
Beretta et al.

RESEARCH

HapCHAT: Adaptive haplotype assembly for
efficiently leveraging high coverage in long reads

Stefano Beretta 1†, Murray D Patterson 1*†, Simone Zaccaria 2, Gianluca Della Vedova 1 and

Paola Bonizzoni 1

*Correspondence:

murray.patterson@unimib.it
1Department of Informatics,

Systems, and Communication,

University of Milano-Bicocca,

Milan, Italy

Full list of author information is

available at the end of the article
†Equal contributor

Abstract

Background: Haplotype assembly is the process of assigning the different alleles
of the variants covered by mapped sequencing reads to the two haplotypes of the
genome of a human individual. Long reads, which are nowadays cheaper to
produce and more widely available than ever before, have been used to reduce
the fragmentation of the assembled haplotypes since their ability to span several
variants along the genome. These long reads are also characterized by a high
error rate, an issue which may be mitigated, however, with larger sets of reads,
when this error rate is uniform across genome positions. Unfortunately, current
state-of-the-art dynamic programming approaches designed for long reads deal
only with limited coverages.

Results: Here, we propose a new method for assembling haplotypes which
combines and extends the features of previous approaches to deal with long reads
and higher coverages. In particular, our algorithm is able to dynamically adapt
the estimated number of errors at each variant site, while minimizing the total
number of error corrections necessary for finding a feasible solution. This allows
our method to significantly reduce the required computational resources, allowing
to consider datasets composed of higher coverages. The algorithm has been
implemented in a freely available tool, HapCHAT: Haplotype Assembly Coverage
Handling by Adapting Thresholds. An experimental analysis on sequencing reads
with up to 60× coverage reveals improvements in accuracy and recall achieved by
considering a higher coverage with lower runtimes.

Conclusions: Our method leverages the long-range information of sequencing
reads that allows to obtain assembled haplotypes fragmented in a lower number
of unphased haplotype blocks. At the same time, our method is also able to deal
with higher coverages to better correct the errors in the original reads and to
obtain more accurate haplotypes as a result.

Availability: HapCHAT is available at http://hapchat.algolab.eu under the
GPL license.

Keywords: Single Individual Haplotyping; Long Reads; High Coverage;
Haplotype Assembly; Minimum Error Correction

Introduction
Due to the diploid nature of the human genome, i.e., it has two copies of its genome,

called haplotypes, genomic variants appear on either of these two copies. Knowing

the specific haplotype on which each of the genomic variants occurs has a strong

impact on various studies in genetics, from population genomics [1, 2], to clinical

and medical genetics [3], or to the effects of compound heterozygosity [2, 4].

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

mailto:murray.patterson@unimib.it
http://hapchat.algolab.eu
https://doi.org/10.1101/170225


Beretta et al. Page 2 of 23

More specifically, the variations between two haplotypes of the genome are, for

the most part, in the form of heterozygous Single Nucleotide Variants (SNVs), i.e.,

single genomic positions where the haplotypes contain two distinct alleles. Since a

direct experimental reconstruction of the haplotypes is not yet cost effective [5] or

require methods that have not yet gained widespread adoption [6, 7], computational

methods aim to perform this task starting from sequencing reads mapped to a refer-

ence human genome. In fact, sequencing reads usually cover multiple SNV positions

on the genome, hence providing information about the corresponding alleles that

co-occur on a haplotype. In particular, haplotype assembly is the computational ap-

proach aiming to partition the reads into two sets such that all the reads belonging

to the same set are assigned to the same haplotype.

Due to the availability of curated, high quality haplotype reference panels on

a large population of individuals [8, 9], computational methods for statistically

inferring the haplotypes of an individual from these panels are widely used [10, 1].

The accuracy of these methods, however, depends heavily on the size and diversity

of the population used to compile the panels, entailing poor performance on rare

variants, while de novo variants are completely missed. These types of variants

appear in the sequencing reads of the individual, making read-based haplotype

assembly the obvious solution.

The combinatorial Minimum Error Correction (MEC) problem is the most com-

monly cited formulation of haplotype assembly [11]. Under the principle of par-

simony, MEC aims to find the minimum number of corrections to the values

of sequencing reads in order to be able to partition the reads into two haplo-

types. Unfortunately, this problem is NP-hard [11] and it is even hard to approxi-

mate [12, 13, 14]. As such, several heuristics for haplotype assembly have been pro-

posed [15, 16, 17, 18, 19]. Beyond that, several exact methods have been proposed,

including Integer Linear Programming (ILP) approaches [20, 21], and Dynamic Pro-

gramming (DP) approaches which are Fixed-Parameter Tractable (FPT) in some

parameter [22, 13]. These methods achieve good results on datasets obtained using

the traditional short sequencing reads. However, short reads do not allow to span

more than a few SNV positions along the genome, rendering them inadequate for

reconstructing long regions of the two haplotypes. In fact, the short range informa-

tion provided by these reads does not allow to link many – if any – SNVs together.

Consequently, the resulting assembled haplotypes are fragmented into many short

haplotype blocks that remain unphased, relative to each other [23].

The advent of third generation sequencing technologies introduces a new kind of

sequencing reads, called long reads, that are able to cover much longer portions of

the genome [24, 25, 26]. Each read may span several positions along the genome

and the long-range information provided by these reads allow to link several SNVs.

This results in the possibility of obtaining longer haplotype blocks that assign more

variants to the corresponding haplotype [27, 28]. Current third generation sequenc-

ing platforms offered by Pacific Biosciences (PacBio) [29] and Oxford Nanopore

Technologies (ONT) [30] are now able to produce reads of tens to hundreds of kilo-

basepairs (kbp) in length, and are much more capable of capturing together more

variants than the short reads that are commonplace today. While PacBio technolo-

gies are characterized by a high error rate (substitution error rate up to 5% and indel

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 3 of 23

rate up to 10%), this is uniformly distributed along the genome positions [24, 25, 31]

– something we can take advantage of. Oxford Nanopore Technologies, on the other

hand, have an even higher error rate which is also not uniformly distributed [32].

Traditional approaches that have been designed for short reads fail when they are

applied to these long reads, even when considering low coverages, as demonstrated

in [33]. This is due to the fact that these approaches scale poorly with increasing

read length [21, 22].

Recently, two methods have been proposed to specifically deal with long reads and

their characteristics, namely WhatsHap [33, 34] and HapCol [35]. On the one hand,

WhatsHap introduces a dynamic programming algorithm that is fixed parameter

tractable, with coverage as the parameter, where coverage is the maximum number

of reads covering any genome position. Hence, this algorithm is able to leverage

the long-range information of long reads since its runtime is independent of the

read length, but unfortunately it can deal only with datasets of limited coverages

– up to 20×, and hence resorts to pruning datasets with higher coverage [33]. A

parallel version of WhatsHap has been recently proposed showing the capability to

deal with higher coverages of up to 25× [36]. Although WhatsHap computes the

theoretically optimal solution to the MEC problem, minimizing the overall number

of corrections in the input reads, this could result, however, in columns having an

unrealistically large number of corrections, which may not be coherent with how

the errors are truly distributed in the actual reads.

On the other hand, HapCol proposes an approach that exploits the uniform dis-

tribution of sequencing errors characterizing long reads. In particular, the authors

propose a new formulation of the MEC problem where the maximum number of

corrections is bounded in every column and is computed from the expected error

rate [35]. HapCol has been shown to be able to deal with datasets of higher cover-

ages compared to WhatsHap. However, the presence of genome positions containing

more errors than expected (due to errors in the alignment or repetitive regions) is a

problem for this approach. As a result, even HapCol was effectively limited to deal

with instances of relatively low coverages up to 25–30×, since even the presence of

few outliers forces the algorithm to change the global behavior, or to fail.

As a result, both the methods proposed for haplotype assembly from long reads,

WhatsHap and HapCol, have issues managing datasets with increasing coverages.

However, considering a higher number of reads covering each position is indeed the

most reliable way to face the high error rate characterizing the sequencing reads

produced by third generation sequencing technologies. In fact, long reads generated

by the PacBio platform share a limited number of errors on any given SNV position

that they cover because errors are almost uniformly distributed across genome po-

sitions. Therefore, increasing the coverage mitigates the effects of sequencing errors

and may allow to reconstruct haplotypes of higher quality.

In this work we propose a new method which combines and extends the main

features of the previous WhatsHap and HapCol, and aims to deal with datasets of

higher coverages while being robust to the presence of noise and outliers. In par-

ticular, we re-design the approach proposed in [35] by allowing also the dynamic

adaption of the estimated error rate and, consequently, the maximum number of

corrections that are allowed in each position. This allows the handling of columns

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 4 of 23

that require more errors than expected, while avoiding the exploration of scenarios

that involve a number of corrections that is much higher than necessary for a site.

This is coupled with a merging procedure which merges pairs of reads that are

highly likely to originate from the same haplotype, allowing this method to scale

to significantly higher values of coverage. The method has been implemented in

HapCHAT: Haplotype Assembly Coverage Handling by Adapting Thresholds that

is freely available at http://github.com/AlgoLab/HapCHAT. An experimental anal-

ysis on real and simulated sequencing reads with up to 60× coverage reveals that

we are able to leverage high coverage towards better predictions in terms of both

accuracy (switch error rate) and recall (QAN50 score), as we see an upward trend

in both, as coverage increases. This trend is the most stark in the case of recall,

which is where it counts the most, since the ultimate goal of haplotype assembly is

indeed to assemble the longest haplotype blocks possible.

We compare our method to some of the state-of-the-art methods in haplotype as-

sembly, including HapCol [35]; the newest version of WhatsHap [37], to which many

features have since been added; and HapCUT2 [16, 17]. We show that HapCHAT is

comparable to or better than any tool in terms of both accuracy and recall, while

requiring an amount of computational resources (time and memory) that is on the

same or a lower order of magnitude of any comparable (in terms of accuracy or

recall) tool in every case. These results confirm that high coverage can indeed be

leveraged in order to deal with the high error rate of long reads in order to take

advantage of their long-range information.

Background
Let v be a vector, then v[i] denotes the value of v at position i. A haplotype is a

vector h ∈ {0, 1}m. Given two haplotypes of an individual, say h1, h2, the position

j is heterozygous if h1[j] 6= h2[j], otherwise j is homozygous. A fragment is a vector

f of length l belonging to {0, 1,−}l. Given a fragment f , position j is a hole if

f [j] = −, while a gap is a maximal sub-vector of f of holes, i.e., a gap is preceded

and followed by a non-hole element (or by a boundary of the fragment).

A fragment matrix is a matrix M that consists of n rows (fragments) and m

columns (SNVs). We denote as L the maximum length for all the fragments in M ,

and as Mj the j-th column of M . Notice that each column of M is a vector in

{0, 1,−}n while each row is a vector in {0, 1,−}m.

Given two row vectors r1 and r2 belonging to {0, 1,−}m, r1 and r2 are in conflict if

there exists a position j, with 1 ≤ j ≤ m, such that r1[j] 6= r2[j] and r1[j], r2[j] 6= −,

otherwise r1 and r2 are in agreement. A fragment matrix M is conflict free if and

only if there exist two haplotypes h1, h2 such that each row of M is in agreement

with one of h1 and h2. Equivalently, M is conflict free if and only if there exists a

bipartition (P1, P2) of the fragments in M such that each pair of fragments in P1 is

in agreement and each pair of fragments in P2 is in agreement. A k-correction of a

column Mj , is obtained from Mj by flipping at most k values that are different from

−. A column of a matrix is called homozygous if it contains no 0 or no 1, otherwise (if

it contains both 0 and 1) it is called heterozygous. We say that a fragment i is active

on a column Mj , if Mj [i] = 0 or Mj [i] = 1. The active fragments of a column Mj

are the set active(Mj) = {i : Mj [i] 6= −}. The coverage of the column Mj is defined

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

http://github.com/AlgoLab/HapCHAT
https://doi.org/10.1101/170225


Beretta et al. Page 5 of 23

as the number cov j of fragments that are active on Mj , that is cov j = |active(Mj)|.
In the following, we indicate as cov the maximum coverage over all the columns of

M . Given two columns Mi and Mj , we denote by active(Mi,Mj) the intersection

active(Mi)∩active(Mj). Moreover, we will write Mi ≈Mj , and say that Mi, Mj are

in accordance [13], if Mi[r] = My[r] for each r ∈ active(Mi,Mj), or Mi[r] 6= My[r]

for each r ∈ active(Mi,Mj). Notice that Mi ≈ Mj means that these two columns

are compatible, that is, they induce no conflict. Moreover, d(Mi,Mj) denotes the

minimum number of corrections to make columns Mi and Mj in accordance.

The Minimum Error Correction (MEC) problem [11, 38], given a matrix M of

fragments, asks to find a conflict free matrix C obtained from M with the minimum

number of corrections. In this work, we consider the variant of the MEC problem,

called k-cMEC in which the number of corrections per column is bounded by an

integer k [35]. More precisely, we want a k-correction matrix D for M where each

column Cj is a k-correction of column Mj , minimizing the total number of correc-

tions. We recall that in this paper we will consider only matrices where all columns

are heterozygous.

Now, let us briefly recall the dynamic programming approach to solve the k-

cMEC problem [35]. This approach computes a bidimensional array D[j, Cj ] for each

column j ≥ 1 and each possible heterozygous k-correction Cj of Mj , where each

entry D[j, Cj ] contains the minimum number of corrections to obtain a k-correction

matrix C for M on columns M1, . . . ,Mj such that the columns Cj are heterozygous.

For the sake of simplicity, we pose D[0, ·] = 0. For 0 < j ≤ m, the recurrence

equation for D[j, Cj ] is the following, where δj is the set of all heterozygous k-

corrections of the column Mj .

D[j, Cj ] = min
Cj−1∈δj−1,Cj≈Cj−1

{
D[j − 1, Cj−1] + d(Mj , Cj)

}
.

For the complete description of the dynamic programming recurrence we refer the

reader to [35, 13].

Methods
In this section, we highlight the new insight of HapCHAT for the assembly of single

individual haplotypes, with the specific goal of processing high coverage in long

read datasets. In fact, as reported in the original HapCol paper [35], the FPT

algorithm is exponential in the number k of allowed corrections in each position.

Therefore, we developed a preprocessing step which merges reads belonging to the

same haplotype based on a graph clustering method. Moreover, we also improved

the HapCol method by introducing a heuristic procedure to cope with problematic

positions, i.e. those requiring more than k corrections.

As anticipated, the combination of all these improvements allowed the possibility

of reconstructing haplotypes using higher coverage reads (w.r.t. the original HapCol

method), while reducing the runtimes.

Preprocessing

The first step of our pipeline is to merge pairs of fragments that, with high probabil-

ity, originate from the same haplotype. With p we denote the (average) probability

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 6 of 23

that any single base has been read incorrectly (i.e. that a nucleotide in the input

BAM file is wrong) — we recall that p ≈ 0.15 and that errors are uniformly dis-

tributed for PacBio reads. Let r1 and r2 be two reads that share m+x sites, where

they agree on m of those sites and disagree on the other x sites. For this pair of

reads, we compute a likelihood under the hypothesis that the reads originate from

the same haplotype, and a likelihood under the hypothesis that the reads originate

from different haplotypes. We then compute the ratio of these two likelihoods. This

idea is similar to the one adopted in [39], but our use is different.

Then, the probability of obtaining the two reads r1 and r2 under the hypothesis

that they originate from the same haplotype is approximately ps(r1, r2) = (1 −
p)2mpx(1 − p/3)x, that is we assume that we have no error in the shared part

and exactly one error on the other sites. Similarly, the probability of obtaining the

two reads r1 and r2 under the hypothesis that they originate from two different

haplotypes is approximately pd(r1, r2) = pm(1 − p/3)m(1 − p/3)x(1 − p)x, that is

we assume that there is exactly one error in the sites with same value and at most

an error in the sites with different values.

A simple approach to reduce the size of the instance is to merge all pairs (r1, r2)

of fragments such that ps(r1, r2) is sufficiently large. But that would also merge

some pairs of fragments whose probability pd is too large. Since we want to be

conservative in merging fragments, we partition the fragment set into clusters such

that ps/pd ≥ 106 for each pair of fragments in the cluster. This threshold was

obtained empirically, in order to achieve the best performance in terms of quality

of the predictions in the performed experimental analysis. Then, for each site, the

character that is the result of a merge is chosen applying a majority rule, weighted

by the Phred score of each symbol. Notice that the merging heuristic of ProbHap [39]

considers only the ratio to determine when to merge two reads, while we analyze

all pairs of reads to determine which sets of reads to merge.

Adaptive k-cMEC

Here, we describe how we modified the HapCol dynamic programming recurrence

in order to deal with problematic columns for which the maximum allowed number

of corrections is not enough to obtain a solution. As stated in the original HapCol

paper [35], the number kj of corrections for each column Mj is computed, based

on its coverage cov j and on two input parameters: ε (average error-rate) and α

(the probability that the column Mj has more than kj errors). The idea is that

the number of errors in a column j follows a binomial distribution, and hence

we allow the lowest value kj such that the probability of having more than kj

errors (with error rate ε) is at most α. This is done in order to bound the value

of k, which is fundamental since HapCol implements an FPT algorithm that is

exponential in the maximum number of allowed corrections. For this reason, we

would prefer to have low values of kj . A side effect of this approach is that, when

all solutions of an instance contain a column with more than kj errors, HapCol is

not able to find a solution. Therefore, we developed a heuristic procedure which

has the final goal of guaranteeing that a solution is found, by slightly increasing the

allowed number of errors beyond kj , such that a solution exists for this number. We

recall that the recurrence equation governing the original dynamic programming

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 7 of 23

approach considers all kj-correction Cj ∈ δj . We slightly modify the definition of

k-corrections to cope with those problematic columns, by increasing the number of

allowed corrections. Let Cj,k be a k-correction of Mj with exactly k corrections, let

zj,0 = kj and zj,i = zj,i−1 + blog2(zj,i−1) + 1c, i.e., each term is obtained from the

previous one by adding a logarithmic term, to guarantee that the number of allowed

corrections does not grow too quickly. Then k∗j = mini:D[j,Cj,zj,i−1
] 6=∞ {zj,i} if i > 0,

where D[·, ·] 6=∞ means it is a feasible correction. Starting from this notation, the

new set of possible corrections of column Mj is

δj =
{
Cj,k : 1 ≤ k ≤ k∗j

}
.

Notice that the sequence of zj,i is monotonically increasing with i, hence we can

compute k∗j by starting with kj and increasing it until we are able to find a k∗j -

correction for the column Mj . The dynamic programming equation is unchanged,

but our new construction of the set δj guarantees that we are always able to com-

pute a solution. Moreover, just as for HapCol, we cannot guarantee that we solve

optimally the instance of the MEC problem.

One of the key points of this procedure is how we increment zj,i, that is by adding

a logarithmic quantity. This guarantees a balance between finding a low value of k∗j
and the running time needed for the computation.

Results and Discussion
We now describe the results of our experiments. In the first subsection, we describe

the data that we use, or simulate. Then we detail the experiments that we set up

in order to compare our tool with others in the next subsection. Finally, we present

and discuss the results of these experiments.

Data description

The Genome in a Bottle (GIAB) Consortium has released publicly available high-

quality sequencing data for seven individuals, using eleven different technologies [40,

41, 42]. Since our goal is to assess the performance of different single-individual

haplotype phasing methods, we study chromosome 1 of the Ashkenazim individual

NA24385, as well as chromosomes 1–22 of individual NA12878.

The Ashkenazim individual is the son in a mother-father-son trio. We downloaded

from GIAB the genotype variants call sets NIST CallsIn2Technologies 05182015, a

set of variants for each individual of this trio that have been called by at least two

independent variant calling technologies. In order to be able to compare against

methods that use reference panels or information from multiple individuals, e.g., a

trio, for single-individual haplotype phasing, we considered all the bi-allelic SNVs of

the chromosome that: (a) appear also in the 1000 Genomes reference panel https://

mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.tgz, and (b) have been called

in all three individuals of the Ashkenazim trio, i.e., also in the mother and the father.

For chromosome 1, this resulted in 140744 SNVs, of which 48023 are heterozygous.

We refer to this set of SNVs as the set of benchmark SNVs for this dataset – the

set is in the form of a VCF file. Since the authors of [43] also studied this trio, and

have made the pipeline for collecting and generating their data publicly available at

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.tgz
https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.tgz
https://doi.org/10.1101/170225


Beretta et al. Page 8 of 23

https://bitbucket.org/whatshap/phasing-comparison-experiments/, we use

or modify parts of this pipeline to generate our data as detailed in the following.

As for the individual NA12878, we downloaded the latest high confidence phased

VCF of GIAB for hg37, available at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/

ftp/release/NA12878_HG001/latest/GRCh37/HG001_GRCh37_GIAB_highconf_CG-

IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.

vcf.gz, and used all SNVs in this file as our set of benchmark SNVs for the respec-

tive chromosomes.

GIAB PacBio Reads

One of the more recent technologies producing long reads – those which are the most

informative for read-based phasing – is the Pacific Biosciences (PacBio) platform.

PacBio is one of the eleven technologies on which GIAB provides sequencing reads.

We hence downloaded the set of aligned PacBio reads from ftp://ftp-trace.

ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_

MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_1.bam for chromosome 1

of the Ashkenazim individual, which has an average coverage of 60.2× and an aver-

age mapped read length of 8687 bp. We then downsampled the read set to average

coverages of 25×, 30×, 35×, 40×, 45×, 50×, 55×, and 60×. This was done using

the DownsampleSam subcommand of Picard Tools, which randomly downsamples a

read set by selecting each read with probability p. We downsample recursively, so

that each downsampled read set with a given average coverage is a subset of any

downsampled read set with an average coverage higher than this set.

As for individual NA12878, we downloaded the set of aligned PacBio reads ftp://

ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/

sorted_final_merged.bam, which comprises chromosomes 1–22. The average cov-

erages (resp., mapped read lengths) ranged between 26.9 and 44.2 (resp., 4746 and

5285), so we did not perform any downsampling for this dataset.

As a phasing benchmark for the Ashkenazim chromosome 1, we used the latest

high confidence trio-phased VCF of GIAB for hg37, available at ftp://ftp-trace.

ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/

GRCh37/HG002_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-

22_v.3.3.2_highconf_triophased.vcf.gz. As for chromosomes 1–22 of the indi-

vidual NA12878, we used the (original, i.e., phased version of the) high confidence

phased VCF mentioned in the previous section.

Simulated PacBio Data

Aside from the PacBio data described in the previous section, we also produce and

run our experiments on a simulated read set for chromosome 1 of the Ashkenazim

individual. Reference panels may leave out some variants with low allele frequency

– a good reason for doing read-based phasing – and statistical methods might be

susceptible to systematic bias in the data. For these reasons, we complement our

study with an experimental analysis on simulated reads, as follows.

We first obtain a pair of “true” haplotypes off of which we simulate reads. This

is obtained from the output of the population-based phasing tool SHAPEITv2-

r837 [44] with default parameters on the 1000 Genomes reference panel, the corre-

sponding genetic map http://www.shapeit.fr/files/genetic_map_b37.tar.gz,

and the unphased genotypes, i.e., the set of benchmark SNVs of this chromosome.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://bitbucket.org/whatshap/phasing-comparison-experiments/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh37/HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh37/HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh37/HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh37/HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_1.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_1.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_1.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/sorted_final_merged.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/sorted_final_merged.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/sorted_final_merged.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh37/HG002_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-22_v.3.3.2_highconf_triophased.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh37/HG002_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-22_v.3.3.2_highconf_triophased.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh37/HG002_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-22_v.3.3.2_highconf_triophased.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh37/HG002_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-22_v.3.3.2_highconf_triophased.vcf.gz
http://www.shapeit.fr/files/genetic_map_b37.tar.gz
https://doi.org/10.1101/170225


Beretta et al. Page 9 of 23

Given the phasing by SHAPEIT, we incorporate the (benchmark) SNVs of the

first haplotype of this phasing into the reference genome (hg37) by flipping the

variant sites that are the alternative allele in this haplotype. The second haplotype

is obtained analogously. Using these two true haplotypes as the input, we produce

a corresponding set of reads for this haplotype using PBSIM [45], a PacBio-specific

read simulator. We input to PBSIM the optional parameters --depth 60 so that

our simulated reads have sufficient coverage, and as --sample-fastq a sample of the

original GIAB PacBio reads described in the previous section, so that our simulated

reads have the same length and accuracy profile as the corresponding real read set.

We align the resulting simulated reads to the reference genome using BWA-MEM

0.7.12-r1039 [46] with optional parameter -x pacbio. Finally, this pair of aligned

read sets, representing the reads coming off of each haplotype is merged using the

MergeSamFiles subcommand of Picard Tools, obtaining the final simulated read

set. In the same way as we have done with the read sets for the real Chromosome

1, we downsample to average coverages 25×, 30×, 35×, 40×, 45×, 50×, 55×, and

60×.

To summarize, the data we use or simulate regards both real and simulated reads

on chromosome 1 of the Ashkenazim individual for a set of 8 average coverages, for

a total of 16 read sets, each in the form of a BAM file. The autosomes of individual

NA12878 adds an additional 22 read sets, each in the form of a BAM file. It is on

these 38 read sets, along with their corresponding set of benchmark SNVs – in the

form of VCF files – that we carry out our experiments, as described in the following

section.

Experimental Setup

We compare our tool HapCHAT to the most recent state-of-the-art read-based

phasing methods of WhatsHap [34, 37], HapCol [35], HapCUT2 [17], ProbHap [39],

ReFHap [19] and FastHare [15] by running them all on the data described in the

previous subsection. Recall that, as detailed in the introduction, WhatsHap, HapCol

and HapCHAT are approaches with a core phasing algorithm that is FPT either in

the coverage or in the number of errors at each SNV site. Hence the coverage must

first be reduced to some target maximum coverage before its core algorithm can be

run. Each run of a tool on a dataset is given a time limit of one day, and a memory

limit of 64GB. We now describe the details of how we parameterized each tool for

comparison in what follows.

WhatsHap

For each read set, we provide to WhatsHap (version 0.13) the corresponding BAM

and VCF file. We run WhatsHap on this input pair on otherwise default settings,

with the exception of providing it the reference genome (hg37) via the optional

parameter --reference. This allows WhatsHap to run in realignment mode, which

has been shown to significantly boost accuracy predictions for noisy read sets such

as PacBio, as detailed in [37]. In particular, this mode is well suited to handle the

abundant indel errors in the input reads. WhatsHap has a built-in read selection

procedure [47] which subsequently prunes to a default maximum coverage of 15

before the core phasing algorithm is called. The default value has been selected by

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 10 of 23

the authors of WhatsHap to provide the best trade-off between quality of the results

and runtime [48]. Additionally, we run WhatsHap in realignment mode as above,

but fixing to target maximum coverage 20 by providing the additional optional

parameter -H 20. It is the resulting set of phasings by WhatsHap, in the form of

phased VCF, that we use for the basis of comparison with the other methods.

HapCol

For each read set, together with the VCF file of the corresponding chromosome,

we convert it to the custom input format for HapCol. Since HapCol does not have

a read selection procedure – something it does need for data at 35× (or higher)

coverage (cf. the Introduction) — we then apply the read selection procedure of [47]

to prune this set to the target maximum coverages of 15×, 20×, 25×, and 30×. On

these resulting input files, we run HapCol with its default value of α = 0.01 (and

of ε = 0.05) (cf. the subsection on Adaptive k-cMEC or [35] for details on the

meaning of α and ε). Since HapCol is not adaptive, but we want to give it a chance

to obtain a solution on its instance, should a given α be infeasible (cf. the subsection

on Adaptive k-cMEC), we continue to rerun HapCol with an α of one tenth the

size of the previous until a solution exists. HapCol outputs a pair of binary strings

representing the phasing, which we then convert to phased VCF. Note that we did

not further attempt any higher maximum coverages, because at maximum coverage

30, HapCol either exceeded one day of runtime or 64GB of memory on every dataset.

It is this set of resulting phasings (phased VCF files) that we use to compare with

the other methods.

ProbHap, RefHap and FastHare

For each read set, we use the extractHAIRS program that is distributed with the

original HapCut [16] to convert its BAM / VCF pair into the custom input for-

mat for these methods. We then ran each method on these instances with default

settings, each producing a custom input which is then converted to a phased VCF

with the subcommand hapcut2vcf of the WhatsHap toolbox.

HapCUT2

For each read set, we use the extractHAIRS program that comes with HapCUT2,

with parameter --pacbio 1, which activates a newly-developed realignment proce-

dure for pacbio reads, to convert its BAM / VCF pair into the custom input format

for HapCUT2. We then ran HapCUT2 on the resulting instances with default set-

tings, each producing a custom output which is then converted to phased VCF with

the subcommand hapcut2vcf of the WhatsHap toolbox.

HapCHAT

For each read set, we provide to HapCHAT the corresponding BAM and VCF

file. We run HapCHAT on this input pair on otherwise default settings, with the

exception of providing it the reference genome (hg37) via the optional parameter

--reference. This allows HapCHAT to run in realignment mode like with What-

sHap, thanks to the partial integration of HapCHAT into the WhatsHap codebase.

We then apply our merging step as described in the subsection Preprocessing, which

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 11 of 23

reduces the coverage. If necessary, the reads are further selected via a greedy selec-

tion approach (based on the Phred score), with ties broken at random, to down-

sample each dataset to the target maximum coverages of 15×, 20×, 25×, and 30×.

It is the resulting phasings, in phased VCF format, for which the comparison of

HapCHAT to other methods is based.

Experimental results and discussion

The times reported here do not include the time necessary to read the input (BAM)

file, which is more-or-less the same for each method. The results are summarized in

Tables 1–17 and Figures 1,2 and 3.

The accuracy of the predictions obtained from the experiments and measured in

terms of switch error percentages is summarized in Tables 1, 6 and 11. We have

also assessed the accuracy of the predictions by computing the Hamming distance

percentages — Tables 2, 7 and 12. Each true haplotype is a mosaic of the predicted

haplotypes. A switch error is the boundary (that is two consecutive SNV positions)

between two portions of such a mosaic. The switch error percentage is the ratio

between the number of switch errors and the number of phased SNVs minus one

(expressed as a percentage). It is immediate to notice that HapCHAT, WhatsHap,

and HapCUT2 compute the best predictions, all of them being very close. Figures 2

and 3 give bar chart representations of switch error rates for just these three methods

on all real datasets. We point out that HapCHAT (resp., HapCUT2) computes the

best switch error rates for almost all instances of the real and simulated Ashkenazim

(resp., NA12878) datasets.

Although the switch error is one of the most widely adopted measures used to

evaluate the quality of the phased haplotypes, it does not take into account the

recall, or the completeness of the haplotype – that is, the size of the phased haplotype

blocks recovered. While N50 is the classical median size of an assembled haplotype

block in terms of length in basepairs (bps) from the literature on assembly, [49]

introduced the adjusted N50, that is AN50 score which normalizes each block in

terms of the number of phased SNVs appearing on a block. In order to account for

completeness and quality, [50] introduced the notion of quality AN50, that is the

QAN50 score, where assembled haplotype blocks are fractured at each switch error,

and then AN50 is taken on the resulting sub-blocks. This is an important measure

because it is closest to the objective of haplotype assembly – to reassemble the

longest (error-free) haplotype blocks possible. We hence computed QAN50 scores

for all methods, as summarized in Tables 3, 8, and 13. It is immediate to notice that

HapCHAT and WhatsHap have the best QAN50 scores, more precisely HapCHAT

(resp., WhatsHap) computes the best QAN50 scores for almost all instances of the

real and simulated Ashkenazim (resp., NA12878) datasets. HapCUT2 is a close

second: despite its good switch error rate, it has consistently lower QAN50 scores.

This could possibly be explained by [17]: “HapCUT2 implements likelihood-based

strategies for pruning low-confidence variants to reduce mismatch errors and split-

ting blocks at poor linkages to reduce switch errors (see Methods). These post-

processing steps allow a user to improve accuracy of the haplotypes at the cost of

reducing completeness and contiguity.” – indeed their switch error rate tends to

be consistently the best for the NA12878 dataset at least, the tradeoff being that

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 12 of 23

QAN50 score is consistently lower than the best method in all cases. Figures 2

and 3 give bar chart representations of QAN50 scores for HapCHAT, WhatsHap

and HapCUT2 on all real datasets.

Since HapCHAT and WhatsHap can be influenced by a maximum coverage pa-

rameter, we did a deeper analysis of these two methods at different values of such

parameter. The plots in Figure 1 represent the quality of the predictions computed

by WhatsHap and HapCHAT as a function of the running time, for Chromosome 1

on the Ashkenazim dataset. Besides the switch error rate, we have also investigated

the Hamming distance, that is the number of phase-calls that are different from

the ground truth. Both plots confirm that HapCHAT computes predictions that

are at least as good as those of WhatsHap (and clearly better in terms of Ham-

ming distance) with a comparable runtime. We decided to include in the Tables the

comparison of WhatsHap at both 20x and 15x max coverage, while 20x is the max-

imum coverage that we could test for WhatsHap – 15x is suggested by the authors

as the default value for running WhatsHap and achieve the best trade off between

accuracy and running time [48]. Observe in Figure 1 that with 20x max coverage

WhatsHap obtains better predictions — close to those by HapCHAT — but with

a much higher runtime.

It is possible to observe from Tables 4, 5, 9 and 10 that although both time and

memory used by HapCHAT is growing with the (average) coverage, with higher

coverage the rate at which the time increments is decreasing. Similarly, also the

memory increment is almost linear with respect to the growth of the coverage of

the datasets. On the other hand, while the changes of time and memory required

by HapCol and WhatsHap to process higher coverages remain similar. Contrary to

HapCHAT, because HapCol and WhatsHap are not adaptive (see intro for more

details) that is they do not change their behaviour w.r.t. increasing average coverage,

they must be run at a uniform maximum coverage of 25 and 15, respectively, and

exhibit similar runtimes and memory usage for all datasets. HapCHAT, on the

other hand, processes these datasets at the higher uniform maximum coverage of

30, and because it adapts to this increased average coverage, we see this linear trend

in increased resource usage, as expected. Finally, we point out that HapCUT2,

ReFHap, and FastHare require always the same memory, since it does not depend

on the coverage, and the time grows linearly, while ProbHap exhibits a behavior

reflecting the coverage increment, especially in terms of memory consumption.

An analysis of Tables 1 and 6 towards finding the effect of average coverage shows

that there is a trend of improving predictions with higher average coverage, but this

improvement is irregular. Since those irregularities are more common for HapCHAT

than for the other tools, we have produced Table 17 which gives a more detailed

breakdown of how the switch error is changing as a result of increasing coverage.

More precisely, we have found that only in one case the erroneous sites at higher

coverage is a subset of the erroneous sites at lower coverage. This shows a higher

sensitivity of HapCHAT to changing (in this case sampling) instances. On the other

hand, the quality measure given by the QAN50 reported in Tables 3 and 8 and also

summarized in Figure 2 shows that there is a regular increase of the QAN50 for all

the data sets consistent with the increase of the coverage.

Table 16 reports for each of the 16 Ashkenazim datasets, the SNV sites when the

adaptive procedure of subsection Adaptive k-cMEC was activated. Interestingly, it is

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 13 of 23

only in the Simulated dataset that the number of corrections needed to be increased

from 5 to 8 – the rest needing an increase only to 7 (from 4) – indicating that it

contains more unanticipated errors than the real datasets. Indeed this demonstrates

that this adaptive procedure is an improvement over HapCol, recalling that each

time this procedure is invoked, HapCol fails by definition. An added benefit of this

procedure is that it can serve as an indicator of the quality of the read set to be

phased. More specifically, it can serve as an indicator of the quality of the variant

calling itself — indeed it is a third type of accuracy prediction, on top of switch

error and Hamming distance — one that can be used to integrate the predictions of

several tools to obtain higher quality variant calls [41, 42]. We plan to investigate

further this advantage in future developments of HapCHAT.

Conclusions

We have presented HapCHAT, a tool that is able to phase high coverage PacBio

reads. We have compared HapCHAT to WhatsHap, HapCol, HapCUT2, ReFHap,

ProbHap and FastHare on on real and simulated whole-chromosome datasets, with

average coverage up to 60×. The real datasets have been taken from the GIAB

project. Our experimental comparison shows that HapCHAT has accuracy and re-

call that are comparable with those of WhatsHap and HapCUT2, and better than

all other tools. At the same time, HapCHAT requires an amount of computational

resources that is on the same order of magnitude as WhatsHap and HapCUT2. In

particular, our QAN50 scores are almost consistently better than all other tools,

showing that we reconstruct the longest, least fragmented haplotype blocks – the

ultimate aim of haplotype assembly. Trying our dynamic programming approach

with even longer reads, such as those bolstered with Hi-C information [51] would

hence be an interesting future endeavour, to see how far we can push this method

for assembling haplotypes.

Introducing the capability of adapting the number of errors permitted in each col-

umn allows HapCHAT to achieve a better fit than HapCol of the number of correc-

tions needed at each variant site. Still, the current approach allows such adaptation

only for the current column. Coupling this step with backtracking could result in

fewer overall corrections.

Another direction of research is to fully consider the parent-sibling relations in

trios, as done in [43] here. This is especially relevant, since most of the GIAB data

is on trios.

Finally, we are working on the integration of HapCHAT with the WhatsHap tool

to provide a more powerful haplotype phasing method able to combine the strengths

of the two approaches.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 14 of 23

Availability of data and materials

The PacBio long reads data that we used are publicly available at

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_

NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_1.bam and ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/sorted_final_merged.bam

The simulated datasets that we have used can be downloaded at:

https://drive.google.com/drive/folders/0BxqLPsY2hmAXMlowZF9JQllZNEU. The BAM files are in

archiveHapCHAT-experiments_bam--simulated.tar.gz, while the corresponding VCFs can be found at

HapCHAT-experiments.tar.gz.

Instructions on how to use and replicate the experiments can be found at http://hapchat.algolab.eu

Competing interests

The authors declare that they have no competing interests.

Funding

We acknowledge the support of the Cariplo Foundation grant 2013–0955 (Modulation of anti cancer immune

response by regulatory non-coding RNAs).

Acknowledgments

We thank Tobias Marschall and Marcel Martin for inspiring discussions and for comments on earlier versions of this

manuscript. We also thank the anonymous reviewers for pointing out during the revision process the new

realignment feature of HapCut2 that allowed us to extend to experimental analysis and to use the QAN50 measure

that helped the analysis and comparison of the tools.

Author details
1Department of Informatics, Systems, and Communication, University of Milano-Bicocca, Milan, Italy.
2Department of Computer Science, Princeton University, Princeton, New Jersey, The United States of America.

References
1. Browning, S.R., Browning, B.L.: Haplotype phasing: existing methods and new developments. Nature Reviews

Genetics 12(10), 703–714 (2011)

2. Tewhey, R., Bansal, V., Torkamani, A., Topol, E.J., Schork, N.J.: The importance of phase information for

human genomics. Nature Reviews Genetics (3), 215–223 (2011). doi:10.1038/nrg2950

3. Glusman, G., Cox, H.C., Roach, J.C.: Whole-genome haplotyping approaches and genomic medicine. Genome

Medicine 6(9), 73 (2014). doi:10.1186/s13073-014-0073-7

4. Roach, J.C., Glusman, G., Smit, A.F.A., Huff, C.D., Hubley, R., Shannon, P.T., Rowen, L., Pant, K.P.,

Goodman, N., Bamshad, M., Shendure, J., Drmanac, R., Jorde, L.B., Hood, L., Galas, D.J.: Analysis of genetic

inheritance in a family quartet by whole-genome sequencing. Science 328(5978), 636–639 (2010).

doi:10.1126/science.1186802

5. Kuleshov, V., Xie, D., Chen, R., Pushkarev, D., Ma, Z., Blauwkamp, T., Kertesz, M., Snyder, M.:

Whole-genome haplotyping using long reads and statistical methods. Nature Biotechnology 32(3), 261–266

(2014)

6. Porubský, D., Sanders, A.D., Wietmarschen, N.v., Falconer, E., Hills, M., Spierings, D.C.J., Bevova, M.R.,

Guryev, V., Lansdorp, P.M.: Direct chromosome-length haplotyping by single-cell sequencing. Genome Res.

(2016)

7. Porubsky, D., Garg, S., Sanders, A.D., Korbel, J.O., Guryev, V., Lansdorp, P.M., Marschall, T.: Dense and

accurate whole-chromosome haplotyping of individual genomes. Nat. Commun. 8(1), 1293 (2017)

8. Loh, P.-R., Danecek, P., Palamara, P.F., Fuchsberger, C., Reshef, Y.A., Finucane, H.K., Schoenherr, S., Forer,

L., McCarthy, S., Abecasis, G.R., Durbin, R., Price, A.L.: Reference-based phasing using the haplotype

reference consortium panel. Nature Genetics 48(11), 1443–1448 (2016). doi:10.1038/ng.3679

9. O’Connell, J., Sharp, K., Shrine, N., Wain, L., Hall, I., Tobin, M., Zagury, J.-F., Delaneau, O., Marchini, J.:

Haplotype estimation for biobank-scale data sets. Nature Genetics 48(7), 817–820 (2016). doi:10.1038/ng.3583

10. Li, N., Stephens, M.: Modeling linkage disequilibrium and identifying recombination hotspots using

single-nucleotide polymorphism data. Genetics 165(4), 2213–2233 (2003)

11. Lippert, R., Schwartz, R., Lancia, G., Istrail, S.: Algorithmic strategies for the single nucleotide polymorphism

haplotype assembly problem. Briefings in Bioinformatics 3(1), 23–31 (2002)

12. Cilibrasi, R., Van Iersel, L., Kelk, S., Tromp, J.: The complexity of the single individual SNP haplotyping

problem. Algorithmica 49(1), 13–36 (2007)

13. Bonizzoni, P., Dondi, R., Klau, G.W., Pirola, Y., Pisanti, N., Zaccaria, S.: On the fixed parameter tractability

and approximability of the minimum error correction problem. In: 26th Annual Symposium on Combinatorial

Pattern Matching (CPM). LNCS, vol. 9133, pp. 100–113 (2015)

14. Bonizzoni, P., Dondi, R., Klau, G.W., Pirola, Y., Pisanti, N., Zaccaria, S.: On the minimum error correction

problem for haplotype assembly in diploid and polyploid genomes. Journal of Computational Biology 23(9),

718–736 (2016)

15. Panconesi, A., Sozio, M.: Fast hare: A fast heuristic for single individual SNP haplotype reconstruction. In:

Algorithms in Bioinformatics, 4th International Workshop, WABI 2004, Bergen, Norway, September 17-21,

2004, Proceedings, pp. 266–277 (2004)

16. Bansal, V., Bafna, V.: HapCUT: an efficient and accurate algorithm for the haplotype assembly problem.

Bioinformatics 24(16), 153–159 (2008)

17. Edge, P., Bafna, V., Bansal, V.: HapCUT2: robust and accurate haplotype assembly for diverse sequencing

technologies. Genome Research 213462(116) (2016). doi:10.1101/gr.213462.116

18. Mazrouee, S., Wang, W.: FastHap: fast and accurate single individual haplotype reconstruction using fuzzy

conflict graphs. Bioinformatics 30(17), 371–378 (2014)

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_1.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_1.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/sorted_final_merged.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/sorted_final_merged.bam
https://drive.google.com/drive/folders/0BxqLPsY2hmAXMlowZF9JQllZNEU
http://hapchat.algolab.eu
http://dx.doi.org/10.1038/nrg2950
http://dx.doi.org/10.1186/s13073-014-0073-7
http://dx.doi.org/10.1126/science.1186802
http://dx.doi.org/10.1038/ng.3679
http://dx.doi.org/10.1038/ng.3583
http://dx.doi.org/10.1101/gr.213462.116
https://doi.org/10.1101/170225


Beretta et al. Page 15 of 23

19. Duitama, J., Huebsch, T., McEwen, G., Suk, E.-K., Hoehe, M.R.: ReFHap: a reliable and fast algorithm for

single individual haplotyping. In: BCB, pp. 160–169. ACM, ??? (2010)

20. Fouilhoux, P., Mahjoub, A.R.: Solving VLSI design and DNA sequencing problems using bipartization of graphs.

Computational Optimization and Applications 51(2), 749–781 (2012)

21. Chen, Z.-Z., Deng, F., Wang, L.: Exact algorithms for haplotype assembly from whole-genome sequence data.

Bioinformatics 29(16), 1938–45 (2013)

22. He, D., Choi, A., Pipatsrisawat, K., Darwiche, A., Eskin, E.: Optimal algorithms for haplotype assembly from

whole-genome sequence data. Bioinformatics 26(12), 183–190 (2010)

23. Chaisson, M.J.P., Sanders, A.D., Zhao, X., Malhotra, A., Porubsky, D., Rausch, T., Gardner, E.J., Rodriguez,

O., Guo, L., Collins, R.L., Fan, X., Wen, J., Handsaker, R.E., Fairley, S., Kronenberg, Z.N., Kong, X.,

Hormozdiari, F., Lee, D., Wenger, A.M., Hastie, A., Antaki, D., Audano, P., Brand, H., Cantsilieris, S., Cao,

H., Cerveira, E., Chen, C., Chen, X., Chin, C.-S., Chong, Z., Chuang, N.T., Church, D.M., Clarke, L., Farrell,

A., Flores, J., Galeev, T., David, G., Gujral, M., Guryev, V., Haynes-Heaton, W., Korlach, J., Kumar, S., Kwon,

J.Y., Lee, J.E., Lee, J., Lee, W.-P., Lee, S.P., Marks, P., Valud-Martinez, K., Meiers, S., Munson, K.M.,

Navarro, F., Nelson, B.J., Nodzak, C., Noor, A., Kyriazopoulou-Panagiotopoulou, S., Pang, A., Qiu, Y.,

Rosanio, G., Ryan, M., Stutz, A., Spierings, D.C.J., Ward, A., Welsch, A.E., Xiao, M., Xu, W., Zhang, C., Zhu,

Q., Zheng-Bradley, X., Jun, G., Ding, L., Koh, C.L., Ren, B., Flicek, P., Chen, K., Gerstein, M.B., Kwok, P.-Y.,

Lansdorp, P.M., Marth, G., Sebat, J., Shi, X., Bashir, A., Ye, K., Devine, S.E., Talkowski, M., Mills, R.E.,

Marschall, T., Korbel, J., Eichler, E.E., Lee, C.: Multi-platform discovery of haplotype-resolved structural

variation in human genomes. bioRxiv (2017). doi:10.1101/193144

24. Carneiro, M.O., Russ, C., Ross, M.G., Gabriel, S.B., Nusbaum, C., DePristo, M.A.: Pacific Biosciences

sequencing technology for genotyping and variation discovery in human data. BMC Genomics 13(1), 375

(2012)

25. Roberts, R.J., Carneiro, M.O., Schatz, M.C.: The advantages of SMRT sequencing. Genome Biology 14(6),

405 (2013)

26. Sedlazeck, F.J., Lee, H., Darby, C.A., Schatz, M.C.: Piercing the dark matter: bioinformatics of long-range

sequencing and mapping. Nat. Rev. Genet. (2018)

27. Kuleshov, V., et al.: Whole-genome haplotyping using long reads and statistical methods. Nature Biotechnology

32(3), 261–266 (2014)

28. Ip, C.L.C., Loose, M., Tyson, J.R., de Cesare, M., Brown, B.L., Jain, M., Leggett, R.M., Eccles, D.A., Zalunin,

V., Urban, J.M., Piazza, P., Bowden, R.J., Paten, B., Mwaigwisya, S., Batty, E.M., Simpson, J.T., Snutch,

T.P., Birney, E., Buck, D., Goodwin, S., Jansen, H.J., O’Grady, J., Olsen, H.E.: MinION analysis and reference

consortium: Phase 1 data release and analysis. F1000 Research 4 (2015). doi:10.12688/f1000research.7201.1

29. Rhoads, A., Au, K.F.: Pacbio sequencing and its applications. Genomics, Proteomics and Bioinformatics 13(5),

278–289 (2015)

30. Jain, M., Olsen, H.E., Paten, B., Akeson, M.: The oxford nanopore minion: delivery of nanopore sequencing to

the genomics community. Genome Biology 17(1), 239 (2016)

31. Jain, M., Fiddes, I.T., Miga, K.H., Olsen, H.E., Paten, B., Akeson, M.: Improved data analysis for the minion

nanopore sequencer. Nature methods 12, 351–356 (2015)

32. Cretu Stancu, M., van Roosmalen, M.J., Renkens, I., Nieboer, M.M., Middelkamp, S., de Ligt, J., Pregno, G.,

Giachino, D., Mandrile, G., Espejo Valle-Inclan, J., Korzelius, J., de Bruijn, E., Cuppen, E., Talkowski, M.E.,

Marschall, T., de Ridder, J., Kloosterman, W.P.: Mapping and phasing of structural variation in patient

genomes using nanopore sequencing. Nature Communications 8(1326) (2017).

doi:10.1038/s41467-017-01343-4

33. Patterson, M., Marschall, T., Pisanti, N., van Iersel, L., Stougie, L., Klau, G.W., Schönhuth, A.: WhatsHap:

Haplotype assembly for future-generation sequencing reads. In: RECOMB. LNCS, vol. 8394, pp. 237–249

(2014)

34. Patterson, M., Marschall, T., Pisanti, N., van Iersel, L., Stougie, L., Klau, G.W., Schönhuth, A.: WhatsHap:

Weighted haplotype assembly for future-generation sequencing reads. Journal of Computational Biology 6(1),

498–509 (2015)

35. Pirola, Y., Zaccaria, S., Dondi, R., Klau, G.W., Pisanti, N., Bonizzoni, P.: HapCol: accurate and

memory-efficient haplotype assembly from long reads. Bioinformatics 32(11), 1610–1617 (2016).

doi:10.1093/bioinformatics/btv495

36. Bracciali, A., Aldinucci, M., Patterson, M., Marschall, T., Pisanti, N., Merelli, I., Torquati, M.: PWHATSHAP:

efficient haplotyping for future generation sequencing. BMC Bioinformatics 17(11), 342 (2016).

doi:10.1186/s12859-016-1170-y

37. Martin, M., Patterson, M., Garg, S., Fischer, S.O., Pisanti, N., Klau, G.W., Schoenhuth, A., Marschall, T.:

WhatsHap: fast and accurate read-based phasing (2016)

38. Bonizzoni, P., Della Vedova, G., Dondi, R., Li, J.: The haplotyping problem: An overview of computational

models and solutions. Journal of Computer Science and Technolgy 18(6), 675–688 (2003)

39. Kuleshov, V.: Probabilistic single-individual haplotyping. Bioinformatics 30(17), 379–385 (2014)

40. Zook, J.M.: Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype

calls. Nature Biotechnology 32, 246–251 (2014)

41. Zook, J.M., Catoe, D., McDaniel, J., Vang, L., Spies, N., Sidow, A., Weng, Z., Liu, Y., Mason, C.E.,

Alexander, N., Henaff, E., McIntyre, A.B.R., Chandramohan, D., Chen, F., Jaeger, E., Moshrefi, A., Pham, K.,

Stedman, W., Liang, T., Saghbini, M., Dzakula, Z., Hastie, A., Cao, H., Deikus, G., Schadt, E., Sebra, R.,

Bashir, A., Truty, R.M., Chang, C.C., Gulbahce, N., Zhao, K., Ghosh, S., Hyland, F., Fu, Y., Chaisson, M.,

Xiao, C., Trow, J., Sherry, S.T., Zaranek, A.W., Ball, M., Bobe, J., Estep, P., Church, G.M., Marks, P.,

Kyriazopoulou-Panagiotopoulou, S., Zheng, G.X.Y., Schnall-Levin, M., Ordonez, H.S., Mudivarti, P.A., Giorda,

K., Sheng, Y., Rypdal, K.B., Salit, M.: Extensive sequencing of seven human genomes to characterize

benchmark reference materials. Scientific Data 3(160025) (2016). doi:10.1038/sdata.2016.25

42. Kalman, L., Datta, V., Williams, M., Zook, J.M., Salit, M.L., Han, J.-Y.: Development and characterization of

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

http://dx.doi.org/10.1101/193144
http://dx.doi.org/10.12688/f1000research.7201.1
http://dx.doi.org/10.1038/s41467-017-01343-4
http://dx.doi.org/10.1093/bioinformatics/btv495
http://dx.doi.org/10.1186/s12859-016-1170-y
http://dx.doi.org/10.1038/sdata.2016.25
https://doi.org/10.1101/170225


Beretta et al. Page 16 of 23

reference materials for genetic testing: Focus on public partnerships. Annals of Laboratory Medicine 36(6),

513–520 (2016). doi:10.3343/alm.2016.36.6.513

43. Garg, S., Martin, M., Marschall, T.: Read-based phasing of related individuals. Bioinformatics 32(12), 234–242

(2016)

44. Delaneau, O.: Haplotype estimation using sequencing reads. American Journal of Human Genetics 93, 687–696

(2013)

45. Hamada, Y.O.K.A.M.: PBSIM: Pacbio reads simluator–toward accurate genome assembly. Bioinformatics 29,

119–121 (2012)

46. Li, H.: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv e-prints (2013).

1303.3997

47. Fischer, S.O., Marschall, T.: Selecting Reads for Haplotype Assembly. bioRxiv, 046771 (2016).

doi:10.1101/046771

48. Marschall, T. personal communication (2018)

49. Lo, C., Bashir, A., Bansal, V., Bafna, V.: Strobe sequence design for haplotype assembly. BMC Bioinformatics

12(Suppl. 1), 24 (2011)

50. Duitama, J., et al.: Fosmid-based whole genome haplotyping of a HapMap trio child: evaluation of single

individual haplotyping techniques. Nucleic Acids Research 40, 2041–2053 (2012)

51. Hi-c: a comprehensive technique to capture the conformation of genomes. Methods 58(3), 268–276 (2012).

doi:10.1016/j.ymeth.2012.05.001

Figures

●

●●●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●●

● ●

●

●

●●●

●

●

● ●

●

●

● ●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

Switch.Error.Perc Hamming.Distance.Perc

0 5000 10000 0 5000 10000
0.3

0.4

0.5

0.6

0.7

0.8

0.32

0.33

0.34

Time

Tool
●

●

●

●

hapchat_MaxCov15

hapchat_MaxCov20

hapchat_MaxCov25

hapchat_MaxCov30

whatshap_MaxCov15

whatshap_MaxCov20

Figure 1 Switch error rate and Hamming distance as a function of running time. As achieved
by HapCHAT and WhatsHap at different maximum coverages on the real Ashkenazim
Chromosome 1 dataset. For each tool and each maximum coverage, we represent a point for each
of the 8 possible values of the average coverage.

Tables

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

http://dx.doi.org/10.3343/alm.2016.36.6.513
http://arxiv.org/abs/1303.3997
http://dx.doi.org/10.1101/046771
http://dx.doi.org/10.1016/j.ymeth.2012.05.001
https://doi.org/10.1101/170225


Beretta et al. Page 17 of 23

QAN50

Switch Error Percentage

cov25 cov30 cov35 cov40 cov45 cov50 cov55 cov60

0.0

0.1

0.2

0.3

0

25000

50000

75000

100000

Tool hapchat hapcut2 whatshap

Figure 2 Quality measures on the real Ashkenazim Chromosome 1 dataset. We present the bar
plots showing the measures of switch error percentage and QAN50 achieved by HapCHAT,
WhatsHap, and HapCUT2 on the Ashkenazim Chromosome 1 dataset at different coverage values.

Avg.
HapCHAT HapCol

WhatsHap WhatsHap
HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 0.334 0.662 0.342 0.342 0.342 2.813 3.303 3.547
30 0.324 0.623 0.337 0.333 0.308 2.420 2.980 3.133
35 0.320 0.601 0.324 0.332 0.333 2.221 - 2.933
40 0.324 0.575 0.336 0.332 0.332 2.027 - 2.691
45 0.323 0.533 0.348 0.336 0.328 1.932 - 2.522
50 0.323 0.490 0.340 0.323 0.327 1.864 - 2.303
55 0.323 0.452 0.327 0.331 0.323 1.774 - 2.268
60 0.327 0.452 0.326 0.322 0.322 1.740 - 2.123

Table 1 Switch error percentage on the real Ashkenazim dataset, Chromosome 1. For each dataset,
its row identified by its average coverage (Avg. Cov.). We report the results obtained by running the
tools with maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for WhatsHap. No
maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result (lowest
value) for each dataset is boldfaced.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 18 of 23

QAN50

Switch Error Percentage

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1

0
ch

r1
1

ch
r1

2
ch

r1
3

ch
r1

4
ch

r1
5

ch
r1

6
ch

r1
7

ch
r1

8
ch

r1
9

ch
r2

0
ch

r2
1

ch
r2

2

0

1

2

0

50000

100000

150000

200000

250000

Tool hapchat hapcut2 whatshap

Figure 3 Quality measures on the real NA12878 dataset. We present the bar plots showing the
measures of switch error percentage and QAN50 achieved by HapCHAT, WhatsHap, and
HapCUT2 on the different chromosome datasets of NA12878.

Avg.
HapCHAT HapCol

WhatsHap WhatsHap
HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 0.54 2.41 0.64 0.84 0.44 3.96 3.42 5.53
30 0.35 2.18 0.64 0.60 0.24 3.46 3.41 5.38
35 0.36 2.02 0.37 0.42 0.37 3.99 - 5.62
40 0.37 1.66 0.45 0.44 0.37 3.10 - 5.08
45 0.38 1.80 0.43 0.42 0.37 3.02 - 4.49
50 0.41 1.47 0.41 0.38 0.35 2.84 - 4.32
55 0.40 0.87 0.36 0.41 0.37 3.28 - 4.67
60 0.39 1.25 0.34 0.36 0.35 3.60 - 5.06

Table 2 Hamming distance on the real Ashkenazim dataset, Chromosome 1. For each dataset, its
row identified by its average coverage (Avg. Cov.). We report the results obtained by running the
tools with maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for WhatsHap. No
maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result (lowest
value) for each dataset is boldfaced.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 19 of 23

Avg.
HapCHAT HapCol

WhatsHap WhatsHap
HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 79452 76856 79515 79515 78192 48097 45492 45445
30 80662 80150 80426 80426 80150 52713 50806 49308
35 81842 81464 81757 81757 81464 54182 - 51766
40 83968 82758 83802 83802 83263 57589 - 55014
45 87267 86001 87267 87267 86001 59161 - 57008
50 89669 89738 89858 89858 89306 60380 - 59447
55 91434 91434 91224 91224 90718 62652 - 59582
60 94913 92938 95818 95818 92565 64710 - 62655

Table 3 QAN50 on the real Ashkenazim dataset, Chromosome 1. For each dataset, its row identified
by its average coverage (Avg. Cov.). We report the results obtained by running the tools with
maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for WhatsHap. No maximum
coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result (highest value) for
each dataset is boldfaced.

Avg.
HapCHAT HapCol

WhatsHap WhatsHap
HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 591 39456 1115 9278 1563 80 43573 3
30 1292 46564 1031 10753 1596 196 72696 4
35 2193 50071 1122 11959 1888 308 - 4
40 3095 50301 1247 12570 2160 499 - 5
45 3888 51570 1308 12735 2388 822 - 6
50 4579 53030 1395 12996 2731 1192 - 8
55 5103 54012 1534 13252 2983 1777 - 9
60 5550 53496 1605 13469 3216 2493 - 13

Table 4 Time in seconds of the tools on real Ashkenazim datasets of Chromosome 1. For each
dataset, its row identified by its average coverage (Avg. Cov.). We report the results obtained by
running the tools with maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for
WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare.

Avg.
HapCHAT HapCol

WhatsHap WhatsHap
HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 1370 2263 930 5510 3266 3005 4693 3005
30 1661 2562 931 6195 3270 3005 5355 3005
35 1966 2908 931 6513 3276 3005 - 3005
40 2291 3231 931 6483 3279 3005 - 3005
45 2636 3190 952 6937 3283 3005 - 3005
50 3158 3286 1007 7144 3287 3005 - 3005
55 3549 3479 1042 7229 3292 3005 - 3005
60 3968 5412 1073 7430 3296 3005 - 3005

Table 5 Peak of RAM usage in Megabytes of the tools on real Ashkenazim datasets of Chromosome
1. For each dataset, its row identified by its average coverage (Avg. Cov.). We report the results
obtained by running the tools with maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and
20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare.

Avg.
HapCHAT HapCol

WhatsHap WhatsHap
HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 0.035 0.218 0.035 0.039 0.037 1.081 1.487 2.112
30 0.028 0.181 0.035 0.031 0.037 0.725 1.166 1.430
35 0.028 0.161 0.033 0.037 0.037 0.537 0.879 1.086
40 0.026 0.148 0.026 0.030 0.037 0.425 - 0.901
45 0.022 0.139 0.024 0.024 0.022 0.404 - 0.781
50 0.020 0.134 0.020 0.024 0.018 0.324 - 0.586
55 0.022 0.126 0.024 0.022 0.018 0.273 - 0.565
60 0.020 0.108 0.020 0.024 0.022 0.248 - 0.470

Table 6 Switch error percentage on simulated datasets of Chromosome 1. For each dataset, its row
identified by its average coverage (Avg. Cov.). We report the results obtained by running the tools
with maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for WhatsHap. No
maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result (lowest
value) for each dataset is boldfaced.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 20 of 23

Avg.
HapCHAT HapCol

WhatsHap WhatsHap
HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 0.35 1.30 0.42 0.42 0.33 3.43 2.66 5.95
30 0.33 1.92 0.43 0.42 0.38 2.52 2.43 4.55
35 0.27 1.37 0.34 0.55 0.37 1.92 2.09 3.93
40 0.26 1.18 0.24 0.41 0.27 1.86 - 3.31
45 0.34 1.02 0.32 0.34 0.27 1.95 - 3.12
50 0.27 1.18 0.78 0.81 0.73 1.42 - 3.14
55 0.28 1.13 0.76 0.76 0.20 1.48 - 3.19
60 0.13 1.26 0.17 0.16 0.57 1.49 - 3.49

Table 7 Hamming Distance percentage on simulated datasets of Chromosome 1. For each dataset,
its row identified by its average coverage (Avg. Cov.). We report the results obtained by running the
tools with maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for WhatsHap. No
maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result (lowest
value) for each dataset is boldfaced.

Avg.
HapCHAT HapCol

WhatsHap WhatsHap
HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 87890 85002 87581 87581 51183 50325 49121 45846
30 93454 87599 92831 92565 57323 56745 54412 52138
35 96311 92483 96167 95611 61204 60612 59047 56881
40 97810 95818 97810 97270 64979 64535 - 60748
45 100826 98674 100826 100826 68274 66973 - 64003
50 103348 100826 103348 103348 73159 73256 - 69457
55 105243 103348 106341 106341 74273 74402 - 71058
60 107121 105243 107569 107569 76497 76497 - 73256

Table 8 QAN50 results of the tools on real simulated datasets of Chromosome 1. For each dataset,
its row identified by its average coverage (Avg. Cov.). We report the results obtained by running the
tools with maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for WhatsHap. No
maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result (highest
value) for each dataset is boldfaced.

Avg.
HapCHAT HapCol

WhatsHap WhatsHap
HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 572 38863 1027 9686 205 44 33988 3
30 1317 47367 883 11095 238 91 56165 3
35 2167 18813 954 11650 286 167 80061 4
40 3052 20007 1048 12760 323 269 - 5
45 3754 56403 1161 12678 367 423 - 6
50 4399 57135 1170 12860 412 672 - 6
55 4882 56745 1287 13174 467 1019 - 7
60 5277 21070 1336 13407 496 1536 - 9

Table 9 Time in seconds of the tools on simulated datasets of Chromosome 1. For each dataset, its
row identified by its average coverage (Avg. Cov.). We report the results obtained by running the
tools with maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for WhatsHap. No
maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare.

Avg.
HapCHAT HapCol

WhatsHap WhatsHap
HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 1378 2180 930 5161 3262 3007 4284 3007
30 1667 4187 930 6117 3266 3008 5320 3008
35 1984 2134 931 6558 3270 3008 5709 3008
40 2315 2186 932 6780 3272 3009 - 3009
45 2665 5037 932 7043 3276 3010 - 3010
50 3180 5223 932 7058 3279 3010 - 3010
55 3591 5483 996 7212 3282 3011 - 3011
60 4009 2374 1039 7294 3286 3011 - 3011

Table 10 Peak of RAM usage in Megabytes of the tools on simulated datasets of Chromosome 1. For
each dataset, its row identified by its average coverage (Avg. Cov.). We report the results obtained by
running the tools with maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for
WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 21 of 23

Chrom. HapCHAT HapCol
WhatsHap WhatsHap

HapCUT2 ReFHap ProbHap FastHare
cov. 15x cov. 20x

1 1.929 - 1.926 1.924 1.920 - - 2.191
2 0.038 - 0.050 0.035 0.030 - - 0.374
3 0.044 - 0.045 0.039 0.031 - - 0.381
4 2.042 - 2.052 2.048 2.033 - - 2.237
5 1.829 - 1.828 1.824 1.825 - - 1.998
6 1.991 - 1.990 1.991 1.983 - - 2.205
7 0.659 - 0.669 0.666 0.660 - - 0.924
8 1.743 - 1.746 1.748 1.749 - - 1.992
9 1.966 - 1.965 1.966 1.940 2.140 - 2.187

10 0.949 - 0.949 0.948 0.939 1.171 - 1.232
11 2.092 - 2.101 2.101 2.081 2.282 - 2.325
12 0.041 - 0.055 0.048 0.043 0.319 - 0.405
13 0.051 - 0.036 0.049 0.029 0.285 - 0.349
14 0.034 - 0.042 0.039 0.032 0.347 - 0.421
15 0.055 0.331 0.069 0.065 0.043 0.358 - 0.427
16 0.022 0.289 0.022 0.029 0.027 0.322 - 0.420
17 0.055 0.277 0.071 0.067 0.047 0.337 - 0.426
18 1.895 - 1.879 1.876 1.889 2.072 - 2.122
19 2.629 - 2.642 2.644 2.616 2.807 - 2.914
20 0.043 0.277 0.046 0.043 0.043 0.412 - 0.451
21 0.033 - 0.044 0.041 0.030 0.364 - 0.408
22 2.102 2.323 2.106 2.114 2.068 2.378 - 2.452

Table 11 Switch error percentage on datasets of NA12878. Each row corresponds to a chromosome.
The dataset consists of all reads aligned to the chromosome. We report the results obtained by
running the tools with maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for
WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best
result (lowest value) for each dataset is boldfaced.

Chrom. HapCHAT HapCol
WhatsHap WhatsHap

HapCUT2 ReFHap ProbHap FastHare
cov. 15x cov. 20x

1 2.12 - 1.92 2.10 2.11 - - 6.16
2 0.51 - 0.49 0.29 0.77 - - 4.91
3 0.32 - 0.42 0.42 0.48 - - 4.74
4 2.47 - 2.15 2.18 2.00 - - 6.44
5 2.33 - 2.53 2.22 1.98 - - 6.56
6 3.39 - 3.02 3.20 2.82 - - 7.15
7 1.16 - 1.10 1.10 1.36 - - 5.05
8 2.44 - 2.46 2.54 2.02 - - 6.14
9 2.45 - 2.31 2.49 2.11 5.68 - 6.23

10 1.19 - 1.16 1.18 0.93 3.89 - 5.29
11 2.08 - 2.06 2.06 1.99 4.25 - 5.08
12 0.43 - 0.48 0.38 0.51 2.92 - 5.54
13 0.41 - 0.63 0.57 0.35 4.01 - 4.84
14 0.21 - 0.48 0.58 0.17 3.01 - 3.24
15 0.23 3.39 0.24 0.34 0.34 4.18 - 5.49
16 0.24 2.09 0.45 0.88 0.28 1.65 - 2.87
17 0.50 2.84 0.38 0.79 0.20 2.89 - 4.61
18 1.80 - 1.67 1.65 1.68 4.77 - 8.10
19 3.19 - 3.14 3.40 2.99 4.37 - 7.32
20 1.37 3.47 0.16 0.10 0.16 2.99 - 4.07
21 0.10 - 0.10 0.10 1.95 5.37 - 4.22
22 1.82 4.92 1.84 1.83 1.82 4.83 - 6.52

Table 12 Hamming Distance percentage on datasets of NA12878. Each row corresponds to a
chromosome. The dataset consists of all reads aligned to the chromosome. We report the results
obtained by running the tools with maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and
20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare.
The best result (lowest value) for each dataset is boldfaced.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 22 of 23

Chrom. HapCHAT HapCol
WhatsHap WhatsHap

HapCUT2 ReFHap ProbHap FastHare
cov. 15x cov. 20x

1 91098 - 91668 91677 89249 - - 84863
2 210603 - 210098 211732 211732 - - 177388
3 229835 - 227732 229835 229655 - - 170494
4 90639 - 91034 90639 89868 - - 84861
5 99011 - 99012 99567 98900 - - 91745
6 94780 - 94200 94780 93894 - - 85483
7 156573 - 155773 155773 155209 - - 135095
8 90928 - 91069 90836 90661 - - 84076
9 85172 - 85655 85469 85655 82917 - 80957

10 123171 - 123171 123224 122317 114172 - 112861
11 84153 - 84108 84108 84237 81526 - 79057
12 224308 - 224308 228356 224308 190161 - 174540
13 229318 - 228310 228310 227286 178173 - 175124
14 243192 - 243192 227040 220294 186476 - 181826
15 180874 153527 173950 176529 176529 147339 - 138185
16 193611 160049 193611 190884 189342 158848 - 152960
17 162690 151262 163789 163789 162328 140216 - 133887
18 93705 - 94210 93705 94210 87076 - 83383
19 62662 - 62662 62568 62233 59716 - 58694
20 165921 163062 165921 176807 165921 140498 - 140034
21 222171 - 222769 221786 222171 149165 - 146675
22 82618 73223 85112 82618 85112 72117 - 70718

Table 13 QAN50 results of the tools on datasets of NA12878. Each row corresponds to a
chromosome. The dataset consists of all reads aligned to the chromosome. We report the results
obtained by running the tools with maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and
20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare.
The best result (lowest value) for each dataset is boldfaced.

Chrom. HapCHAT HapCol
WhatsHap WhatsHap

HapCUT2 ReFHap ProbHap FastHare
cov. 15x cov. 20x

1 20183 - 3300 41626 6301 - - 980
2 21913 - 3686 46937 6758 - - 1075
3 19325 - 2994 38040 5536 - - 776
4 21744 - 3031 40083 5998 - - 862
5 18416 - 2943 36674 5169 - - 790
6 17792 - 2658 35189 5640 - - 759
7 14321 - 2409 32550 4429 - - 744
8 15930 - 2421 29902 4578 - - 669
9 11307 - 1886 23586 3369 86913 - 635

10 13943 - 2244 27638 3914 86941 - 670
11 13291 - 1983 25419 3916 86833 - 567
12 12684 - 1916 25865 4054 86814 - 554
13 11100 - 1474 20288 2952 86686 - 406
14 9017 - 1265 17658 2644 86684 - 384
15 6934 63221 1114 14218 2102 86700 - 368
16 7426 69771 1265 16323 2589 86783 - 461
17 6460 54037 956 12312 1832 86669 - 312
18 8440 - 1152 15794 2497 86671 - 353
19 3625 - 826 10368 1617 86668 - 296
20 5878 55032 827 11815 1594 86600 - 243
21 3561 - 560 7508 1308 86585 - 226
22 2835 31617 505 7059 1002 86568 - 195

Table 14 Time in seconds on datasets of NA12878. Each row corresponds to a chromosome. The
dataset consists of all reads aligned to the chromosome. We report the results obtained by running
the tools with maximum coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for WhatsHap.
No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225


Beretta et al. Page 23 of 23

Chrom. HapCHAT HapCol
WhatsHap WhatsHap

HapCUT2 ReFHap ProbHap FastHare
cov. 15x cov. 20x

1 6361 - 2983 13259 3351 - - 3050
2 7082 - 3173 13938 3362 - - 3056
3 6180 - 2669 12672 3329 - - 3041
4 7531 - 2685 12959 3334 - - 3046
5 5882 - 2551 12364 3320 - - 3033
6 5649 - 2325 12120 3312 - - 3031
7 4597 - 2080 11167 3309 - - 3022
8 5075 - 2091 11164 3302 - - 3023
9 3583 - 1639 9345 3285 17915 - 3009

10 4059 - 1819 10164 3303 9766 - 3017
11 3965 - 1814 10135 3290 9632 - 3018
12 4011 - 1787 10229 3288 13984 - 3016
13 7950 - 1449 8982 3267 8371 - 3006
14 2857 - 1281 8198 3261 10024 - 2998
15 2232 8437 1077 7370 3257 8302 - 2993
16 3116 19698 1128 7703 3263 10328 - 2995
17 7844 7845 962 6737 3253 5941 - 2990
18 3542 - 1152 7810 3254 15868 - 2995
19 1721 - 793 6055 3244 8808 - 2983
20 8496 9966 865 6612 3242 7973 - 2985
21 1329 - 611 5211 3229 7852 - 2977
22 3324 7782 542 4912 3225 7904 - 2975

Table 15 Peak of RAM usage in Megabytes of the tools on datasets of NA12878. Each row
corresponds to a chromosome. The dataset consists of all reads aligned to the chromosome. We
report the results obtained by running the tools with maximum coverage 30× for HapCHAT, 25× for
HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap,
ProbHap, and FastHare.

Chr.1
4 to 7 5 to 8

Data Avg. Cov.

Ashkenazim

Cov. 25
Cov. 30
Cov. 35 35556
Cov. 40
Cov. 45 35581
Cov. 50 35593, 42897
Cov. 55 3528
Cov. 60 46338, 46339

Simulated

Cov. 25 35569, 38788 26778
Cov. 30 35594, 38815, 38817 26800
Cov. 35 38827 26811
Cov. 40 38837 38834, 38835, 38836
Cov. 45 38844 38842
Cov. 50 38849
Cov. 55
Cov. 60

Table 16 List of SNV positions when the adaptive procedure of subsection Adaptive k-cMEC was
activated for real Ashkenazim and simulated datasets of Chromosome 1. For each dataset, its row is
identified by its average coverage (Avg. Cov.). The positions in column ‘4 to 7’ are those for which
the number of corrections was increased from 4 to 7, and similarly for the column ‘5 to 8’.

Ashkenazim Cov. 25 Cov. 30 Cov. 35 Cov. 40 Cov. 45 Cov. 50 Cov. 55

Cov. 30 75/2/4
Cov. 35 72/4/7 74/2/3
Cov. 40 71/6/8 74/4/4 75/2/1
Cov. 45 71/6/8 73/4/4 75/2/1 77/0/0
Cov. 50 70/7/9 72/5/5 73/4/3 75/2/2 75/2/2
Cov. 55 71/6/8 73/4/4 73/4/3 75/2/2 75/2/2 75/2/2
Cov. 60 71/7/8 73/5/4 73/5/3 75/3/2 75/3/2 75/3/2 76/2/1

Table 17 Comparison of the switch error positions on the Ashkenazim datasets of Chromosome 1
obtained with HapCHAT. For each pair of datasets having different coverages, we report the number
of positions in which a switch error occurred as follows: those in common between the two datasets,
those only found in the dataset of the row, and those only found the dataset of the column,
respectively.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/170225doi: bioRxiv preprint 

https://doi.org/10.1101/170225

	Abstract

