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Humans and other group-living animals tend to distribute their social

effort heterogeneously; individuals predominantly interact with their

closest companions while maintaining weaker social bonds with less

familiar group members. By incorporating this heterogeneity into a

mathematical model we find that a single parameter, which we refer

to as social fluidity, controls the level of social mixing in the popula-

tion. Large values of social fluidity correspond to gregarious behavior

whereas small values signify the existence of persistent bonds between

individuals. To investigate how social behavior influences the likeli-

hood of an epidemic outbreak we derive an analytical expression of the

relationship between social fluidity and the basic reproductive num-

ber of an infectious disease. We compare social behavior across 12

species by applying the model to empirical human and animal social

interaction data. For species that form strong social bonds, the model

describes frequency-dependent transmission that is highly sensitive to

changes in social fluidity. As social fluidity increases, animal-disease

systems become increasingly density-dependent. Finally, based on a

computational disease spread model on empirical social data, we find

that social fluidity is a stronger predictor of disease outcomes than

both group size and connectivity.

Social behavior is fundamental to the survival of many
species such as ants, humans, and dolphins. It allows

the formation of social groups providing fitness advantages
from greater access to resources and better protection from
predators [1]. Within these groups structure emerges from the
interactions that occur when individuals communicate across
space, cooperate in sexual or parental behavior, or clash in ter-
ritorial or mating conflicts [2]. While many animal societies
have been studied independently [3], some questions about
the nature of social living can only be answered by comparing
social behavior across a range of species [4]. This motivates
the question: how can we compare the social behavior of one
species to that of another?

Social animals typically have limited time and resources to
invest in their relationships [5]. To compensate, the social ef-
fort of an individual tends to be distributed heterogeneously
among the members of their group. Despite the growing evi-
dence for this in human communication [6, 7, 8], attempts to
quantify this aspect of sociality in animal systems are often
challenged by unavoidable sampling biases [9]. Furthermore,
while heterogeneous interaction frequencies and temporal dy-
namics such as circadian rhythms and bursty activity patterns
have become common in social network models [10], realistic
assumptions about how individuals distribute their social ef-
fort are rarely incorporated.

When social interaction requires shared physical space it
can also be a conduit for the transmission of infectious dis-
ease [11]. It is generally thought that if transmission occurs
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through the environment then the risk of epidemic is driven
by group size (density-dependence) [12], whereas if transmis-
sion requires close proximity encounters that only occur be-
tween bonded individuals then we expect social connectivity
to determine the outcome (frequency-dependence) [13]. In
reality, however, animal-disease systems are not so easy to
categorize [14]. For example, social ties must be created to
maintain cohesiveness in a growing social group [15], implying
that transmission through direct contact may in fact depend
on population density. On the other hand, as social effort is
distributed heterogeneously, low levels of social mixing may
constrain the spread of the disease [16].

Here, we introduce a mathematical model based on the con-
cept of social fluidity which we define as heterogeneity in the
distribution of social effort. Using empirical data from previ-
ous studies, we estimate the social fluidity of a number of hu-
man and animal social systems. Using analytical and compu-
tational models of disease spread we show that social fluidity
predicts disease outcomes better than other social behavioral
indicators and spans the distance between density-dependent
and frequency-dependent disease systems.

Modeling social heterogeneity & disease transmission

Our objective is to measure social heterogeneity in a range of
human and animal populations and provide an understand-
ing of how social behavior influences the susceptibility of the
group to infectious disease. We start by introducing a model
that captures hidden elements of social dynamics (in particu-
lar, how individual group members distribute their social ef-
fort) and mathematically describe the relationships between
social variables that are routinely found in studies of animal
behavior (in particular, the number of social ties and the num-

Significance

The study of relationships within animal groups has pro-
vided many insights into the nature of social behavior. De-
spite this, finding a reliable measure of sociality that can
be used to compare animal social systems has remained
a challenge. We introduce social fluidity, a measure of
heterogeneity in how individuals choose to distribute their
social effort across the group. We demonstrate the use of
this measure by applying it to 57 social networks from 12
animal species. Our results indicate that social fluidity is a
better predictor of disease spread than measures typically
used in social network analysis such as the mean number
of social ties or the size of a social group.
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Figure 1: Left: Each individual can be repre-
sented as a single point on this plot. Dashed
lines mark the boundary of the region where
data points can feasibly be found. (4) is plot-
ted for two values of φ representing two possible
types of social behavior; as the number of ob-
served interactions grows, the set of social con-
tacts increases; the rate at which it increases
influences how we categorize their social behav-
ior. Middle: The weight of the edges between i
and the other nodes represents the propensity of
i to interact with each of the other individuals
in the population. Right: Probability distribu-
tions that correspond to the different levels of
heterogeneity in the contact propensities, both
distributions are expressed by (2).

ber of interactions observed). We then couple this social be-
havior model with a general model of infectious disease spread
to expound the link between social behavior and disease out-
comes.

Social behavior model. Consider a closed system of N indi-
viduals and a set of interactions between pairs of individuals
that were recorded during some observation period. These
observations can be represented as a network: an individual,
i, is a node; if at least one interaction between nodes i and
j has been observed then we say that an edge exists between
them; the edge weight, wi,j , denotes the number of times this
interaction was observed. The total number of times i was ob-
served interacting is denoted by strength, si =

∑
j wi,j , and

the number of nodes with whom i is observed interacting is
its degree, ki.

We focus on one individual in the system, which we name
the focal node, i, and consider the si interactions in which
it participated. We define xj|i to be the probability that an
interaction involving i will also involve node j. Therefore the
probability that at least one of these interactions is with j is
1− (1− xj|i)si .

The main assumption of the model is that the values of xj|i
over all i, j pairs are distributed heterogeneously according
to a probability distribution, ρ(x)1. Thus, after s observed
interactions of the focal node, the probability that an edge
exists between the focal node and any other individual in the
population is

Ψ(s) = 1−
∫
ρ(x)(1− x)sdx. (1)

Our goal is to find a form of ρ that accurately reproduces
network structure observed in real social systems. Motivated
by our exploration of empirical interaction patterns from a
variety of species (Figure S1), we propose that ρ has a power-
law form:

ρ(x) =
φεφ

1− εφ x
−(1+φ) for ε < x < 1, (2)

where φ (> 0) controls the heterogeneity in the values of x,
and ε simply truncates the distribution to avoid an asymptote
at x = 0. Combining (1) and (2) we find that

Ψ(s, φ, ε) = 1− φεφ(1− ε)s+1

(1− εφ)(s+ 1)
2F1(s+1, 1+φ, s+2, 1−ε) (3)

1xj|i are subject to network interdependencies. Specifically, AX = XTA
and X1 = 0, where X is a matrix whose i, j entry is −1 if i = j and xj|i
otherwise, A is any diagonal matrix with positive entries, and 0 and 1 are column
vectors of length N containing only 0 and 1, respectively. Thus, ρ(x) is the
distribution of marginal xj|i values of the joint distribution P (X).

where the notation 2F1 refers to the Gauss hypergeometric
function [17]. The value of ε is determined by

∑
j xj|i = 1 and

therefore depends on N and φ (Materials and Methods A.). It
follows that the degree of the focal node is determined by its
activity rate, the level of heterogeneity in partner choice, and
the size of the population (Materials and Methods B.). More
explicitly,

〈k〉 = (N − 1)Ψ(s, φ,N) (4)

where 〈k〉 is the expected degree of the focal node.

The parameter φ controls the heterogeneity in interaction
frequencies and is therefore the main determinant of social
mixing in the model. We use the term social fluidity to refer
to this quantity. Figure 1 illustrates how the value of φ can
create different types of social behavior. Low social fluidity
(φ� 1) would produce what we might describe as “allegiant”
behavior: interactions with the same partner are frequently
repeated at the expense of interactions with unfamiliar indi-
viduals. As φ increases, the model produces more “gregari-
ous” behavior: interactions are repeated less frequently and
the number of partners is larger. While this phenomena could
be described as “social strategy” or “loyalty” [18, 19], we feel
that “social fluidity” is most appropriate for this work as it
conveys an intuitive notion relevant to disease propagation
[20].

Disease transmission model. Building on the social behav-
ior model introduced in the previous section, we consider a
model of disease transmission. We focus on the basic repro-
ductive number R0, defined as the mean number of secondary
infections caused by a single infectious individual in an oth-
erwise susceptible population. We first derive a formula for
the individual reproductive number, r(si), in terms of the rel-
ative rate of activity of the individual, and define R0 to be
the mean of {r(si)} over the population. By calibrating the
disease parameters in a way that controls for varying time-
scales of activity in different populations, we obtain a result
that quantifies the relative significance of social fluidity across
a range of social systems including those driven by group size
(density-dependent transmission) and those driven by group
connectivity (frequency-dependent transmission).

In our model, disease transmission requires an infected in-
dividual, i, who is social (i.e. has si interactions during an
observation period of duration ∆t) and may interact with any
other individual, j (with probability xj|i). When such an in-
teraction occurs, i will infect j with probability β. The infec-
tiousness of i continues for a period of duration τ , where τ is
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an exponentially distributed random variable with mean 1/γ
(i.e. γ is the recovery rate).

Assuming the interactions of i are distributed randomly
across the observation period, it follows that transmission
events follow a Poisson process with rate sixj|iβ/∆t. Thus
the probability that infection transmits from i to any given j
is

Ti→j(τ, si, xj|i) = 1− exp(sixj|iβτ/∆t). (5)

The reproductive number for i, r(si), is found by integrating
(5) over all possible values of τ and xj|i then multiplying by
the number of susceptible individuals, N − 1 (SI Text).

Instead of choosing infection parameter values that pertain
to a specific disease or social system, we select values for each
system separately in a way that exposes the effects of popu-
lation size and social fluidity. We achieve this by setting the
mean infectious period in such a way that would cause R0

to be equal to the constant R∗ if the population was large
and homogeneously mixed, i.e every interaction is with a new
partner (Materials and Methods D.). Consequently, social
systems with a high interaction frequency are coupled with
diseases that have relatively short mean infectious periods.

After calibrating the parameters we can derive the following
result for the reproductive number of an individual that was
observed interacting s times,

r(s) =
1− φ

φ(εφ − ε)

[
1− εφ + εφ2F1(−φ, 1, 1− φ;−R∗s/〈s〉)

−2F1(−φ, 1, 1− φ;−εR∗s/〈s〉)] , (6)

where 〈s〉 is the mean of {si} over the population. In all the
analysis presented we arbitrarily choose R∗ = 2.

To further expose the dependencies between population
density, social fluidity, and disease transmission we evaluate
N and R0 over a range of ε and φ values (the formula for
N(ε, φ) is given in Materials and Methods A. while for R0 we
assume s = 〈s〉 in (6)). At small population sizes, R0 increases
with N and converges as N goes to ∞ (Figure 2A). The rate
of this convergence increases with φ. When φ < 1, the limit
of R0 is a function of φ (Figure 2B). At these values of φ, the
individual will choose to repeat interactions despite having
the choice of infinitely many potential interaction partners.
When φ > 1 and the population is large the probability of a
repeated interaction falls to zero and we have that R0 = R∗.

Figure 2: A: Theoretical results from (6); the relationship between R0 and
population size is shown to depend on the value of φ. Dashed lines show
the limit for large N . B: In large populations R0 increases with φ up to
φ = 1. Beyond this value, infections occur as frequently as they would in a
homogeneously mixed population.

Figure 3: Each point represents a human or animal system for which social
fluidity was estimated. Results are organized by interaction type: aggression
includes fighting and displays of dominance, food sharing refers to mouth-to-
mouth passing of food, antennation is when the antenna of one insect touches
any part of another, space sharing interactions occur with spatial proximity
during foraging, face-to-face refers to close proximity interactions that require
individuals to be facing each other, association is defined as co-membership
of the same social group.

Social behavior & disease spread in empirical systems

The previous section introduced a model of social behavior
in which social fluidity, φ, quantifies heterogeneity in the way
individuals distribute their social effort among other members
of the population. To understand the results of the model in
the context of real systems we estimate φ in 57 networks from
19 studies of human and animal social behavior (Materials
and Methods) [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39].

We focus our attention to those interactions which are ca-
pable of disease transmission (i.e. those that, at the least,
require close spatial proximity). Each dataset provides the
number of interactions that were observed between pairs of
individuals (SI Text). We assume that the group size, N , is
equal to the number of individuals observed in at least one
interaction. Figure S1 shows the data and the distribution
fitted using maximum likelihood estimation.

The model provides a good fit to every dataset; the worst
fitting animal social network agrees with the model better
than synthetic data generated 92% from model simulation and
8% from random noise (SI Text). For comparison, the model
was also applied to 9 networks generated from social media
data [40], 3 of which showed less agreement with the model
than any of the non-electronic networks (SI Text). Since
agreement between the model and the data is therefore not
a certainty, it is remarkable that the social fluidity model is
applicable to such a wide range of animal social networks.

Characterizing social fluidity. Figure 3 shows the estimated
values of φ for all our study populations. We organize the
measurements of social fluidity by interaction type. Aggres-
sive interactions have the highest fluidity (which implies that
most interactions are rarely repeated with the same individu-
als), while grooming interactions have the lowest (which im-
plies frequent repeated interactions with the same individu-
als). Social fluidity also appears to be related to species: ant
systems cluster around φ = 1, voles around φ = 0.7, humans
around φ = 0.6 (with the exception of lower values observed in
the high school data and the last day of a conference). How-
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Figure 4: Each point represents a human or animal data-set for which the time of interactions appear in the data. For each individual, i, in a population,
the mean number of secondary infections is obtained from simulation and the mean, R0 (± one standard error in part A), is plotted against metrics of social
structure. Note that the parameters in the disease simulation have been calibrated with the rate of activity of each system to make these metrics comparable.

.

ever, we do not find that social fluidity is highly correlated
with sociality type [41]. This is illustrated by the sizable dif-
ference in social fluidity between the sheep, bison, and cattle
versus the kangaroos and bats all of which are categorized as
fission-fusion species.

There is no significant correlation between the mean num-
ber of observations per individual, s̄, and φ (Pearson R2 =
0.04, p = 0.14), which implies that sample size does not affect
the estimate (Figure S2A). Larger populations tend to have
smaller social fluidity values (Pearson R2 = 0.205, p < 0.001),
however, this correlation is dependent on the presence of a
few large populations in our data (N > 200) (Figure S2B).
Larger values of φ correspond to higher mean degrees (Pear-
son R2 = 0.16, p = 0.002) and less heterogeneity in the dis-
tribution of edge weights (measured as the variance divided
by the mean σ2

w/〈w〉) (Pearson R2 = 0.339, p = 0.001) (Fig-
ure S2C and D). Incidentally, weight heterogeneity and mean
degree are uncorrelated in these data (Pearson R2 = 0.005,
p = 0.568) implying that φ combines two distinct features of
social behavior.

Impact of social fluidity on disease transmission. To test the
validity of the model and examine the utility of φ as an indi-
cator of disease outcomes we simulated the spread of disease
based on the interactions that occurred in the empirical data
(Materials and Methods E.). We assume that all individu-
als are equally likely to introduce the infection to the group.
In doing so we avoid biasing our choice of infection seed to
those who are more socially active (our results are therefore
not influenced by degree heterogeneity). Thus, the basic re-
productive number, R0, is defined simply as the mean of the
individual reproductive numbers over the entire population.

For each individual, i, we compared the simulated number
of secondary infections to the prediction for r(si) given by (6).
A small amount of error was observed (between 0.1 and 0.258
with one outlier at 0.344) and the prediction consistently over-
estimated R0 in human systems (Table S3), possibly because
of the bursty nature of human contact [42]. Despite this, our
overall conclusions from the disease simulation are consistent

with the predicted results.

Figure 4 shows that φ correlates with (simulated) R0 bet-
ter than other network metrics. Since R∗ (= 2) represents
the expectation of R0 in a homogeneously mixed population
of infinite size, the difference between R0 and R∗ can be at-
tributed to the effects of social fluidity and population size.
Because the association between φ and R0 is strong (shown in
Figure 4A), the relationship between each of the other met-
rics and R0 is qualitatively the same as the their relationship
with φ. Consequently, R0 tends to be smaller in the largest
populations (Figure 4B), suggesting that population size is
not an important variable at such low values of φ. For φ > 1,
however, analytical results suggest that N plays a larger role
in determining R0 (Figure S3).

The relative weakness of the correlation between mean de-
gree and R0 (Figure 4C) suggests that the interaction dy-
namics taking place on each edge contribute significantly to
the disease outcomes. For example, after transmission has
occurred from one individual to another, repeats of the same
interaction serve no advantage for the disease (most directly-
transmitted infections are not dose-dependent). Since a large
edge weight implies a high frequency of repeated interactions,
networks with a higher mean weight tend to have lower values
of R0 (Figure 4D). Furthermore, heterogeneity in the distri-
bution of weights concentrates a yet larger proportion of in-
teractions onto a small number of edges, thus causing more
repeat interactions and reducing R0 (Figure 4E).

Discussion

We have defined a measure of fluidity in social behavior which
quantifies how much mixing exists within the social relation-
ships of a population. While social networks can be measured
with a variety of metrics including size, connectivity, interac-
tion heterogeneity and frequency, our methodology succeeds
in reducing all such factors to a single quantity allowing com-
parisons across a range of human and animal social systems.
Social fluidity correlates with both the density of social ties
(mean degree) and the heterogeneity in the strength of those
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ties, yet they are not correlated with each other; this implies
that social fluidity combines two distinct elements of social
network analysis. We have also shown that this metric is a
better predictor of R0 than these other network metrics.

By measuring social fluidity across a range of human and
animal systems we are able to rank social behaviors. In partic-
ular, we identify aggressive interactions as the most socially
fluid; this indicates a possible learning effect whereby each
aggressive encounter is followed by a period for which indi-
viduals avoid further aggression with each other [43]. At the
opposite end of the scale, we find interactions that strengthen
bonds (and thus require repeated interactions) such as groom-
ing in monkeys [44] and food-sharing in bats [26]. The fact
that food-sharing ants are far more fluid than bats, despite
performing the same kind of interaction, reflects their eusocial
nature and the absence of any need to maintain long-lasting
bonds with their kin [45].

Most studies that aim to describe and quantify social struc-
ture are met with a number of challenges. The degree of an
individual, for example, is known to scale with the length
of the observation period [46]. By focusing not on the abso-
lute value of degree, and instead focusing on how degree scales
with the number of observations, our analysis controls for this
bias. As with other network measures, however, social fluidity
estimates lose reliability when only a sample of the group has
been observed [47]. Another hurdle in previous work has been
the assumption that observed interactions will persist into the
future [48]. Our method assumes only that the distribution of
relationships remains constant through time, an assumption
that is consistent with growing evidence [19, 49].

In trying to elucidate the connection between social be-
haviors and the spread of disease the first question to ask is
whether the type of interactive behavior that the species par-
ticipates in enables transmission of the infection. If it does,
then the next important variable is the frequency of these in-
teractions. Beyond this, other proposed influences include the
number of social ties [50], which we have shown to be less sig-
nificant than social fluidity; modularity, which has previously
been exposed as an unreliable predictor of disease outcomes
[51]; and group size [52], which we have shown to only be
relevant in highly fluid populations.

The relative significance of social fluidity becomes apparent
when we compare the largest human face-to-face interaction
system (highschool_0 in Tables S2 and S3 N = 312, R0 =
0.99, φ = 0.422), to the smallest (hospital_1, N = 49, R0 =
1.129, φ = 0.592). Despite the former containing more than 6
times as many individuals as the latter, its lower social fluidity
causes R0 to be a smaller. Similarly, the mean degree of the
hospital data (k̄ = 5.1) is more than double that of the first
day of the conference (conference_0, k̄ = 2.5, R0 = 0.173,
φ = 0.631), yet the relatively small decrease in φ is enough
to reduce the value of R0. Thus, the risks associated with
group size and the density of social ties are easily offset by
minor changes in the way individuals choose to distribute their
social effort. If the survival of a group depends on its size or
its connectivity then this social adaptation can be made with
little impact on the disease risks.

Although social fluidity predicts the basic reproductive
number R0 better than alternative network-based metrics,
this does not necessarily imply that it would be a good pre-
dictor of the final epidemic size in a population with higher-

order social structure (e.g. clustering, degree heterogeneity)
[53]. Even so, there are implications of this work that may
improve the way epidemics are modeled. The growing evi-
dence that human and animal interaction follows basic uni-
versal principals, such as constraints on the social capacity
of an individual, ought to be encoded into infectious disease
models that aim to achieve a coupling of social and disease
dynamics [54, 55].

Unlike previous work that explores the disease conse-
quences of population mixing [56, 20], our analysis allows us
to compare its effect across a range of social systems. We
see, for example, the relationship between mixing and how
disease risks scale with population size. For social systems
that have high values of social fluidity, R0 is highly sensi-
tive to changes in N , whereas this sensitivity is not present
at low values of φ. Thus, both density dependent and fre-
quency dependent disease dynamics are realized through the
same model. Since many empirical studies support a trans-
mission function that is somewhere between these two mod-
eling paradigms [57, 58, 59], the modeling approaches applied
in this study may be useful in informing transmission rela-
tionships in future disease studies.

Materials and Methods

Extended methods are provided in the SI Text

A. Computing the lower bound in (2). The value of ε is de-
termined by the choice of φ and the value of N . Since interactions
are pairwise, when i interacts exactly one other individual is involved.
Thus, the sum of the xj|i’s over all other members of the population, j,
is equal to 1. We choose to express this as a constraint in expectation,
with (N − 1)〈x〉 = 1, where 〈x〉 denotes the mean of the distribution
ρ(x). This leads to

N = 1 +
(1− φ)(1− εφ)

φεφ(1− ε1−φ)
. (7)

We can therefore find ε for any give N and φ by solving (C + 1)εφ −
ε−C = 0, where C = (1−φ)/(N − 1)φ, using the fsolve function from
the scipy.optimize Python library (SI text).

B. Conditional degree distribution. The degree of i is determined
by N − 1 independent Bernoulli trials, each with success probability
Ψ(si). The probability that an individual will have degree k given that
they have interacted s times, for any value of the global parameter φ is
therefore given by

P (k|s, φ) =
(N − 1

k

)
Ψ(s, φ)

k
(1−Ψ(s, φ))

N−1−k
. (8)

However, since this distribution gives non-zero probabilities for cases
where k > s, which are invalid, we instead use

P (k|s, φ) =
(s
k

)( (N − 1)Ψ(s, φ)

s

)k (
1−

(N − 1)Ψ(s, φ)

s

)s−k
(9)

when if 0 < s < N . To evaluate the hypergeometric function in (3) we
used the hyp2f1 function from the scipy.special Python library.

C. Parameter estimation. For each individual in a study pop-
ulation we know the number of times they interacted, si, and the
number of partners with whom they interacted, ki, in vector nota-
tion k = {k1, k2, ..., kN} and s = {s1, s2, ..., sN}. The marginal log-
likelihood function is

logL(φ|k, s) =
N∑
i=1

log[P (ki|si, φ)]. (10)

We then compute the maximum likely estimate φ =
argmaxφ logL(φ|k, s). Our estimation is based on the marginal
distribution of the degree of each node and does not take into account
the interdependencies of the network structure. As such, we do not
report standard errors or confidence intervals for our point estimates.
For discussion of the use of marginal distributions in likelihood
estimation see [60].

The goodness-of-fit is calculated by comparing its likelihood to the
likelihood of a null model in which the degree of each individual is a
uniformly distributed random integer within the range of feasible values
(SI Text).
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D. Disease model calibration. We choose γ for every system such
that R0 is equal to a fixed value, R∗, under the assumption of no effect
from social fluidity and population size (i.e. in a large population with
homogeneous mixing). Calibration is achieved when γ is chosen to be

γ =
β〈s〉

∆tR∗
(11)

where ∆t is the duration of the time-frame of the data and 〈s〉 is the
mean of si over the whole population. The effect of this calibration is
that the recovery rate, γ, is proportional to the mean activity rate.

E. Disease simulation. Disease simulations were only performed on
data for which the time of every interaction is recorded. Since the
transmission probability, β, and the rate of recovery, γ, are calibrated
through (11), the choice of β does not affect R0. We arbitrarily chose
β = 1/4. We report mean absolute error |e|, which is the mean dif-
ference between the analytical and simulated values of r(si), computed
across 103 simulations for each node. An extensive description is pro-
vided in the supplement (SI Text).

Acknowledgments. This work was supported by NSF grant number
1414296. We are grateful for insightful feedback from Pratha Sah. We
also thank all the researchers who have made their behavioral data
openly accessible, making this study possible.

References

[1] Jens Krause and Graeme D Ruxton. Living in groups. Oxford University Press, 2002.

[2] R. A. Hinde. Interactions, relationships and social structure. Man, 11(1):1–17, 1976.
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