste similarity with their peers. This result is modest for the similar crowd strategy, which only excludes

dissimilar individuals, and for the doppelgänger strategy, which relies on only the most similar individual, but

it is particularly pronounced for the similarity-weighted crowd and clique strategies, where the differences in

performance are as big as 10 percentage points (to verify this, follow a vertical line from bottom to top in

Figure 2).

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2017. ; https://doi.org/10.1101/170191doi: bioRxiv preprint 

https://doi.org/10.1101/170191
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Best-performing strategy depending on how people’s tastes correlate with those of others in the
population. The scatter plots shows for each individual the best performing strategy when only 10, 50, or
90 random items, respectively, were used to estimate similarity (left- to right-most panel; 90 items represents
the highest level of experience used in the simulation). Each point represents one of the 14,000 individuals
and thus a unique prediction environment for social learning strategies for matters of taste. Each individual is
positioned according to its mean taste-similarity with all other 13,999 individuals (x-axis) and the dispersion in
taste similarity with other individuals (i.e., standard deviation of these correlations; y-axis). Dashed horizontal
and vertical lines show the overall average of the mean correlations (0.11) and standard deviations (0.13).

4.2.5 Which strategies performed best for different individuals and levels of experience?

Figure 3 shows the best performing strategy for each individual for three levels of experience: people who

are relatively inexperienced (10 experiences), moderately experienced (25 experiences), or who have expe-

rienced all options in the training set (90 experiences). Among inexperienced participants, the aggregation

strategies perform best for almost all individuals with a positive mean taste similarity. Comparison of the

aggregation-heavy strategies shows that the whole crowd strategy dominates for individuals with high mean

taste similarity and low dispersion in taste similarity, while the similarity-weighted crowd strategy performs

best for individuals with moderately high mean taste similarity and high dispersion in taste similarity. The

strategies that rely on similarity perform best only for individuals with alternative or neutral taste similarity

and high dispersion in taste similarity. The pattern of results for moderately experienced participants is very

different. Here, aggregation-heavy strategies outperform similarity-heavy strategies only for individuals with

positive mean taste similarity and low dispersion in taste similarity. The similarity weighted crowd strategy

performs best for individuals with high dispersion in taste similarity, while the clique strategy performs best

for individuals with low or negative mean taste similarity and low dispersion. At high levels of experience,

the similarity-heavy strategies take over most of the occupied parameter space. Yet even at such high levels of

experience, the whole crowd strategy still performs best for individuals with positive mean taste similarity and

very low dispersion in taste similarity.
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5 General Discussion

Whether it is a matter of which massive open online course (MOOC) to participate in, which music album

to download, or which clothes to buy for the next summer season, most decisions made in everyday life are

about matters of taste. There is no absolute truth on whether Cornell offers a better statistics course than NYU,

whether a John Coltrane album is better than a David Bowie album, not to mention clothing styles. In this

article, we set out to understand why some social learning strategies might work for some people but not for

others. We show that individuals’ past experiences and the way their tastes relate to those of others interact

and jointly determine the effectiveness of different social learning strategies.

5.1 Reconnecting Cognitive Science and Recommender Systems

From Thurstone’s discrimination theory [81] to Rosenblatt’s perceptron [69], psychological theories have often

influenced the development of new statistical and predictive tools. Inversely, new statistical tools, such as

regression analysis and signal detection theory, have inspired the development of new psychological theories

[28]. Somewhat surprisingly, early work on the wisdom of crowds and opinion aggregation in psychology

[39, 48, 82] seems to have gone unnoticed by recommender systems researchers, although the first algorithms

they developed were very similar to these strategies in spirit and content. Likewise, insights emerging from

recommender system research in the last two decades have not really been incorporated into psychology and

the behavioral sciences, although the recommender system community has maintained a general interest in

using insights from the behavioral sciences [3, 21].6

A key reason for the divergence between these two strands of research is the lack of large-scale datasets

amenable to psychological study and interpretation. The recommender datasets leveraged in industrial ap-

plications (e.g., Netflix, LastFm, or Pandora) or developed under the auspices of research institutions (e.g.,

MovieLens) are typically very sparse. Even the most prolific users have evaluated only a subset of the avail-

able options and even the most popular options have been rated by only a small proportion of users. As a

result, researchers have to deal with the substantive challenges introduced by missing data (e.g., by adding val-

ues artificially to the matrix [71] or introducing algorithms that cope with missing data [73]), and comparisons

between individuals become cumbersome. In this paper, we used the only full large-scale recommender dataset

known to us (i.e., with a substantial number of items evaluated by everybody in the population). Additional full

datasets from other domains of experience could facilitate cross-fertilization between behavioral scientists and

the recommender systems community. Future dialogue between these disciplines is crucial for understanding

the social learning strategies that individuals can use to harvest other people’s experiences and thus to inform

their own choices in matters of taste.
6Many works authored by recommender systems researchers suggest that the origins of recommender systems research can be

traced back to cognitive science and often cite an article by Rich [67] published in Cognitive Science in 1979. Rich was a computer
scientist rather than a behavioral scientist by training; thus, we find this reference somewhat misleading. It is a historical vagary that
cognitive psychologists and behavioral scientists have not forcefully addressed the issue of individual learning from the experience of
other similar people given that they have developed very similar models in the domain of facts.
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5.2 Experience and the Bias–Variance Trade-Off

With increasing experience in the domain, the predictive ability of all the best-performing strategies increased—

except for the strategy relying on the wisdom of the whole crowd, which unconditionally averages across all

people and is—by design—unaffected by the increasing accuracy of the similarity estimates. All strategies

lie on a bias–variance continuum (see Figure S11; in the Supplementary Material, we present detailed results

and an extended discussion of the bias–variance trade-off that corroborate the claims we make below). At one

extreme, the whole crowd strategy assumes that everybody has the same taste and performs well for individuals

whose tastes are indeed well aligned with those of other people. From a bias–variance trade-off perspective

[26, 29, 27], this strategy suffers from potentially high bias, especially for people with alternative tastes, but

it exhibits zero variance in its prediction error because it does not estimate any free parameters and makes the

same prediction regardless of the past experiences an individual has acquired.7 Strategies relying on similarity,

in contrast, have a comparatively low bias because they could adapt to the homogeneity or heterogeneity of

tastes in the population. However, they potentially suffer from variance because their predictions depend to dif-

fering degrees on the training sample used to estimate similarity. The predictions differ because they are tuned

to the exact sample of experiences that was used to train the model, but relying too much on a particular sample

can also lead to over-fitting. At the other extreme, a strategy of adopting the evaluations of only the seemingly

most similar person potentially allows people to profit from the experiences of their taste doppelgänger but is

most reliant on an accurate estimation of similarity.

Each individual in the dataset has her own bias–variance profile, which depends on how her taste is corre-

lated with that of the other people (see Figure 3). For most of the strategies (e.g., similar crowd, doppelgänger),

the bias component of the error term differs much more across individuals. Except for the whole crowd strat-

egy, which is a zero variance strategy for everybody, there are only small interindividual differences in the

variance component of the error term. The similarity-weighted strategy is such a case. Although it suffers

from only moderate variance, its variance is much larger for individuals with low or even negative mean taste

similarity with other people than for individuals with more positive mean taste similarity (see Figure S12). In

the former case, the success of the strategy depends strongly on the accuracy of the weights assigned to the

few truly very similar individuals. In contrast, if all peers are very similar to the target individual, it matters

less what weight is assigned to them.

5.3 From Matters of Fact to Matters of Taste

Each individual in our study represents a unique prediction problem. Some people’s tastes are very similar to

those of their peers; others have opposing preferences. At both ends of this spectrum, people’s taste similarity

with other people can be more or less dispersed. To what extent were our predictions about the absolute and

relative performance of various social learning strategies for different individuals borne out, and how do our

findings differ from those of studies investigating strategies for “matters of fact”?

A number of similarities and differences stand out. The clique strategy, which averages the evaluations of

the 10 most similar individuals, was consistently among the best-performing strategies for experienced indi-

7Also from a Bayesian perspective, it is prudent to go with the crowd: An inexperienced decision maker—by statistical necessity—
is a priori more likely than not to have “mainstream taste” unless there is diagnostic private information to the contrary [45, p. 210].
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viduals; for some people, it was the best-performing strategy even with only small amounts of experience (this

result was also replicated in much smaller communities of individuals; see Figure S7B in the Supplementary

Material). For individuals with mainstream taste, however, several dozen experiences were required for the

clique strategy to outperform aggregation-heavy strategies like the similar crowd strategy—and for some peo-

ple in our dataset, this never happened (see Figures S4A and S4B in the Supplementary Material). Overall, our

results corroborate findings on the potential of select crowds to solve prediction problems [56, 35]. However,

they also show that in the domain of taste, much more experience might be required for the potential of small

crowds to be realized. The same result should hold for the similarity-weighted crowd strategy.

We found that when is experience is limited, strategies relying on averaging performed best for all indi-

viduals with a positive mean taste correlation with the crowd. This finding is in line with results on matters

of fact showing that, at small sample sizes, equal weighting of cues outperforms differential weighting mod-

els [49, 78]. Similarity-heavy strategies started to outperform averaging strategies once people had acquired

some experience. Yet the exact amount of experience depended on both mean taste similarity between an in-

dividual and the crowd and the dispersion in taste similarities. Studies investigating environments with only

a small number of cues, either informational or social, have shown that the strategy of relying on just the

most predictive cue can perform on par with strategies combining multiple cues [78, 49, 85]. In our study, for

experienced individuals with antithetical tastes, the doppelgänger strategy (i.e., imitating the seemingly most

similar person) performed better than the whole crowd strategy, but the doppelgänger strategy was almost al-

ways dominated by the clique and the weighted crowd strategies (for some match-ups with other strategies, see

Figure S3 in the Supplementary Material; see also [56]).

It has been argued that the commonly observed superior performance of cue-based heuristic strategies,

which rely on a few pieces of information or ignore cue weights, can be attributed to their lower variance as

compared to more complex strategies [29]. Indeed, this was true for the people for whom the whole crowd

strategy performed best. In contrast, it did not hold for the few people for whom the single-cue strategy for

predicting matters of taste (doppelgänger) performed best. This strategy had the highest variance for almost

everybody in the population (see Figure S11 in the Supplementary Material). This discrepancy with previous

predictions can be attributed to two factors. First, because every individual is a potential cue for every other

individual in matters of taste, the number of cues (i.e., number of peers in a community—250 in our simulation)

can be larger than the number of observations8 and is much larger than the number of informational or social

cues typically studied in matters of fact, where there typically are many more observations than cues. Second,

in our study, many cues have approximately the same predictive value. In contrast, in studies on matters of

fact, the predictive power of the informational cues has typically differed greatly.

5.4 Learning About Oneself vs. Learning About Others

Recommender systems learn to mirror the preferences of their users. By recasting early recommender system

algorithms and psychological strategies of opinion aggregation as social learning strategies for matters of taste,

we argued that people can leverage the experiences of others to learn more about their own tastes. Learning

about other people’s preferences and recommending options to them is an equally relevant and psychologically

8Beyond recommender systems, situations with a large number of predictor variables occur in biostatistics and genetics [88].
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interesting problem in everyday experience that humans learn to solve as early as toddlerhood [64]. We all learn

what our friends like, parents learn the preferences of their children [57], and in some cases it is imperative

to know what our romantic partners like [12]. The strategies discussed and insights developed in this study

can also be applied to learning about the preferences of others. People can use the similarity between a target

individual and other people to infer his or her preferences (e.g., John is like Jim). Better predictions can lead

to better recommendations to friends or better surrogate choices when one is called to pick an alternative on

their behalf [75, 86].9

5.5 Model-Based, Content-Based, and Hybrid Recommender Strategies

In most domains of everyday experience, people (and machines) have access to information beyond their own

and other people’s past experiences: informational cues describing options (i.e., features such as a movie’s

genre) and other individuals (e.g., a person’s clothing style). The use of such information has been examined

extensively in multiple-cue judgment and categorization learning in cognitive science, in content-based and

demographic-based recommender systems [2, 1, 62] and, more generally, in supervised learning in machine

learning. People might thus use these cues (i) to take advantage of the predictive information in the options’

features (e.g., it is a superhero movie) or (ii) to improve their assessment of similarities with their peers (e.g.,

by considering their age, gender, or profession) [5, 33, 85, 83]. Information going beyond shared experiences

might be particularly beneficial when people make their first choices in a domain that is new to their network—

for example, when looking for a restaurant in a city they have never visited before. In such situations, when

they lack shared experiences with similar others, using the option’s cues to predict its quality directly or using

cues characterizing another person to assess similarity (e.g., clothing) could prove beneficial.

But how do people learn from others when they have access to more than one type of information or model?

Both the recommender systems literature and the psychological literature on inferences about “matters of fact”

are rife with ideas on how to combine different sources of information or models [6, 44, 47, 46]. For instance,

one could consider learning from similar others and learning from the features of the objects as two modules

that operate independently and can be aggregated when a judgment needs to be made.10 The study of the

theoretical performance of hybrid decision strategies, and their prescriptive and descriptive value as models of

social learning for matters of taste, are fruitful avenues for future research. Müller-Trede et al. [59] have made

inroads in that direction by examining whether people could benefit from combining their own predictions

about whether they will like an option (on the basis of prior information) with the predictions of a crowd of

other people. In the language of recommender systems [6], their approach would correspond to a hybrid model

between a content-based system, which can derive predictions based on the features of the considered options,

and a collaborative system, which relies on the wisdom of similar others.

9A few studies have compared the performance of human recommenders with that of recommender systems, but the results remain
inconclusive with respect to whether and when humans can outperform artificial intelligence on such tasks [79, 52, 86].

10A well-known example of aggregating different sources of information and approaches is the Netflix competition in which the
winning model was a hybrid of several best-performing models.
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6 Conclusion

From picking a restaurant to choosing a movie, most choices people make are on “matters of taste,” where

there is no universal, objective truth about the quality of the options available. Still, people can learn vicar-

iously from the experiences of individuals with similar tastes who have already experienced and evaluated

options—as exemplified by recommender systems. Mapping out the conceptual similarities between seminal

recommender system algorithms, on the one hand, and models of judgment and decision making (based on

informational or social cues), on the other hand, we recast the latter as social learning strategies for matters

of taste. Furthermore, drawing on research from judgment and decision making, forecasting, and machine

learning, we predicted which strategies would perform better or worse for different people, depending on the

structure of individuals’ tastes and how much experience they have in the domain. We ran computer simula-

tions on a large-scale, empirical dataset, and investigated how people can leverage the experiences of others to

make better decisions. We showed that experienced individuals can benefit from relying mostly on the tastes

of seemingly similar people. Inexperienced individuals, in contrast, cannot reliably estimate similarity and are

better off picking the mainstream option despite differences in taste. We found that the level of experience

beyond which people should switch to similarity-heavy strategies varies substantially across people and de-

pends on (i) how mainstream (or alternative) an individual’s tastes are and (ii) how much the similarity of the

individual’s taste to that of the other people in the population differs across those people. It is a truism that you

cannot argue about taste. Nevertheless, we have shown that which social learning strategy for matters of taste

works best and for whom is not subjective—rather, it is subject to rational argumentation.
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9 Supplementary Material

9.1 The Jester dataset

9.1.1 Rating Interface

Figure S1: A screenshot from the Jester interface (retrieved on 29 April, 2017).

The first version of the Jester interface was deployed in 1999 by Ken Goldberg, Dhruv Gupta, Hiro Narita,

and Mark DiGiovanni at Berkley University. To the best of our knowledge, the Jester dataset is the only rec-

ommender dataset where a large number of participants (14,116 individuals) have evaluated all of the curated

options. The interface design is straightforward and has not changed over the years other than for color brush-

ups. The jokes appear at the top of the screen. Users can move a continuous slider located below each joke to

rate it, from “less funny” at the leftmost end of a scrollbar to “more funny” at the rightmost end. The slider is

initially placed in the middle of the scrollbar, corresponding to a neutral joke evaluation score of 0. Moving

the slider to the left yields negative ratings; moving it to the right yields positive ratings. Possible ratings range

between -10 and 10. At any point, the user can press the “next” button, which is located beneath the scrollbar.

Users can read and rate up to 100 jokes. After a random sample of jokes has been evaluated, the system starts

recommending jokes to users until the pool of 100 jokes is exhausted.

9.1.2 Average Quality of the Jokes as Reflected by Their Ratings

How much did the jokes differ in terms of their average quality, as indicated by the participants’ ratings?

Because strategies such as the whole crowd rely exclusively on population mean ratings, it is important to see

how much variability there is in the ratings. Figure S2 shows that the “best joke” received an average rating of
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3.82, while the “worst” scored -3.43. Ninety-eight of the jokes had unimodal distributions. Two jokes polarized

the audience, as reflected by bimodal distributions that peaked on both edges of the evaluation scale (71 and

75). For many jokes the mode of the ratings is 0, which suggests an anchoring effect of the initial placement

of the slider at the middle of the bar.
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Figure S2: Histograms showing the distribution of joke ratings and best-fitting beta distributions—obtained
by maximum-likelihood estimation—for each of the 100 jokes (# indicates joke number). The average rating
ranges from µ =−3.43 to µ =+3.82, with a standard deviation of σ = 1.47 across those means. The average
standard deviation is σ = 4.38 across jokes. Most of the jokes have unimodal distributions; only two clearly
polarized the audience (71 and 75), as reflected by their bimodal distributions. The jokes are presented in
decreasing order of their average rating (shown as mu in the panel titles). The x-axis shows the ratings and the
y-axis shows normalized densities.
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9.2 Comparisons between Strategies

9.2.1 Comparing the Strategies Based on Individuals’ Taste Environments

Studies investigating different strategies’ performance across environments often pit the strategies against each

other in informative match-ups [9]. To gain a more detailed understanding of how an individual’s learning

environment influences the strategies’ performance, we compared pairs of strategies and studied the extent to

which the strategies outperform each other for each of the 14,000 individuals.

Figure S3 shows scatterplots with all individuals positioned on axes of mean taste similarity with the

crowd and dispersion of taste similarity with the crowd, as in Figure 3. However, rather than plotting the best-

performing strategy for each individual as a function of experience, we now plot which of the two strategies in

a match-up performed better for each individual. Each panel shows a different strategy pair comparison.

The first panel pits the performance of the doppelgänger strategy (red) against the whole crowd strat-

egy (blue). For low levels of experience (left panel), the whole crowd strategy dominates for people whose

preferences are positively correlated with the crowd, whereas the doppelgänger strategy performs better for

individuals with alternative taste (i.e. negative mean taste similarity), where the whole crowd strategy performs

worse than chance. As people become more experienced, the doppelgänger strategy starts to outperform the

whole crowd strategy, also for people with more mainstream tastes. In particular, it has an edge for people who

have higher dispersion in taste similarity with their peers. For these people, (i) it is more likely that similar

individuals exist in the population and (ii) the strategy has better chances of identifying these very similar

others.

A similar pattern of results can be observed in the second panel, which compares the similarity-weighted

crowd strategy (purple) with the similar crowd strategy (orange). The similar crowd strategy performs slightly

better for individuals with high mean taste similarity with the crowd and low dispersion in taste similarity with

their peers. The similarity-weighted crowd strategy performs notably better for individuals with high mean

taste similarity and high dispersion in taste similarity. Note that the similarity-weighted crowd strategy is the

only one that assigns negative weights to individuals perceived to have alternative taste (i.e., their preferences

are negatively correlated with those of the social learner).

The third panel compares the doppelgänger strategy (red) with the 10-person clique strategy (green). The

clique strategy proves to be the better performing strategy almost across the board, essentially dominating the

doppelgänger strategy. The only pocket of individuals for whom the doppelgänger strategy performs best are

those with alternative tastes and low dispersion in taste similarity. This pocket reduces in size with experience.

The fourth comparison focuses on the 10-person clique strategy (green) and the similar crowd strategy

(orange). For low levels of experience, the similar crowd strategy outperforms the clique strategy for almost

the entire population, but as the level of experience increases, individuals with low average correlations with

the crowd and high dispersion in taste similarity start to perform better when relying on their small clique.

Finally, we compared the similarity-weighted crowd strategy (purple) with the whole crowd strategy (blue).

For low levels of experience, the whole crowd strategy performs better for individuals with positive correlations

with the crowd. As the level of experience increases, the similarity-weighted crowd strategy starts to outper-

form the whole crowd strategy for all individuals except for those with very low dispersion in taste similarity

(i.e., those who benefit the least from distinguishing between more and less similar individuals).
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Figure S3: Strategy match-ups at the individual-level. The figure is similar to Figure 3, but instead of plotting
the best-performing strategy for each individual, it shows which of two strategies performed better for each
individual. Each point represents one of the 14,000 participants. Each individual is positioned according to
their mean taste similarity with all other 13,999 individuals (x-axis) and the dispersion in taste similarity with
other individuals (i.e., the standard deviation of these correlations; y-axis). Each panel shows three experience
levels from left to right: 10%, 50%, and 90% of options experienced. Panel A: doppelgänger versus whole
crowd; Panel B: similarity-weighted crowd versus similar crowd; Panel C: doppelgänger versus clique; Panel
D: clique versus similar crowd; Panel E: similarity-weighted crowd versus whole crowd.
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9.2.2 Crossing Point Between Strategies as Experience Increases

Figure S4: The proportion of people for whom the clique and the similarity-weighted crowd strategy outper-
formed the whole crowd strategy (panels A and B) and the similar crowd strategy (panels C and D) after a
given number of experiences. Panels A and C show densities; panels B and D show cumulative probability
distributions.

To better illustrate when the performances of strategies relying heavily versus loosely on similarity cross as

experience increases, we focused on a few informative match-ups between pairs of strategies. Specifically, we

calculated the proportion of people for whom two best-performing similarity-based strategies (i.e., similarity-

weighted crowd, clique) surpassed the aggregation-heavy strategies (i.e., whole crowd and similar crowd)

(Figure S4). The similarity-weighted crowd strategy outperforms both aggregation-heavy strategies for more

than half of the population once 15 items have been experienced; the clique strategy outperforms the whole

crowd strategy for more than half of the population once 20 items have been experienced and the similar crowd

strategy once 25 items have been experienced.
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9.3 When Similar Others Have Experienced Only Some of the Options

In the baseline simulation, we assumed that the participants’ peers had experienced all of the available items.

This was a convenience assumption. In real life, a person’s friends and acquaintances have not experienced all

items in a specific domain but only a limited number of them. Thus, people typically have to deal with a sparse

matrix of peer experiences from which to estimate similarity and assess the value of future experiences. The

same applies to most recommender system datasets: Individuals have experienced only small subsets of items

that are curated by the system. A typical example is the MovieLens recommender system. MovieLens is one of

the earliest recommender systems developed and sustained by the GroupLens group at Minnesota University.11

It contains several million individual evaluations but only a small fraction of users have evaluated even the most

popular items, making the dataset highly sparse. Likewise, the dataset released for the Netflix competition—

although it contains more than a 100 million evaluations—is very sparse even for the most popular movies.
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Figure S5: The effect of sparse matrices on the learning curves of the social learning strategies. This figure
is structured identically to Figure 1 and displays the results of a simulation variant in which half of the item
evaluations were deleted at random from the matrix before running the simulation. Relative to the original
results (Figure 1), the crossing points between the strategies relying heavily on similarity and the averaging
strategies have moved to the right. This result indicates that in many real-world problems, individuals need to
experience more options to effectively use strategies that rely heavily on similarity.

To investigate the sensitivity of our results to the assumption of a non-sparse matrix (as in our main simu-

lation study), here we relax this assumption by randomly removing half of the values from the opinion matrix

before each full run of the simulation. There are at least two ways in which sparsity can reduce the performance

of social learning strategies. First, people have fewer data available from which they can estimate similarity

between themselves and their peers or items. For example, it could be that Sofia does not know how Bob has

11Some of the data are publicly available at http://files.grouplens.org/datasets/movielens/ml-10m-README.html
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evaluated Superman and Spiderman, either because Bob has not watched the movies yet or because he has not

talked about the movies to Sofia. Thus, Sofia will have fewer observations on the basis of which to estimate

her taste similarity with Bob. This limitation will negatively affect all the strategies that rely on similarity esti-

mation. Second, some (seemingly or truly) similar others might not have evaluated some of the items and will

therefore not inform the prediction of how much the target individual will enjoy an item. For strategies that

rely on a fixed number of similar others (e.g., clique) or items, we assumed that the missing value of the similar

individual (or item) is substituted by the next most similar individual (or item) from the crowd (or collection of

similar items). In the case of the doppelgänger strategy, Bob will be substituted by John, who is the next most

similar individual. Besides these differences in strategy implementation, the details of the simulation remained

unchanged.

Figure S5 shows that (relative to the main simulation, see Figure 1) the strategies that rely less on simi-

larity perform best more often for experienced individuals. That is, the crossing points at which, on average,

strategies that rely more on similarity overtake strategies relying on crude aggregation have moved further to

the right. The similarity-weighted crowd strategy outperforms the whole crowd strategy after 30 experiences

and the similar crowd strategy after 45 experiences. The clique strategy outperforms the whole crowd strat-

egy after 50 experiences and it still only ties with the similar crowd strategy after 90 experiences. The other

two strategies that rely on similarity are affected in a similar way. The doppelgänger strategy now performs

consistently worse than the joke-length strategy, while the similar options strategy performs, on average, well

below the whole crowd strategy. Note that the performances of the whole crowd and similar crowd strategies

remain almost completely unaffected in terms of absolute performance by the sparsity introduced in this sim-

ulation. The only difference is that they now use less data to calculate the average qualities of objects. These

results are also reflected in the number of individuals for whom a certain strategy performed best. As seen

in S5 Panel B, the strategies relying on crude aggregation perform best for much larger cohorts of individu-

als. The similarity-weighted crowd strategy becomes the best-performing one only after 40 options have been

experienced.
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9.4 Varying Community Size

9.4.1 Accessing Small Communities of Close Friends
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Figure S6: Performance of the social learning strategies when decision makers have access to only a small
community of 25 individuals. This figure is structured identically to Figure 1.

So far, we have assumed that people have access to a community of only 249 other individuals, an as-

sumption that reflects both cognitive and social constraints in everyday life [3]. One could argue, however, that

this assumption is rather generous, as in many cases it will be costly to ask friends and acquaintances about

their experiences. To account for this possibility, we restricted the number of individuals in a community to

25 (24 plus the target individual) and reran the simulation, keeping the rest of the simulation setup exactly as

in the baseline simulation study reported in the main text. When the size of the community is reduced, the

performance of all strategies declines, but the key results and conclusions of the simulation remain the same.

The main change is that the crossing points at which, on average, strategies relying more on similarity overtake

averaging strategies have moved further to the right. The similarity-weighted crowd strategy outperforms the

whole crowd strategy after 30 experiences and the similar crowd strategy after 45 experiences. On the one

hand, the performance of the aggregation strategies drops by about 1% uniformly across levels of experience.

On the other hand, the performance of the similarity-weighted crowd strategy increases faster than before as

a function of experience, presumably because the correct estimation of similarities is more crucial in a crowd

of 24—the tastes of different individuals do not cancel each other out as much. The clique strategy now out-

performs the whole crowd strategy after 15 experiences and it needs 45 experiences to outperform the similar

crowd strategy. The similar options strategy is most strongly affected by the smaller size of the community,

as the amount of information available for the strategy to evaluate similarity between items is now drastically

reduced.
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9.4.2 Accessing Large Communities: The Whole Population as the Pool of Information
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Figure S7: Performance of the social learning strategies when decision makers have access to all 14,000
individuals in the matrix. This figure is structured identically to Figure 1.

In most operational recommender systems, the collaborative filtering algorithms seek similarity patterns

among several thousand users. Would having access to a much larger number of similar others substantially

change the results presented so far? The answer is no (see Figure S7). The performance of all strategies im-

proves by a few percentage points, but the ranking of the strategies according to their performance remains

almost the same. The main difference from the baseline simulation is that the number of experiences required

for strategies that heavily rely on similarity to outperform strategies relying on crude aggregation is some-

what fewer (i.e., the crossing points are shifted slightly to the left). Ten to 15 experiences are required for

the similarity-weighted crowd strategy to outperform the whole crowd and similar crowd strategies. Although

people can easily acquire as many as 10 or 15 experiences in a number of real-world domains, such as reading

books, evaluating music, or watching movies, it is less likely that they will acquire that many experiences in

domains such as buying a car or booking long, expensive vacations. This result also illustrates the fundamen-

tal nature of the cold start problem in recommender systems [4]. Even in domains where millions of other

people have evaluated the options, at least some initial experiences are required in order to make meaningful

predictions about any target user. Accurately estimating similarities between users will always be challenging

when the estimates are based on only a small number of common experiences, even in cases where similarity

patterns can be sought among a very large number of users.
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9.5 Considering the Opinion of Less Similar People can Improve Prediction

Figure S8: Panel A: The distribution of correlations among a sample of 1000 individuals (998,001 correlations
in total). The dot shows the mean correlation and the two vertical lines indicate one standard deviation distance
from the mean. Panel B: Performance of the clique strategy (i.e., aggregating the tastes of the k most similar
individuals in the community) for different sizes of the clique (k). The top row of the matrix (WC) corresponds
to the whole crowd strategy, the bottom row to the doppelgänger strategy (D), and the third row from the
bottom to the clique (C) strategy as described in the main text (with k fixed at 10). The optimal number of
similar others decreases with experience from 100 to about 30.

People who have not yet acquired any experience are necessarily unaware of their similarity with other

individuals. People following the choices of a random individual should perform better than chance, since a

majority of the population is expected to have a positive taste correlation. The extent to which the random other

strategy will outperform chance depends on the average correlation in the opinions of different individuals

(see Panel A in S8). A decision maker’s best bet in that case is to use the whole crowd strategy to predict

which of two options they will prefer. As they acquire some experience, they can use it to calculate their

similarity with their peers. For people with limited experience, relying on only the most similar other through

the doppelgänger strategy marginally outperforms the random other strategy. Taking into account additional—

although less similar—people and averaging their recommendations markedly improves performance (Figure

S8). When using the clique strategy, the size of k (i.e., the number of neighbors whose evaluations are averaged)

can be seen as a hyperparameter that needs to be chosen beforehand (in Figure 1A, we fixed k at 10). With as

few as five experiences, people can reduce the number of individuals they rely on from 249, which corresponds

to the whole crowd, to 100. Once all the options have been experienced, performance peaks at moderately

sized cliques (approx. 30).
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Figure S9: Average total error for all individuals and all main strategies for the three levels of experience. Each
point represents one of the 14,000 individuals. Each individual is positioned according to their mean taste
similarity with all other 13,999 individuals (x-axis) and the dispersion in taste similarity with other individuals
(i.e., the standard deviation of these correlations; y-axis).
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9.6 Error of the Strategies for Different Individuals and Levels of Experience

As seen in Figure 1, the performance of all the social learning strategies other than the whole crowd and the

random other strategies improves with experience (when the models are trained with more data). Further, from

Figure 2 we see that performance varies considerably across individuals, depending on their mean taste simi-

larity with others and the dispersion of similarities between an individual and her peers. Does acquiring more

experience lead to an equal improvement in performance across individuals? Figure S9 plots the performance

of each strategy and individual at three levels of experience. For all strategies other than the whole crowd, there

is much more learning potential (i) for individuals with less mainstream or even alternative tastes (i.e. those

with negative mean taste correlations) and (ii) for people whose taste similarities with their peers are more

dispersed. For all strategies, the largest improvements occur in the upper left quadrant of Figure S9, followed

by the upper right quadrant, demonstrating that the people’s dispersion in taste similarities is crucial for learn-

ing. Clearly, in a more diverse peer group there are more possibilities to identify very similar individuals. In

contrast, the lowest levels of learning occur for individuals who have low dispersion of similarities and a very

low average similarity with their peers (bottom part of the graph in the lower left quadrant.)

9.7 Bias–Variance Decomposition

9.7.1 The Bias–Variance Dilemma

Bias–variance decomposition was popularized in machine learning in a seminal paper by Geman, Bienenstock,

and Dursat [7]. Yet the first explicit implementation of a bias–variance analysis we are aware of took place

at least two decades earlier, when Hoerl and Kennard [8] used such an analysis to develop ridge regression, a

biased yet robust alternative to classic multi-linear regression models that rely on ordinary least squares (OLS)

methods. The starting point for a bias–variance analysis is to decompose the error into three constituent terms:

Total error = bias2 + variance+noise (1)

Bias2 represents the difference between the average prediction of the model and the underlying truth. Nonethe-

less, as Hoerl and Kennard illustrated in their pioneering work, a model or an estimator can be provably un-

biased and still suffer from higher total error than a more biased estimator. The reason is that the unbiased

estimator may have a larger variance, that is, the predictions of the algorithm are more sensitive to the training

data that has been sampled.

Finally, noise represents the irreducible error in the function generating the data and delineates the ultimate

performance limit of the models. Because estimating the irreducible error in real data is challenging, we will

just decompose the total error into variance and bias2 plus noise. To further clarify the bias and variance

components of the error, let us consider the dartboard illustrations in Figure S10. Ideally, we would like our

model to predict the two-dimensional coordinates corresponding to the middle of the target (the exact middle

of the dartboard). Let us assume that the blue dots on the boards represent individual predictions of our model

based on different training samples. The model used on the upper right panel is almost unbiased. The average

prediction is close to the middle of the target. Yet, the individual predictions deviate markedly from one another

and also from the target. This variance of the individual predictions leads to a relatively high total error. Ideally,
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we would like our model to have both low bias and low variance, as illustrated by the upper left dartboard. Yet,

in many real-world prediction problems, this aspiration is unattainable.

The art of developing and using robust algorithms/strategies for out-of-sample prediction in real-world

problems requires a good balance to be struck between bias and variance. Typically, complex models with

many free parameters are flexible and can fit exactly the data that was used to train them. As the training

data vary from one training sample to another, so do the resulting predictions of the model, leading to a high

variance component. Simpler models tend to be more biased and less flexible (see the lower left target in Figure

S10). Models that make exactly the same prediction regardless of the training set have no variance whatsoever

but are likely severely biased (see the graph on the right of Figure S10, at the very left end of the spectrum).

Very complex models, on the other hand, have very low bias. Their average predictions hit close to the target.

Yet they suffer from a lot of variance (see the graph on the right of Figure S10, at the very right end of the

spectrum).

Figure S10: Left: An illustration of the bias–variance decomposition for continuous loss functions. A pre-
diction method might be unbiased but still have a relatively high error (upper right dartboard) due to high
variance—that is, the sensitivity of the method to the sample that was used to train the model. Right: As
model complexity (typically defined by the number of free parameters) increases, the model becomes more
flexible, allowing for lower bias. Yet more complex models often imply higher variance. These two illustra-
tions were designed by Fortmann-Roe [5].

9.7.2 Bias–Variance Decomposition for the Zero-One Loss Function

In this section, we illustrate how to decompose the error of a strategy into a bias and a variance component

for binary categorization tasks. Whenever strategies are evaluated on pair comparisons (“Is it A or B?”), their

decisions are either correct or incorrect. This evaluation function is also called the zero-one loss function,

where correct decisions incur no loss (L = 0) and incorrect decisions incur a unit loss (L = 1). The average

loss (or cost) of a prediction method E(C) is commonly referred to as the misclassification error. Although

for continuous estimation tasks (often called “regression” problems in machine learning) there has been a
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consensus on how to implement the bias–variance decomposition (see the previous section), this is not the case

for binary categorization tasks [8, 10]. There have been several suggestions about the best way to implement

the bias–variance decomposition for the zero-one loss function [12, 1, 11, 14, 6, 10]. For an extensive study of

the bias–variance decomposition on real data including problems with a zero-one loss function, please refer to

ongoing work by Şimşek and Buckmann [13].

Here we adopt the method advanced by Kohavi and Wolpert [11], which is the most widely implemented

in the literature on categorization. All other decompositions have the drawback that the variance might be

negative, and might not equal 0 for algorithms like the whole crowd strategy presented in this paper, which

always make the same predictions despite different training sets. We consider this a significant advantage as

the resulting decomposition is intuitive and easily interpretable.

Kohavi and Wolpert [11] formalized the cost function for zero-one prediction problems and, with a few

algebraic transformations, showed how to decompose the zero-one loss function into its components (i) bias,

(ii) variance, and (iii) irreducible error. For a target function f and a training set of size m, the expected

misclassification rate E(C) can be written as

E(C) = ∑
x

P(X) · (σ2
x +bias2

x + variancex) (2)

where

bias2
x ≡ 1/2 ·∑

y∈Y
[P(YF = y|x)−P(YH = y|x)]2 (3)

variancex ≡ 1/2 · (1−∑
y∈Y

P(YH = y|x)2) (4)

σ
2
x ≡ 1/2 · (1−∑

y∈Y
P(YF = y|x)2) (5)

In the above equations, X and Y are the input and output spaces, that is, the space of possible feature values

and categories or outcomes. x and y are particular instances in these spaces, that is, specific combinations of

feature values and categories that can be used to either train or evaluate the model. The target function f is

a conditional probability distribution P(YF = y|x). This expression states that for feature values x, there is a

given probability that the item will belong to category y. The hypothesis or model h generated by the learner is

also a distribution P(YH = y|x). This expression states the probability that the model constructed will predict a

certain category y in the output space when it sees a feature vector x.

9.7.3 Illustrating the Kohavi–Wolpert Bias–Variance Decomposition: Coin Flip Examples

Let us now illustrate how the above equations work when we predict whether the outcome of tossing a coin

(fair or rigged) will be heads or tails. First, let us assume that we are dealing with a fair coin. There are two

possible outcomes in Y , heads and tails. Then, let us assume that regardless of any information x that we might
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possess, it is impossible to predict at better than chance level.12

If we always predict tails, the expected misclassification error (loss) will be equal to 0.5 (i.e., a fair coin

will land heads in 50% of cases and therefore we will be wrong in 50% of cases). For either heads or tails, the

P(YF = y|x) = 0.5. Our hypothesis P(YH = y|x), however, is that the coin is rigged and it always comes out tails

(these are the two possible outcomes in space Y , unless the coin can stand on its edge). For tails P(YT = y|x) = 1

and for heads P(YH = y|x) = 0. Thus, for both cases, we would be equally off in our predictions for either of

these hypotheses since [P(YF = y|x)−P(YT = y|x)]2 = [P(YF = y|x)−P(YH = y|x)]2 = 0.25. The bias2 term in

the Kohavi–Wolpert decomposition measures the sum of the squared differences between the actual outcome

and the algorithm’s hypothesis, or predicted outcome. Following equation 3, by averaging the results from the

two possible outcomes , we arrive at the contribution of bias2 to the overall error.

The variance term measures the sensitivity of the algorithm to changes in the training data. In this case,

because the algorithm always predicts tails regardless of the information at hand, the variance of the model

will be equal to 0. The irreducible noise corresponds to the error that even a Laplacian demon with perfect

knowledge of the universe or the creator of an experiment, with precise knowledge of its setup, cannot avoid

given the information available. Here, the noise is the randomness inherent in a coin flip. The σ2 is independent

of the learning algorithm and captures the variance of the target function. In this scenario, it also equals 0.25

(0.52). Now let us assume that the algorithm randomizes between heads and tails, assigning equal probabilities

to both outcomes. Our model’s bias2 will equal 0. The classification error will be distributed equally between

variance = 0.25 and σ2 = 0.25.

Finally, let us assume that the coin is rigged and always comes up heads. If the decision maker randomizes

her predictions between tails and heads, the misclassification error will again equal 0.5. It will now be divided

equally between bias2 = 0.25 and variance = 0.25. If she always mistakenly predicts tails although the rigged

coin always comes up heads, the misclassification error will be 1 and it will consist exclusively of bias2.

9.7.4 Calculating Bias and Variance from Data

In the previous section, we illustrated how the bias–variance decomposition works in a scenario where the

underlying truth is known and the strategies do not have any free parameters (but there is inherent stochasticity

in some of their predictions). We now show how to apply the above concepts when using different training

samples d. First, let us assume that there is a target function f that governs the statistical relations in the

environment and from where the samples d are drawn, and let us define the size of these training samples as m.

As we have already seen, P(YF = y|x) indicates that the probability that the function takes the value y (1

or 0 in classification problems) for a feature vector x. Using the concepts introduced above, we can rewrite

P(YF = y|x) as P(YF = y| f ,m,x), which in turn can be written as ∑
d

P(d| f ,m) · P(YH = y|d,x). The term

P(d| f ,m) in the last expression represents the probability of generating the training data d from target function

f , and P(YH = y|d,x) represents the probability that the learning algorithm will make prediction y after seeing

the feature vector x when trained with training sample d of size m. Therefore, P(YH = y|x) is the average Y

value over all training sets that is predicted when the learner is exposed to a feature vector with values x.

12Although a coin toss is the paramount example of predicting at chance level in popular culture, it is in fact possible to access
information that leads to better-than-chance predictions [2]. Later on we will break that assumption to enrich our illustrations.
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In most real-life problems, decision makers do not know the underlying function f . They only have access

to limited number of y and x pairs in a dataset. Following Kohavi and Wolpert [11], we define a training space

D from where different samples d will be drawn and an evaluation space E, representing the instances that are

kept apart in order to evaluate the model. Each draw from D is equiprobable, thus we can simply average the

predictions for different training samples for each instance with feature profile x. We can calculate the overall

error and the bias and variance components by going back to equation 2 and averaging over the error, bias, and

variance terms of each individual instance in the evaluation space E.

9.7.5 Simulation Procedure for the Empirical Bias–Variance Decomposition

The Jester dataset has 100 items in total. Given that some of the items need to be reserved for the test set

(for cross-validation), there is a limit to how large the set of training items in the bias–variance decomposition

simulation can be. Ideally, the number of training examples should be small in relation to the entire training

space (i.e., the pool of jokes from which training examples are drawn). Otherwise, the training samples might

contain many similar objects, leading to an underestimation of the variance component. To avoid this issue,

we opted to study the decomposition at only one level of experience (i.e., number of previously experienced

items).13 To study how the error decomposes into bias and variance for each individual in the Jester dataset,

we replicated the procedure put forward by Kohavi and Wolpert [11], with a few small modifications:

Figure S11: The bias–variance trade-off of social learning strategies. The figure shows the strategies’ per-
formance with communities of 250 individuals when the models were trained on 25 jokes (based on the full
matrix of evaluations). The bars represent the total misclassification error of the model (1 – % correct). The
orange part of the bars represents the bias plus the irreducible error; the blue part represents the variance. In
addition to the investigated strategies, we present the bias–variance decomposition of a coin-flipping algorithm
as a measure of comparison.

13When the number of items sampled in the training set is approximately the same as the entire pool of items, the estimates of
variance are inevitably inaccurate.
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We repeated the following procedure 100 times:

1. We divided the 14,000 individuals into 56 communities of 250 members each.

2. We divided the jokes into a training space D (75 jokes) and a test set E (25 jokes). This division was the

same for all individuals in each community but differed across communities.

3. We generated all possible 25×24
2 = 300 pair comparisons between jokes in the test set.

4. We randomly sampled uniformly without replacement 100 training sets of size m = 25 from the training

space D. The training space was thus sufficiently bigger that the training sets D = 3m. Furthermore,

because there are
(75

25

)
possible samples, the probability of sampling duplicate training sets was very

small. We trained the models with each of these 100 samples.

5. The models estimated the funniness of each joke and chose the one with the higher estimate in each of

the pair comparisons.

6. For each pair comparison, we calculated the variance component of the error. Subtracting variance from

the total error, we calculated the bias2 + irreducible error component of the total error. For real-world

data, the underlying data-generating distribution is rarely known. It is thus impossible to tease apart

bias2 from irreducible error, and it is common practice to report them together [15].

We then averaged the results over pair comparisons (300) and repetitions (100). In the following, we present

average performance results, but we also break down the bias–variance profile of the investigated strategies for

each individual in the population.

9.7.6 Bias–Variance Analysis

We start by discussing the results at the aggregate level. As shown in Figure S11, although the whole crowd

strategy is the most biased of all the strategies, the variance component of the error is non-existent. As a re-

sult, the strategy has much lower total error component than less biased strategies, such as similar options and

doppelgänger. Yet it is outperformed by the similar crowd, similarity-weighted crowd, and clique strategies,

which are the best for this level of experience. The similar crowd strategy is the second most biased strategy but

has very little variance, leading to a relatively low error. The similarity-weighted crowd and clique strategies,

which both rely on estimates of similarity to aggregate people’s evaluations, strike a healthy balance between

bias and variance. In contrast, the error of the doppelgänger strategy, which relies on just one individual, has a

particularly large variance component. The individual perceived as the most similar often changes across sam-

ples, leading to different predictions. Although the average predictions are close to the truth, they are also quite

inconsistent, leading to a high variance component. Note that three strategies—similar options, random other,

and doppelgänger—are less biased than coin flipping, which by definition has the largest possible variance.14

14Note that the Kohavi–Wolpert decomposition slightly overestimates the bias term of the error when relatively few training samples
have been used to estimate the bias and variance components. This estimation error reduces to zero when one has the luxury to use
many different training samples to calculate the components of the error. This was the case in our study. The authors also propose
a method that can be used to reduce the estimation error when one lacks the computational capacity to repeat the simulation a large
number of times.
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Figure S12: The bias–variance trade-off for five of the social learning strategies at the individual level. Each
point represents one of the 14,000 individuals. Each individual is positioned according to their mean taste
similarity with all other 13,999 individuals (x-axis) and the dispersion in taste similarity with other individuals
(i.e., the standard deviation of these correlations; y-axis). The strategies are ordered from top to bottom ac-
cording to their average variance at the aggregate level, starting from the doppelgänger, which has the highest
variance, and closing with the whole crowd, which has no variance whatsoever.
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As discussed earlier, each individual learns his or her preferences socially in his or her own specific en-

vironment. As illustrated in Figure 2, performance varies markedly across individuals and depends both on

their mean similarity with other people in the population and on the dispersion of similarities in their potential

crowds (the standard deviation of the similarities). How does the total error decompose to bias and variance

for different individuals? Figure S12 provides the answer to this question. For almost all of the strategies

considered in this study, the variance component is almost the same across all individuals in the population

(see the doppelgänger, clique, and similar crowd strategies). Thus, the differences in the bias of a strategy

for different individuals show very similar patterns with those of the total error. All the strategies are more

biased for individuals who have low mean similarity with the crowd and whose taste similarities with their

peers are less dispersed. This effect is more striking for the aggregation strategies and marginally visible for

the doppelgänger strategy. The similarity-weighted crowd strategy is the exception to this general pattern. For

individuals with lower mean taste similarity, this strategy has a larger variance component in their error term.

Further, it has a larger bias for individuals whose peers have lower dispersion of taste similarity.
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