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Abstract

This paper introduces a novel method to quantify sociality in human and animal populations and explores the
connection between social behaviour and the spread of infectious disease. Individuals living in groups tend to
distribute their social effort heterogeneously, with some group members receiving more attention than others.
By incorporating this heterogeneity into a mathematical model, we find that a single parameter, which we
name Social Fluidity, controls the level of social mixing in the population. We estimate the social fluidity of 51
empirical human and animal social systems using maximum likelihood techniques. An analytical formula that
connects social fluidity to both the population size and the basic reproductive number of an infectious disease
is derived and simulations of the spread of disease are performed. We find that social fluidity outperforms
other network-based metrics in predicting the basic reproductive number of an infectious disease and that the
effect of population size on disease transmission is insignificant compared to the effect of social fluidity.

1 Background

Socialization is fundamental to the well-being of humans
and the survival and many animal species [1-3]. To receive
the fitness benefits of group membership, individuals must
engage in social activities such as grooming, food-sharing,
and conversation, in order to maintain a healthy and sta-
ble society [4,5]. In addition to many factors including
time, energy, resource availability, and cognition [6,7], it is
commonly thought that the threat of infectious disease im-
poses a limit on the social capacity of animal groups [8,9].

Larger populations are assumed to provide a greater
number of opportunities for an infectious disease to trans-
mit. For this to be true, however, the number of poten-
tial pathways for disease transmission must scale accord-
ingly [10,11]. Moreover, some empirical results contra-
dict the hypothesis that disease risk increases with group
size [12,13]. Since the contact structure of the host pop-
ulation and the mode of transmission both play a role,
the relationship between group size and epidemic risk is
complex [14-18].

Networks provide some understanding towards the role
of within-group contact structure [19]. It is recognized
that the degree of an individual in a social network, i.e.
the number of other individuals with whom they interact,
has epidemiological significance [20]. While an increase
in population size may cause an increase in the degree of
an individual, some of these ties may weaken as a result.
In humans, for example, social effort is invested mostly
in close friends and family members, less is invested in
the wider friendship circle, and as the circle extends to
a wider group of people the frequency of interaction de-
creases [21-23].

It has been proposed that a better understanding of
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this aspect of social behaviour may lead to a quantitative
approach to comparing sociality across species [24]. We
further suggest that it will lead to better understanding of
disease spread [25]. While there is a significant epidemiol-
ogy literature that challenges the assumption of homoge-
neous mixing [26-29], no effort has previously been made
to quantify the level mixing in a way that allows compar-
ison across a range of animal disease systems.

In this paper we develop a mathematical model of hu-
man and animal social behaviour in which one parameter
controls the heterogeneity in the way individuals choose
to distribute their social effort. In the context of dis-
ease transmission, the same parameter, which we call “so-
cial fluidity” can be interpreted as the amount of mixing
within the population. By estimating the social fluidity
in a number of human and animal social systems we find
evidence that opposes the hypothesis that the threat of
infectious disease imposes limitations on group size.

2 Methods

2.1 Social behavior model

Our analysis concerns a closed system of N individuals
and a process of interaction that may occur between pairs
of individuals. The system can be thought of as a net-
work; an individual human or animal, which we call ¢, is a
node; the weight w; ; is the number of times two nodes ¢
and j were observed interacting together; if w; ; > 0 then
we say that an edge exists between ¢ and j; the number
of times that ¢ was observed interacting is its strength, s;
(s; = >_; wi,;); and the number of partners with whom 4
was observed interacting is its degree, d;.

We consider the interactions of one node, ¢, which we
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Figure 1: Left: Each individual can be represented as a single point on this plot. Dashed lines mark the boundary of the
region where data points can feasibly be found. The thick black lines represent two possible types of social behavior; as
the number of observed interactions grows, the set of social contacts increases; the rate at which it increases influences
how we categorize their social behaviour. Middle: The width of the lines between i and the other circles represents
the propensity of i to interact with each of the other members of the population. Right: Probability distributions that
correspond to the different levels of heterogeneity in the contact propensities, both distributions are expressed by Eq.(3).

call the focal node. The relationship between s; and d;
is analogous to the relationship between the number of
animals observed and the number of species observed in
wildlife surveys [30-32]. Just as each new animal obser-
vation can either return a previously unobserved species
or one that has been observed before, each observed in-
teraction of ¢ can either return a new interaction partner
or one that 4 has interacted with before. The likelihood
of sampling a given species, in this case, is replaced with
a the likelihood that ¢ will interact with j, where j is any
other member of the population. Formally, we define x;;
to be the probability that j is the interaction partner of ¢
given that ¢ is observed in an interaction.

Applying a similar approach to early work in species
accumulation curves [33], the probability that ¢ has inter-
acted with j at least once over the course of s; observations
is

P(Z — ]|Sz) =1- (1 — lez)% (1)

In our model we assume that the values of x;; over all
i, pairs are distributed heterogeneously according to a
probability distribution, p(z). Thus, the probability that
an edge exists between any chosen focal individual 7, and
any given member of the population is no longer specific
to the particular choice of 7 and j. The general formula for
the probability that an edge exists between the focal in-
dividual and any other individual in the population, after
s observations, is

U(s)=1- /p(x)(l —x)’dx. (2)

Our goal is to find a form of p that accurately repro-
duces the degree distributions seen in real social systems.
This can be achieved with the following truncated power

law,

@
%x_(lw’) fore <z < 1. (3)
The terms in this expression are explained as follows: the
quotient on the left ensures that p(z) meets the require-
ment of a probability density function that [ p(z)dz =1, €
truncates the distribution to avoid an asymptote at z = 0,
p(x) is also truncated 1 to ensure that all values of x,,
which are probabilities, are less than 1, and finally, ¢ is a
parameter that controls the heterogeneity in the values of
Tili:

While the model contains two parameters, ¢ and ¢,
the requirement that 3 ;Zjli = 1 can only be met if
e = ¢(N,¢) is chosen to be a specific value (a detailed
explanation of how to compute € is included in the on-
line supplement S1.2). Larger values of N correspond to
smaller values of € and so larger populations see a higher
frequency of weak relationships, i.e. small values of x;;.
Since ¢ is the only free parameter in the model, and is
therefor the only determinant of social behaviour, we use
the term “social fluidity” to refer to this quantity.

Figure 1 illustrates how the value of ¢ can create dif-
ferent types of social behaviour. Low values of ¢ produce
a type of social behaviour that we might describe as “alle-
giant”; interactions with the same partner are frequently
repeated at the expense of interactions with unfamiliar
individuals. As ¢ increases, the model produces more
“gregarious” behaviour; interactions are repeated less fre-
quently and the number of partners is larger. High social
fluidity corresponds to a high level of mixing withing the
population or social group.

Combining Eq.(2) and Eq.(3) we find that, for an in-
dividual that has been observed s times,

de? (1 —€)5t1
(L= e#)(s + 1)

p(x) =

U(s) =1- oFi(s+1,14+6,5+2,1—¢) (4)
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Figure 2: A: Each point represents a human or animal system for which social fluidity was estimated. Vertical lines show
the standard error of the estimate. The systems are organized according to the type of interaction that was recorded:
aggression includes fighting and displays of dominance, food sharing refers to mouth-to-mouth passing of food, antennation
is when an insects antenna touches any part of another individual, territorial interaction refers to animals that come close
to each other during foraging, face-to-face refers to close proximity interactions between people, association is defined as
co-membership of the same group same group. These results are also presented in Table S2 of the online supplement.

where the notation o F; refers to the Gauss hypergeomet-
ric function [34]. The probabilty that the observed de-
gree of a node is equal to d is determined by N — 1
independent Bernoulli trials, each with success proba-
bility ¥(s). The degree distribution therefore binomial
d(s) ~ B(N — 1,¥(s)), however, since this distribution
gives non-zero probabilities for cases where d > s, which
are invalid, we instead use d(s) ~ B(s, (N — 1)¥(s)/s)
when 0 < s < N.

We use maximum likelihood estimation to fit this
model to the empirical data and return the social flu-
idity ¢ (details are contained in the online supplement
S1.4). The goodness-of-fit is calculated by comparing its
likelihood to the likelihood of a null model in which the
degree of each individual is a uniformly distributed ran-
dom integer within the range of feasible values (details are
contained in the online supplement S1.4).

2.2 Disease transmission

2.2.1 Analytical model

Our goal is to analyse how social fluidity and population
size influence the likelihood of epidemic outbreaks. We
do this by deriving analytically the rate of infection for a
model of disease transmission in a population whose con-
tact dynamics follow the model of the previous section.
This results in a formula that predicts Ry, which is de-
fined as the number of secondary infections caused by a
single infectious individual in an otherwise fully suscepti-

ble population. We calibrate the disease parameters in a
way that controls for the fact that rates of activity may
vary between different populations. This results in a for-
mula that quantifies the effect size of social fluidity that
can be applied across a range of social systems.

The disease model is described as follows: an individ-
ual becomes infectious at some random point in time and
may recover at any subsequent point in time, the probabil-
ity of recovery during a 1 second interval is . Interactions
that occur during this infectious period result in the inter-
action partner becoming infected with probability 8. This
simple disease model disregards the fact that interactions
vary in duration, intimacy, and contact type (for which we
often do not have data); 8 here represents a probability
of infection that combines all of these factors.

We first predict the reproductive number, Ry(s;), of an
individual who was observed interacting s; times during
an observation period of duration At. The rate of activ-
ity, in this case, is estimated to be s;/At interactions per
unit of time. By assuming that these interactions occur
according to a Poisson process, transmission of the disease
from the infected individual, 7, and another individual in
the population, j, also occurs as a Poisson process with
rate s;x;;8/At. The length of time for which 4 remains
infectious is exponentially distributed with rate parame-
ter . For an infectious period of length 7, the probability
that the infection transmits from i to any given j is

Tij (7, 80, 255) = 1 — exp(s;z; 87/ At). (5)

The reproductive number for i, Ro(s;), is found by in-
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Figure 3: A: Each point represents a human or animal data-set. For each one, Ry is calculated from Eq.(7) for every
individual in the population and the mean (+ one standard error) is plotted against its corresponding value of ¢. These
results are also presented in Table S2 of the online supplement. B: Theoretical results from Eq.(7); the relationship
between Ry and population size is shown to depend on the value of ¢. C: In large populations Ry increases with ¢ up to

b=1.

tegrating Eq.(5) over all possible values of 7 and
then multiplying by the number of susceptible individ-
uals, N — 1. The result is given in section ... of the online
supplement.

The range of human and animal systems is diverse, and
social activity can happens on extremely different time-
scales. Additionally, the type of diseases that affect one
species is unlikely to affect another. Instead of choosing
parameter values that relate to some specific disease, it is
more informative to select parameter values for each sys-
tem separately in a way that exposes the effects of popula-
tion size and social fluidity. To achieve this, the recovery
rate, v, is chosen in such a way that Ry would always
be the same value if, hypothetically, the effects of social
fluidity and population size were not present.

We define R* to be the value of Ry in a large popu-
lation with homogenous mixing. Calibration is achieved
when + is chosen to be

_ Bs)
T AR ©

where A; is the duration of the time-frame of the data
and (s) is the mean of s; over the whole population. The
effect of this calibration is that the recovery rate, -, is
proportional to the mean rate of activity. Consequently,
a population with a higher frequencey of social interac-
tion will be coupled with a disease that has a longer mean
infectious period.

After performing the calibration we arrive at the fol-
lowing result for the basic reproductive number of an in-

gl

dividual that was observed interacting s times,

Ro(s) = 1-¢ ) [1 — e+ e (—,1,1— ¢;—R*s/(s))

P(e? —e
_2F1(_¢7 17 1- ¢7 —ER*S/<S>)] :
(7)

Note that no temporal information appears in this equa-
tion. In all the analysis presented we arbitrarily choose
R* =2.

2.2.2 Disease simulation

Because the fidelity of the social behavior model, i.e. the
extent to which it agrees with the data, varies across the
different social settings, we expect that the accuracy of
Eq.(18) to vary. To test this we simulated the transmis-
sion for each individual (reported results are the mean of
10? simulations). For the simulations we arbitrarily chose
a transmission probability of 8 = 1/4 [need to justify this].
The mean absolute error |e| measures the mean difference
between the individual reproductive number, r;, calcu-
lated from Eq.(18) and computed by the simulation. A
full description of the disease simulation can be found in
the online supplement. Full details are provided in Section
S2.4 the online supplement.
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Figure 4: Each point represents a human or animal data-set for which the time of interactions appear in the data. For
each one, Ry for every individual in the population is found by simulating disease spread and the mean (£ one standard
error in A) is plotted against its corresponding value of ¢ and other population metrics. These results are also presented

in Table S2 of the online supplement.

3 Results

3.1 Measuring social fluidity

Social fluidity, ¢, quantifies heterogeneity in the way in-
dividuals distribute their social effort among the other
members of the population. We estimated ¢ in 51 data-
sets taken from 18 studies of human and animal social
behaviour [14,16,35-50]. Details of each data source are
included in the online supplement S3. Figure S1 shows the
data and the distribution fitted using maximum likelihood
estimation. We find that the model provides a good fit
to every data-set; model fidelity is positive in every case,
which implies that the empirical data follows the model
better than synthetic data generated from a mixture of
92% from the model distribution and 8% from random
noise (see online supplement S1.4).

Social fluidity does not appear to be affected by the
sample size; there is no significant correlation between
the mean number of observations per individual, 5, and ¢
(Pearson R? = 0.004, p = 0.663). Larger populations tend
to have smaller social fluidity values (Pearson R? = (.223,
p < 0.001). This correlation is dependent on the presence
of a few large populations in our data (N > 200) which
may be, to some degree, subdivided into smaller groups.
As a consequence, the social effort of one individual be-
comes concentrated on a relatively small proportion of the
whole population, which causes heterogeneity to increase,
and ¢ to decrease.

Populations with higher values of ¢ tend to have higher
mean degree (Pearson R? = 0.332, p = 0.001) and less het-
erogeneity in the distribution of edge weights (measured
as the variance divided by the mean o2 /(w)) (Pearson
R? = 0.332, p = 0.001). Incidentally, weight heterogeneity

and mean degree are uncorrelated (Pearson R? < 0.001,
p = 0.984). The fact that social fluidity correlates with
both the weight heterogeneity and the mean degree, yet
they do not correlate with each other, illustrates that by
measuring ¢ we are combining elements from two distinct
features of sociality.

Figure 2 shows the estimated values of ¢. Social fluid-
ity appears to depend on the type of interaction observed.
Aggressive interactions have the highest fluidity; this is
expected since it is unusual for an aggressive encounter,
such as a display of dominance, to be caused by an under-
lying bond between the pair of animals. In fact, it may be
more likely that the animals will avoid each other following
the interaction. Social fluidity also appears to be related
to species; ant systems cluster around ¢ = 1, mouse and
voles around ¢ = 0.7, and humans around ¢ = 0.6 (with
the exception of all five days of high school data and the
last day of a conference).

3.2 Effect of social fluidity on disease transmission

Figure 3A shows the value of Ry predicted from Eq.(7)
with parameter values, i.e. N,®s; and d; all individuals
in the population, taken from the empirical data. Since
R* = 2 represents the expectation of Ry in a homoge-
neously mixed population of infinite size, the values dis-
played in the figure illustrate the magnitude of the effects
of both ¢ and N. When ¢ < 1, social fluidity determines
Ry moreso than poulation size.

At small population sizes, Ry increases with N and
converges as N goes to co (Figure 3B). The rate of this
convergence increases with ¢. When ¢ < 1, the limit of
Ry is a function of ¢ (Figure 3C). At these values of ¢,
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the individual will choose to repeat interactions despite
having the choice of infinitely many potential interaction
partners. When ¢ > 1 and the population is large the
probability of a repeated interaction falls to zero. In this
case, Ry = R* since, under the current circumstances,
having no repeated interactions is effectively equivalent
to homogeneous mixing.

A small amount of error is observed between predicted
Ry and the simulated Rg (between 0.1 and 0.258 with one
outlier at 0.344) with the predictions consistently overes-
timating Ry in human systems, possibly because of the
bursty nature of human contact (see Table S2). Despite
this, our overall conclusions from the disease simulation
are consistent with the predicted results. Figure 4 shows
that ¢ correlates with the simulated Ry better than other
network metrics. Since this correlation is very strong, the
relationship between each of these metrics and Ry is qual-
itatively the same as the their relationship with ¢.

Consequently, as Figure 4B shows, Ry tends to be
smaller in the largest populations (N > 200) possibly due
to subdivision within the population. The mean num-
ber of interactions observed shows no correlation with Ry,
shown in Figure 4C, which we expect since we deliber-
ately controlled this variable. Finally, neither mean degree
(Figure 4D) or weight heterogeneity (Figure 4E) correlate
with Rg as well as social fluidity.

4 Discussion

Social fluidity quantifies how much mixing exists within
the social relationships in a population. While structure
within a population can take many forms, the methodol-
ogy introduced here succeeds in reducing all such factors
to a single number allowing comparisons to be made across
various human and animal social systems.

Most studies that aim to describe and quantify social
structure use a network representation of their system as
part of their analysis. One questionable assumption that
is often made is that social relationships exist; that be-
cause interaction was observed between two individuals,
their is some underlying bond present that will persist into
the future [51]. The methodology presented in this paper
assumes only that the distribution of relationships remains
constant through time, an assumption that is consistent
with a growing amount of evidence [52,53].

Another criticism of network-based analysis is that it is
highly sensitive to biases in the way data is collected. The
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