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Humans and other group-living animals tend to distribute their1

social effort disproportionately. Individuals predominantly in-2

teract with their closest companions while maintaining weaker3

social bonds with less familiar group members. By incorporat-4

ing this behaviour into a mathematical model we find that a5

single parameter, which we refer to as social fluidity, controls6

the rate of social mixing within the group. We compare the7

social fluidity of 13 species by applying the model to empiri-8

cal human and animal social interaction data. To investigate9

how social behavior influences the likelihood of an epidemic10

outbreak we derive an analytical expression of the relationship11

between social fluidity and the basic reproductive number of12

an infectious disease. For highly fluid social behaviour disease13

transmission is density-dependent. For species that form more14

stable social bonds, the model describes frequency-dependent15

transmission that is sensitive to changes in social fluidity.16

Social behavior is fundamental to the survival of many17

species. It allows the formation of social groups pro-18

viding fitness advantages from greater access to resources19

and better protection from predators [1]. Structure within20

these groups can be found in the way individuals commu-21

nicate across space, cooperate in sexual or parental behav-22

ior, or clash in territorial or mating conflicts [2]. While23

animal societies are usually studied independently of each24

other, some questions about the nature of social living can25

only be answered by comparing behavior across a range of26

species [3, 4].27

When social interaction requires shared physical space28

it can also be a conduit for the transmission of infectious29

disease [5]. For epidemic modellers it is vital to know what30

level of contact is necessary for host-to-host transmission as31

this determines how the density and structure of the popu-32

lation affect the rate at which the disease will spread [6,7].33

Typically, if the disease spreads through the environment34

then the transmission rate is assumed to scale proportion-35

ally to the local population density (density-dependence),36

whereas if transmission requires close proximity encounters37

that only occur between bonded individuals then we expect38

social connectivity to determine the outcome (frequency-39

dependence) [8].40

In reality, however, animal-disease systems are not so41

easy to categorize [9]. For example, as social groups grow42

in size, new bonds must be created to maintain cohesive-43

ness [10]. To manage their time and the increased cog-44

nitive effort required to maintain these bonds, individu- 45

als tend to interact mostly with their closest companions 46

while weaker ties are maintained through infrequent con- 47

tact [11–13]. This variability in the way social effort is dis- 48

tributed has been shown to affect contagion processes [14], 49

and it leads us to the question motivating this study: can 50

quantifying how group-living individuals choose to invest 51

their social effort allow us to model the effects of popula- 52

tion density on epidemic spread? 53

There is growing evidence for the disproportionate dis- 54

tribution of social effort in human communication [15–18]. 55

Attempts to quantify this aspect of sociality in animal sys- 56

tems, however, are challenged by the fact that data on 57

some individuals may be far richer than on others. These 58

biases can be introduced in the data collection process, 59

or result from behavioural differences across the sampled 60

population [19]. Furthermore, while heterogeneous interac- 61

tion frequencies and temporal dynamics such as circadian 62

rhythms and bursty activity patterns have become com- 63

mon in social network models [20], little has been done to 64

incorporate the way the individual chooses to distribute 65

their social effort. 66

Here, we introduce a mathematical model founded on 67

the concept of social fluidity which we define as variabil- 68

ity in the amount of social effort the individual invests in 69

each member of their social group. Using empirical data 70

from previous studies, we estimate the social fluidity of 57 71

human and animal social systems. We use it in analyti- 72

cal and computational models of disease spread and show 73

that the basic reproductive number defined on social flu- 74

idity is a better predictor of disease outcome compared to 75

other social behavioral indicators. In addition, social flu- 76

idity emerges as a coherent mathematical framework pro- 77

viding the smooth connection between density-dependent 78

and frequency-dependent disease systems, which have his- 79

torically been studied in isolation. 80

Characterizing social behaviour 81

Our objective is to measure social behaviour in a range of 82

human and animal populations. We start by introducing 83

a model that captures a hidden element of social dynam- 84

ics: how individual group members distribute their social 85

effort. We mathematically describe the relationships be- 86

tween social variables that are routinely found in studies of 87
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Figure 1: Left: Each individual can be represented as a single point on this plot. Dashed lines mark the boundary of the region where data
points can feasibly be found. The mean degree is plotted for two values of φ representing two possible types of social behavior; as the number of
observed interactions grows, the set of social contacts increases; the rate at which it increases influences how we categorize their social behavior.
Middle: The weight of the edges between i and the other nodes represents the propensity of i to interact with each of the other individuals in
the group. Right: Probability distributions that correspond to the different levels of evenness in the contact propensities, both distributions are
expressed by Eq.(2).

animal behavior, the number of social ties and the number88

of interactions observed, and apply the model to empiri-89

cal data to reveal behavioural differences between several90

species.91

Social behavior model Consider a closed system of N indi-92

viduals and a set of interactions between pairs of individ-93

uals that were recorded during some observation period.94

These observations can be represented as a network: each95

individual, i, is a node; an edge exists between two nodes96

i and j if at least one interaction was observed between97

them; the edge weight, wi,j , denotes the number of times98

this interaction was observed. The total number of in-99

teractions of i is denoted strength, si =
∑
j wi,j , and the100

number of nodes with whom i is observed interacting is its101

degree, ki [21].102

We define xj|i to be the probability that an interaction103

involving i will also involve node j. Therefore the prob-104

ability that at least one of these interactions is with j is105

1− (1−xj|i)si . The main assumption of the model is that106

the values of xj|i over all i, j pairs are distributed accord-107

ing to a probability distribution, ρ(x).1 Thus, if a node108

interacts s times, the marginal probability that an edge109

exists between that node and any other given node in the110

network is111

Ψ(s) = 1−
∫
ρ(x)(1− x)sdx. (1)

Our goal is to find a form of ρ that accurately reproduces112

network structure observed in real social systems. Moti-113

vated by our exploration of empirical interaction patterns114

from a variety of species (Fig. S1), we propose that ρ has115

1xj|i are subject to network interdependencies. Specifically, AX = XTA and
X1 = 0, where X is a matrix whose i, j entry is −1 if i = j and xj|i otherwise,
A is any diagonal matrix with positive entries, and 0 and 1 are column vectors of
length N containing only 0 and 1, respectively. Thus, ρ(x) is the distribution of
marginal xj|i values of the joint distribution P (X).

a power-law form: 116

ρ(x) =
φεφ

1− εφ
x−(1+φ) for ε < x < 1, (2)

where φ (> 0) controls the variability in the values of x, 117

and ε simply truncates the distribution to avoid divergence. 118

Combining (1) and (2) we find 119

Ψ(s, φ, ε) = 1− φεφ(1− ε)s+1

(1− εφ)(s+ 1)
2F1(s+ 1, 1 +φ, s+ 2, 1− ε)

(3)
where the notation 2F1 refers to the Gauss hypergeometric 120

function [22]. It follows from
∑
j xj|i = 1 that 121

N = 1 +
(1− φ)(1− εφ)

φεφ(1− ε1−φ)
, (4)

which can be solved numerically to find ε for given values 122

of N and φ. The expectation of the degree is κ(s, φ,N) = 123

(N − 1)Ψ(s, φ, ε). 124

Fig. 1 illustrates how the value of φ can produce dif- 125

ferent types of social behavior. As φ is the main deter- 126

minant of social behaviour in our model, we use the term 127

social fluidity to refer to this quantity. Low social flu- 128

idity (φ � 1) produces what we might describe as “al- 129

legiant” behavior: interactions with the same partner are 130

frequently repeated at the expense of interactions with un- 131

familiar individuals. As φ increases, the model produces 132

more “gregarious” behavior: interactions are repeated less 133

frequently and the number of partners is larger. While this 134

phenomenon could be similarly described as “social strat- 135

egy” or “loyalty” [23, 24], here we use a different measure 136

as it is consistent with previously studied social drivers of 137

epidemic spread [25] establishing a direct connection with 138

disease risk at the population scale. 139

Estimating social fluidity in empirical networks: To under- 140

stand the results of the model in the context of real systems 141

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2020. ; https://doi.org/10.1101/170266doi: bioRxiv preprint 

https://doi.org/10.1101/170266
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.5

1.0

1.5

2.0

So
cia

l f
lu

id
ity

, 

Aggression
Food sharing

Antennation

Face-to-face

Association
Grooming

Ant
Conference
Hospital
Primary school
High school
Office
Bee
Bat
Parakeet
Bison
Sheep
Monkey
Cattle
Kangaroo
Swallow
Shark

Figure 2: Each point represents a human or animal system for which social fluidity was estimated. Results are organized by interaction type:
aggression includes fighting and displays of dominance, food sharing refers to mouth-to-mouth passing of food, antennation is when the antenna
of one insect touches any part of another, space sharing interactions occur with spatial proximity during foraging, face-to-face refers to close
proximity interactions that require individuals to be facing each other, association is defined as co-membership of the same social group.

we estimate φ in 57 networks from 20 studies of human142

and animal social behavior (further details in the supple-143

ment) [26–46], focusing our attention to those interactions144

which are capable of disease transmission (i.e. those that,145

at the least, require close spatial proximity).146

Each dataset provides the number of interactions that147

were observed between pairs of individuals. We assume148

that the system is closed, and that the total network size149

(N) is equal to the number of individuals observed in at150

least one interaction. To estimate social fluidity we find the151

value of φ that minimizes
∑
i[ki − κ(si, φ,N)]2 (the total152

squared squared error between the observed degrees and153

their expectation given by the model). Being estimated154

from the relationship between strength and degree, and155

not their absolute values, social fluidity is a good candidate156

for comparing social behavior across different systems as157

it is independent of the distributions of si or ki, and of the158

timescale of interactions.159

Fig. 2 shows the estimated values of φ for all networks in160

our study. We organize the measurements of social fluidity161

by interaction type. Aggressive interactions have the high-162

est fluidity (which implies that most interactions are rarely163

repeated between the same individuals), while grooming164

and other forms of social bonding have the lowest (which165

implies frequent repeated interactions between the same166

individuals). Social fluidity also appears to be related to167

species: ant systems cluster around φ = 1, monkeys around168

φ = 0.5, humans take a range of values that depend on the169

social environment. Sociality type does not appear to af-170

fect φ; sheep, bison, and cattle have different social fluidity171

compared to kangaroos and bats, though they are all cat-172

egorized as fission-fusion species [3].173

There is no significant correlation between the mean174

number of interactions per individual (s̄) and social flu-175

idity (Pearson r2 = 0.02, p = 0.26), which implies that176

sampling bias does not affect the estimation of social fluid- 177

ity. Similarly, network size does not correlate with φ (Pear- 178

son r2 = 0.02, p = 0.33). Larger values of φ correspond to 179

higher mean degrees (Pearson r2 = 0.27, p < 0.001) and 180

lower variability in the distribution of edge weights (mea- 181

sured as the index of dispersion of wi,j ; Pearson r2 = 0.26, 182

p < 0.001). Weight variability and mean degree are uncor- 183

related in these data (Pearson r2 = 0.01, p = 0.59) imply- 184

ing that φ combines these two entirely distinct features of 185

social behavior. 186

Finally, the modularity of the network (computed by 187

the Louvain method on the unweighted network [47]) is 188

negatively correlated with φ (r2 = 0.57, p < 0.001). This is 189

expected as individuals tend to be loyal to those within the 190

same module while maintaining weaker connections with 191

the remaining network. 192

Characterizing disease spread with social fluidity 193

Our objective is to characterize how social behavior influ- 194

ences the susceptibility of the group to infectious disease in 195

a range of human and animal social systems. We start by 196

introducing a analytical transmission model that incorpo- 197

rates social fluidity. Using this model, we mathematically 198

characterize the impact of social fluidity on density de- 199

pendence, and apply the model to empirical networks to 200

predict disease spread. 201

Disease transmission model: We consider the transmission 202

of an infectious disease on the social behavior model intro- 203

duced in the previous section. An infectious node i inter- 204

acting with a susceptible node j will transmit the infection 205

with probability β. The node will recover from infection 206

with rate γ, assuming an exponential distribution of the 207

length of the infectious period. The probability that the 208

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2020. ; https://doi.org/10.1101/170266doi: bioRxiv preprint 

https://doi.org/10.1101/170266
http://creativecommons.org/licenses/by-nc-nd/4.0/


101 102 103 104

Population size, N
0.4

0.6

0.8

1A

R0
R0

= 1.6
= 1.2
= 0.8
= 0.4

0 0.5 1 1.5
Social fluidity, 

0.4

0.6

0.8

1

R 0
/R

0
 a

s N

B

Figure 3: Density dependence in populations where every node has the same strength. A: For different values of social fluidity, φ, we show Rφ0
(from Eq.(6)) as a function of N (from Eq.(4)) through their parametric relation with ε. Dashed lines show the limit for large N . B: In large

populations Rφ0 increases with φ up to φ = 1. Beyond this value, infections occur as frequently as they would if every new interaction occurs
between a pair of individuals who have not previously interacted with each other.

infection is transmitted from i to any given j is209

Ti→j(β, γ, si, τ, xj|i) = 1− exp(−sixj|iβ/γτ), (5)

assuming that the interactions si of i are distributed ran-210

domly across an observation period of duration τ .211

By integrating Eq. (5) over all possible values xj|i and
and infectious period durations and multiplying by the
number of susceptible individuals (N − 1) we obtain the
expected number of infections caused by individual i,

r(si) =
1− φ

φ(εφ − ε)
[
1− εφ + εφ2F1(−φ, 1, 1− φ;−βsi/γτ)

−2F1(−φ, 1, 1− φ;−εβsi/γτ)] . (6)

The basic reproductive number (usually denoted R0) is212

defined as the mean number of secondary infections caused213

by a typical infectious individual in an otherwise suscepti-214

ble population [48]. We will use the notation Rφ0 to signify215

the social fluidity reproductive number, that is the analogue216

of R0 derived from our social behaviour model.217

We assess the relation of the reproductive number with218

the population density by focusing on a special case where219

every node has the same strength, i.e si = s for all i, so220

that Rφ0 = r(s). Furthermore, we choose β = γτR∞0 /s221

where R∞0 is Rφ0 as φ→∞, i.e, a constant that represents222

what the basic reproductive number would be if every new223

interaction occurred between a pair of individuals who have224

not previously interacted with each other.225

Fig. 3 shows the effect of social fluidity on the density226

dependence of the disease. At small population sizes, Rφ0227

increases with N and converges as N goes to∞ (Fig. 3A).228

The rate of this convergence increases with φ, and the limit229

it converges to is higher, meaning that φ determines the230

extent to which density affects the spread of disease. As231

N → ∞, we find that Rφ0 → R∞0 for φ > 1. When φ < 1,232

Rφ0 → [(1−φ)/φ][2F1(−φ, 1, 1−φ;−R∞0 )−1]. At these val-233

ues of φ the disease is constrained by individuals choosing234

to repeat interactions despite having the choice of infinitely235

many potential interaction partners (Fig 3B).236

Estimating infection spread in empirical networks with hetero-237

geneous connectivity: To apply this analogue of a repro-238

ductive number to an animal-disease system, we need to 239

account for heterogeneous levels of social connectivity in 240

the given population and thus the tendency for infected 241

individuals to be those with a greater number of social 242

partners [49]. For the basic reproductive number, this is 243

often done using the mean excess degree, i.e. the degree 244

of an individual selected with probability proportional to 245

their degree [50]. Following a similar reasoning, we define 246

REst
0 , which incorporates the effect of social fluidity, as the 247

expected number of infections (r(si)) caused by an individ- 248

ual that has been selected with probability proportional to 249

their degree (ki): 250

REst
0 ({si}, {ki}, τ, β, γ) =

∑
i kir(si)∑
i ki

. (7)

Given the degree and strength of each individual in a net- 251

work, the duration over which those interactions occurrred, 252

and the transmission and recovery rates of the disease, we 253

are able to estimate φ, compute Eq.(6) for each individual, 254

and finally use Eq.(7) to derive a statistic that provides a 255

measure of the risk of the host population to disease out- 256

break. 257

Numerical validation using empirical networks: We simulated 258

the spread of disease through the interactions that oc- 259

curred in the empirical data (materials and methods). We 260

compute RSim
0 (g), defined as the ratio of the number of 261

individuals infected at the (g + 1)-th generation to the 262

number infected at the g-th generation over 103 simulated 263

outbreaks, for g = 0, 1, 2 (g = 0 refers to the initial seed of 264

the outbreak). 265

Table 1 shows the Pearson correlation coefficient be- 266

tween RSim
0 (g) and its corresponding value REst

0 obtained 267

Eq.(7). For comparison, the correlation is shown for other 268

indicators and network statistics. The results correspond 269

to one set of simulation conditions, and are robust across 270

a wide range of parameter combinations (see supplemen- 271

tary tables). Note that a different value of β was chosen for 272

each network to control for the varying interaction rates be- 273

tween networks while keeping the upper bound (R∞0 ) con- 274

stant (materials and methods). Thus, the mean strength 275

does not have a significant effect on RSim
0 (g). 276
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Table 1: The Pearson correlation coefficient between quantities cal-
culated on the network and the simulated disease outcomes (with
R∞

0 = 3). Results that are significant with p < 0.01 are labelled with
*.

Corr. with RSim
0 (g = 1))

REst
0 0.91*

Social fluidity 0.73*
Excess degree 0.64*
Mean degree 0.53*
Network size 0.47*
Mean strength −0.07
Mean clustering −0.15
Mean edge weight −0.45*
Edge weight variability −0.48*
Modularity −0.60*

These correlations support a known result regarding re-277

peat contacts in network models of disease spread: that in-278

dicators of disease risk that are derived solely from the de-279

gree distribution are unreliable and the role of edge weights280

should not be neglected [51,52]. After transmission has oc-281

curred from one individual to another, repeating the same282

interaction serves no advantage for disease (most directly-283

transmitted microparasites are not dose-dependent). Since284

a large edge weight implies a high frequency of repeated285

interactions, networks with a higher mean weight tend to286

have lower basic reproductive numbers. Furthermore, vari-287

ability in the distribution of weights concentrates a yet288

larger proportion of interactions onto a small number of289

edges, further increasing the number of repeat interactions290

and reducing the reproductive number.291

Correlation between modularity and RSim
0 (g) is partly292

due to the strong correlation between modular networks293

and those with high social fluidity. Consistent with other294

evidence [53], this suggests that transmission events occur295

mostly within the module of the seed node, with weaker296

social ties facilitating transmission to other modules. The297

effect of clustering (a measure of the number of connected298

triples in network [54]) correlates with smaller RSim
0 (2),299

consistent with other theoretical work [51,55].300

Finally, we find the model estimate of the social fluidity301

reproductive number REst
0 to be, on average, within 10%302

of the simulated value, RSim
0 (g) at g = 1. At g = 2 the303

amount of error is larger (to up to 29% for some parameter304

choices). Prediction accuracy at this generation is nega-305

tively correlated with the mean clustering coefficient. This306

is not surprising as REst
0 does not account for the acceler-307

ated depletion of susceptible neighbours that is known to308

occur in clustered networks [51,55]. No other properties of309

the network affect the accuracy of REst
0 consistently across310

all parameter combinations (see supplementary tables).311

Discussion312

We proposed a measure of fluidity in social behavior which313

quantifies how much mixing exists within the social rela-314

tionships of a population. While social networks can be315

measured with a variety of metrics including size, connec- 316

tivity, contact heterogeneity and frequency, our methodol- 317

ogy reduces all such factors to a single quantity allowing 318

comparisons across a range of human and animal social 319

systems. Social fluidity correlates with both the density of 320

social ties (mean degree) and the variability in the weight 321

of those ties, though these quantities do not correlate with 322

each other. Social fluidity is thus able to combine these 323

two aspects seamlessly in one quantity. 324

By measuring social fluidity across a range of human and 325

animal systems we are able to rank social behaviors. We 326

identify aggressive interactions as the most socially fluid; 327

this indicates a possible learning effect whereby each ag- 328

gressive encounter is followed by a period during which 329

individuals avoid further aggression with each other [56]. 330

At the opposite end of the scale, we find interactions that 331

strengthen bonds (and thus require repeated interactions) 332

such as grooming in monkeys [57] and food-sharing in 333

bats [33]. The fact that food-sharing ants are far more 334

fluid than bats, despite performing the same kind of inter- 335

action, reflects their eusocial nature and the absence of any 336

need to consistently reinforce bonds with their kin [58]. 337

Most studies that aim to describe and quantify social 338

structure are met with a number of challenges, includ- 339

ing ours. First, the degree of an individual, for exam- 340

ple, is known to scale with the length of the observation 341

period [59]. By focusing not on the absolute value of de- 342

gree, but instead on how degree scales with the number 343

of observations, our analysis controls for this bias. Sec- 344

ond, observed interactions have been assumed to persist 345

over time [60]. In our model, only the distribution of 346

edge weights remains constant through time, an assump- 347

tion consistent with growing evidence [24, 61]. Third, du- 348

ration of contacts is known to be important for disease 349

spread [52]. We did not include explicitly the duration of 350

each contact in our model, since this information was only 351

available in a fraction of the datasets [62]. There is there- 352

fore potential to improve the applicability of this model as 353

more high resolution data becomes openly available. 354

Our estimate of reproductive number derived from so- 355

cial fluidity provides a better predictor for the epidemic 356

risk of a host population, going beyond predictors based 357

on density or degree only. To illustrate this point, the so- 358

cial network of individuals at a conference (REst
0 = 1.60; 359

conference_0, supplementary document) is predicted to 360

be at higher risk compared to the social network at a school 361

(REst
0 = 1.39; highschool_0), despite having a smaller size 362

and lower connectivity (N = 93 vs. N = 312, and k̄ = 5.63 363

vs. k̄ = 6.78, respectively). The discrepancy in the risk 364

prediction comes from the lower frequency of repeated con- 365

tacts between individuals in the conference, compared to 366

the school. Interactions between infectious individuals and 367

those they have previously infected are redundant in terms 368

of transmission. This dynamic is nicely captured by the so- 369

cial fluidity, with φ = 0.66 for the conference and φ = 0.40 370

for the high school. 371

Unlike previous work that explores the disease conse- 372

quences of population mixing [25, 63], our analysis allows 373

us to investigate this relation across a range of social sys- 374
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tems. We see, for example, how the relationship between375

mixing and disease risk scales with population density. For376

social systems that have high values of social fluidity, Rφ0377

is highly sensitive to changes in N , whereas this sensitiv-378

ity is not present at low values of φ. This corroborates379

past work on the scaling of transmission being associated380

to heterogeneity in contact [64,65]. Going beyond previous381

work, our model captures in a coherent theoretical frame-382

work both density-dependence and frequency-dependence,383

and social fluidity is the measure to tune from one to the384

other in a continuous way. Since many empirical studies385

support a transmission function that is somewhere between386

these two modeling paradigms [7,66–68], the modeling ap-387

proaches applied in this paper can be carried forward to388

inform transmission relationships in future disease studies.389

Materials & Methods390

A. Python libraries Mean clustering coefficients were computed391

using the networkx Python library. To evaluate the hyper-392

geometric function in (3) we used the hyp2f1 function from393

the scipy.special Python library. Numerical solutions to Eq.(4)394

using the fsolve function from the scipy.optimize Python li-395

brary. All scripts, data, and documentation used in this396

study are available through https://github.com/EwanColman/397

Social-Fluidity.398

B. Data handling Only freely available downloadable sources399

of data have been used for this study. Details of the experimen-400

tation and data collection can be found through their respective401

publications. Here we note some additional processes we have402

applied for our study.403

Each human contact dataset lists the identities of the peo-404

ple in contact, as well as the 20-second interval of detection405

[26–29, 32]. To exclude contacts detected while participants406

momentarily walked past one another, only contacts detected407

in at least two consecutive intervals are considered interactions.408

Data were then separated into 24 hour subsets.409

Bee trophallaxis provided experimental data for 5 unrelated410

colonies under continuous observation. We use the first hour411

of recorded data for each colony [46]. The ant trophallaxis412

study provided 6 networks: 3 unrelated colonies continuously413

observed under 2 different experimental conditions [30]. Ant414

antennation study provided 6 networks: 3 colonies, each ob-415

served in 2 sessions separated by a two week period. The bat416

study collected individual data at different times and under dif-417

ferent experimental conditions [33]. For bats that were studied418

on more than one occasion we use only the first day they were419

observed.420

Some data sets provided data for group membership col-421

lected through intermittent, rather than continuous, observa-422

tion [34–38]. We construct networks from these data by record-423

ing an interaction when two individuals were seen to be in the424

same group during one round of observation. The shark data425

was divided into 6 datasets, each one constructed from 10 con-426

secutive observations, and spread out through the full time pe-427

riod over which the data was collected.428

For the grooming data [39, 40], if one animal was groom-429

ing another during one round of observations then this would430

be recorded as a directed interaction. Similarly for aggressive431

interactions [41–45, 56]. When an animal was determined to432

be the winner of a dominance encounter then this would be433

recorded as a directed interaction between the winner and the 434

loser. We consider interaction in either direction to be a contact 435

in the network. 436

We considered including two rodent datasets in which inter- 437

action is defined as being observed within the same territorial 438

space [66,68]. We did not find this suitable for our analysis since 439

the network we obtain, and the consequent results are sensitive 440

to setting of arbitrary threshold values regarding what should, 441

or should not, be considered sufficient contact for an interac- 442

tion. 443

For data that did not contain the time of each interac- 444

tion, contact time series were generated synthetically. For 445

those datasets, the interactions between each pair were given 446

synthetic timestamps in three different ways, Poisson: the 447

time of each interaction is chosen uniformly at random from 448

{0, 1, ..., 104} seconds, Circadian: chosen uniformly at random 449

from {0, 1, ..., 3333, 6666, ..., 104}, and Bursty: interaction times 450

occur with power-law distributed inter-event times adjusted to 451

give an expected total duration of 104 seconds. 452

C. Disease simulation Simulations of disease spread were ex- 453

ecuted using the contacts provided by the datasets. The the 454

bat network was omitted from this part since these data were 455

collected over a series of independent experiments carried out 456

at different times and under different experimental treatments. 457

In one run of the simulation, one seed node is randomly cho- 458

sen from the network and, at a randomly selected point in time 459

during the duration of the data, transitions to the infectious 460

state. The duration for which they remain infectious is a ran- 461

dom variable drawn from an exponential distribution with mean 462

1/γ. During this time any contact they have with other indi- 463

viduals who have not previously been infected will cause an 464

infection with probability β. 465

The simulation runs until all individuals who were infected at 466

the second generation of the disease, i.e. those infected by those 467

infected by the seed, have recovered. The datasets are ‘looped’ 468

to ensure that the timeframe of the data collection does not 469

influence the outcome. In other words, immediately after the 470

latest interaction, the interactions are repeated exactly as they 471

were originally. This continues to happen until the termination 472

criteria is met. 473

We set the parameters to normalise for the variation in con- 474

tacts rates between networks. To achieve this we consider a 475

hypothetical counterpart to each network in which the strength 476

of every node is the same, but each interaction occurs be- 477

tween a pair of individuals who have not previously inter- 478

acted. This is equivalent to φ → ∞. Under these conditions 479

xj|i = 1/(N − 1) for all pairs i, j. It follows that Eq. (5) be- 480

comes Ti→j ≈ siβ/γτ(N − 1), then r(si) ≈ siβ/γτ , and, since 481

ki = si for all nodes i, Eq. (7) gives 482

R∞
0 = REst

0 ({si}, {si}, τ, β, γ) =
β
∑
i s

2
i

γτ
∑
i si

(8)

The value of R∞
0 can be chosen arbitrarily. Then, by setting 483

γ = 1/τ and β = R∞
0

∑
i si/

∑
i s

2
i we guarantee that Eq. (8) 484

holds for every network. To test that our results hold over a 485

range of disease scenarios we repeat our analysis with R∞
0 = 2, 486

3, and 4. 487
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