
 

1 

Does size matter? The relationship 
between predictive power of single-
subject morphometric networks to 

spatial scale and edge weight 
Pradeep Reddy Raamana1, Stephen C. Strother1,2, for the Australian Imaging Biomarkers and 

Lifestyle flagship study of ageing* and for The Alzheimer’s Disease Neuroimaging Initiative 
1Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada.  

2Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. 

Abstract 
 
Network-level analysis based on anatomical, pairwise similarities  (e.g., cortical 
thickness) has been gaining increasing attention recently. However, there has not been a 
systematic study of the impact of spatial scale and edge definitions on predictive 
performance. In order to obtain a clear understanding of relative performance, there is a 
need for systematic comparison. In this study, we present a histogram-based approach 
to construct subject-wise weighted networks that enable a principled comparison across 
different methods of network analysis. We design several weighted networks based on 
three large publicly available datasets and perform a robust evaluation of their 
predictive power under four levels of separability. An interesting insight generated is 
that changes in nodal size (spatial scale) have no significant impact on predictive power 
among the three classification experiments and two disease cohorts studied, i.e., mild 
cognitive impairment and Alzheimer’s disease from ADNI, and Autism from the 
ABIDE dataset. We also release an open source python package called graynet to enable 
others to implement the novel network feature extraction algorithm, which is applicable 
to other modalities as well (due to its domain- and feature-agnostic nature) in diverse 
applications of connectivity research. In addition, the findings from the ADNI dataset 
are replicated in the AIBL dataset using an open source machine learning tool called 
neuropredict. 
 
Index Terms: cortical thickness, graph theory, early prognosis, mild cognitive impairment, 
alzheimer, model comparison, histogram distance, magnetic resonance imaging 

                                                   
1 Corresponding author email: praamana@research.baycrest.org 
* Data used in the preparation of this article was obtained from: 1) Alzheimer Disease Neuroimaging Initiative (ADNI) 
and 2) the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth 
Scientific and Industrial Research Organisation (CSIRO) which was made available at the ADNI database 
(www.loni.usc.edu/ADNI). The ADNI and AIBL researchers contributed data but did not participate in analysis or 
writing of this report. 
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Introduction 
Network-level analyses have become one of the dominant techniques to process and analyze 
different neuroimaging modalities, including functional MRI (task- and resting-state fMRI), and 
diffusion MRI. One of the most routine network analyses performed is the extraction of 
individual connectivity matrices e.g. to characterize the structure and function of the brain, as 
well as to develop markers of dysfunction in various brain disorders. Owing to their broad 
applicability and success, similar approaches have been developed in the structural MRI (sMRI) 
also (Pradeep Reddy Raamana et al. 2015). Translation of such powerful techniques to the sMRI, 
and a systematic evaluation of their methodological robustness, would help assess clinical 
utility, esp. in the development of computer-aided diagnostic (CAD) techniques for deadly 
brain disorders like the Alzheimer’s disease (AD) (Alzheimer’s Association 2017).  
 
Although there has been great progress in the last few decades in accurately characterizing AD 
as well as its progression (Weiner et al. 2017; 2015), its translation to improvement of clinical 
trials continues to be a great challenge (Cummings, Morstorf, and Zhong 2014). For any 
preventive or disease-modifying therapies to succeed, early prognosis is key. Towards this goal, 
diverse regional and network-level analyses of features derived from different neuroimaging 
modalities such as sMRI (Cuingnet et al. 2011; Bron et al. 2015; Duchesne et al. 2008; P R 
Raamana et al. 2014; Dyrba et al. 2015), positron emission tomography (PET) (Dukart et al. 2011; 
Herholz et al. 2002; Matthews et al. 2016) and resting-state fMRI (Hojjati, Ebrahimzadeh, and 
Khazaee 2017; Abraham et al. 2017) have been developed and are showing great promise in 
identifying differences between health and disease in the early stages, as well as establishing 
how they correlate with cognitive measures (Alexander-Bloch, Giedd, and Bullmore 2013; Tijms 
et al. 2013). Multimodal predictive modeling methods typically demonstrate higher prognostic 
accuracy (Sui et al. 2011; Arbabshirani et al. 2017) in many applications, owing to their training 
based on multiple sets of rich and complementary information related to disease. However, 
recent efforts in building more sophisticated machine learning strategies produced unimodal 
sMRI methods rivaling the state-of-the-art multimodal approaches (Weiner et al. 2017). 
Although multi-modal approaches tend to be more sensitive in general and offer richer insight, 
the practical advantages of sMRI being non-invasive, cost-effective and widely-accessible in the 
clinic, make sMRI-based CAD methods for early prognosis highly desirable. 
 
Cortical thickness is a sensitive imaging biomarker that can be easily derived from sMRI to 
diagnose AD. However, its sensitivity to identify the prodromal subjects (such as mild cognitive 
impairment (MCI)) at risk of progressing to AD is limited (Cuingnet et al. 2011). Network-level 
analysis of cortical thickness and gray matter features demonstrated its potential to provide 
novel insights or improve predictive power (Raamana et al. 2015), and is gaining in popularity 
(Evans 2013; Wen, He, and Sachdev 2011; Reid and Evans 2013; Jason P. Lerch et al. 2006). 
Thickness network features offer complementary information compared to the underlying fiber 
density (Gong et al. 2012), are shown to be disrupted in AD (Kim et al. 2016) and have been 
shown to have potential for early prognosis of AD (Raamana et al. 2015; Wee et al. 2012; Dai et 
al. 2012; Kim et al. 2016), as well as for subtype discrimination (Raamana, Wen, et al. 2014), 
outperforming the non-network raw-thickness features.  
 
Network analysis studies in cortical thickness range from

1. group-wise studies building networks based on group-wise covariance/correlation in 
cortical thickness (Evans 2013; He and Chen 2007; Jason P. Lerch et al. 2006), which may 
be used to characterize the properties of these networks (such as small-worldness) as 
well as provide useful insight into network-level changes between two diagnostic 
groups e.g. healthy controls (CN) and Alzheimer’s disease (AD), 

2. studies building individual subject-wise graphs based on within-subject ROI-wise 
(pairwise) similarity metrics (Raamana et al. 2015; Tijms et al. 2012; Wee et al. 2012; Dai 
et al. 2012; Kim et al. 2016) to enable predictive modeling. These studies resulted in 
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disease-related insights into network-level imaging biomarkers and improved accuracy 
for the early prognosis of AD. However, these studies are based on distinctly different 
parcellation schemes of the cortex, vastly different ways of linking two different regions 
in the brain, and datasets differing in size and demographics. 

 
Insights derived from various brain network studies showed considerable variability in 
reported group differences (Tijms et al. 2013), and widely accepted standards for network 
construction are yet to be established (Stam 2014). There have been recent efforts into 
understanding the importance and impact of graph creation methods, sample sizes and density 
(van Wijk, Stam, and Daffertshofer 2010; Phillips et al. 2015). However, these studies have been 
restricted to the choice of group-wise correlation methods to define the edges, or limited to 
understanding the group-wise differences in selected graph measures. But such important 
methodological analyses have not been performed in the context of building individual subject-
wise predictive modelling. Hence, there is no clear understanding of the impact of different 
choices in subject-wise network construction and their relative predictive performance.  
 
Given their potential for the development of accurate early prognosis methods (Raamana et al. 
2015; Raamana, Wen, et al. 2014) demonstrated by outperforming non-network raw-thickness 
features, and the wide-accessibility of sMRI, thickness-based networks deserve a systematic 
study in terms of 

1. how does the choice of edge weight or linking criterion (correlation (He and Chen 2007), 
similarity (Raamana et al. 2015) affect the performance of the predictive models? See 
Table 3 for more details. 

2. how does the scale of parcellation (size and number of cortical ROIs) affect the 
predictive performance? 

 
These questions, analyzed in our systematic study, can reveal important tradeoffs of this  
emerging theme of research. In this study, we present a methodological comparison of six 
different ways of constructing thickness-based, subject-wise networks and present classification 
results under varying levels of separability. We start with the classic CAD problems i.e. 
discriminating AD from CN, and mild cognitive impairment (MCI) subjects (converting to AD 
in ~18 months) from CN in the ADNI dataset. In order to test whether the results from this 
methodological study generalize to different datasets, diseases and separabilities, we also study 
the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Autism 
Brain Imaging Data Exchange (ABIDE) datasets. Based on these three large publicly available 
datasets, we show that the predictive power of single-subject morphometric networks, based on 
cortical thickness features, is insensitive to spatial scale or edge weight. This is an important 
finding given we were not only able to replicate these results on an independent dataset, but 
also replicate them in the presence of a different disease and in a different age group. 

Methods 
In this section, we describe the datasets we study in detail, along with a detailed description of 
the preprocessing and the associated methods. 

ADNI dataset 
Data used in the preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The primary goal of ADNI has 
been to test whether serial magnetic resonance imaging (MRI), positron emission tomography 
(PET), other biological markers, and clinical and neuropsychological assessment can be 
combined to measure the progression of mild cognitive impairment (MCI) and early 
Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org . 
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We downloaded baseline T1 MRI scans (n=671) from the ADNI dataset (Jack et al. 2008), which 
has quality-controlled Freesurfer parcellation (version 4.3) of the cortical surfaces provided in 
the ADNI portal (B. Fischl and Dale 2000; Bruce Fischl et al. 2002). The parcellation and cortical 
thickness values downloaded were carefully visually inspected by the first author PRR for 
errors in geometry and range. This QC process was rigorous to include a large number of cross-
section slices with contours of pial and white surfaces overlaid on the sMRI image in all 3 views. 
We have also employed external surface views that facilitate easy inspection and identification 
of any topological defects as well as anatomical accuracy of the Freesurfer labels as a whole. 
When noticeable errors were found, we eliminated those (n=24) subjects, and no manual editing 
and corrections were performed. The thickness features from the remaining subjects for the 
control (CN) and AD groups (effective n=647) comprised the first set of subjects for our analysis 
in this study. The second set of subjects with a slightly lower level of separability (MCI subjects 
converting to AD in 18 months, denoted by MCIc) were chosen to match the benchmarking 
study (Cuingnet et al. 2011) as closely as possible (to enable comparison to the many methods 
included) based on the availability of their FS parcellation from ADNI and our quality control 
results. The demographics for the two sets are listed in Table 1. 
 
TABLE 1: ADNI I Demographics 
 

Diagnostic Group N Females Age 

MMSE* 
 
 
 

Dataset 1: ADNI 

Healthy controls (CN1) 224 109 75.79 (4.99) 29.11 (1.01) 

Alzheimer’s disease (AD) 188 89 75.22 (7.49) 23.29 (2.04) 

Dataset 2: ADNI 
Healthy controls  
(CN2, for MCI)^ 159 85 76.07 (5.33) 29.17 (0.98) 

MCI converters to AD  
in 18 months (MCIc) 76 33 74.67 (7.35) 26.47 (1.86) 

 
All statistics here are displayed in mean (SD) format. 
*ADNI: Only MMSE is significantly different between CN1 & AD with p < 0.05. 
^ADNI: Controls and MCI converters are chosen to match the benchmark samples presented in 
(Cuingnet et al. 2011) as closely as possible allowing for exclusions due to quality control. 

AIBL Dataset 
 
In order to study whether the results from the ADNI dataset in this study generalize to another 
independent dataset, we have downloaded the Australian Imaging, Biomarker & Lifestyle 
Flagship Study of Ageing (AIBL) dataset (Ellis et al. 2009), which contained similar (but not 
identical) patient groups and diagnostic categories. The downloaded subjects were processed 
with Freesurfer v6.0. The number of Alzheimer’s subjects we could download from AIBL 
(denoted by AD2) at baseline were n=64, and we randomly selected 100 healthy controls (CN4) 
for this study, whose subject IDs are shared in the Appendix. The resulting cortical parcellations 
were visually quality controlled by PRR with VisualQC (v0.4.1) (Raamana 2018; Raamana and 
Strother 2018b). This QC process was rigorous to include a large number of cross-sectional slices 
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with contours of pial and white surfaces overlaid on the sMRI image in all 3 views, with the 
ability to zoom in to the voxel-level to ensure anatomical accuracy of the pial and white 
surfaces. In addition, the VisualQC interface presents 6 views of the external surface view of 
pial surface which facilitates easy inspection and identification of any topological defects as well 
as anatomical accuracy of the Freesurfer labels as a whole. This QC process was employed to 
remove subjects with inaccurate parcellations or any other errors that render them unusable for 
analyses in this study.  We would like to note that VisualQC is the most comprehensive QC tool 
for Freesurfer parcellations, and hence this process may be sensitive to catching the parcellation 
errors compared to that on the non-interactive tool employed on the ADNI dataset. This 
resulted in a usable subset of 51 AD2 and 80 CN3 subjects. Demographics of the subjects 
analyzed are presented in Table 2. 
 
Motivated by intention to improve reproducibility and maximize the value of this study by 
employing open source tools when possible, we have employed graynet (Raamana and Strother 
2018a, 2017) to compute the network-level features, and neuropredict (Raamana 2017) to 
evaluate their predictive utility. While this change of software libraries would add another 
interesting level of robustness check for the results presented here, we must note that this 
change in technology stack may lead to some differences in numerical estimates e.g. in AUC 
estimates when comparing across different datasets e.g. ADNI vs. AIBL. However, given the 
technology employed is the same for a given dataset, the performance estimates within the 
dataset will be perfectly commensurable for posthoc statistical analyses. 
 
TABLE 2: AIBL Demographics 
 

Diagnostic Group N Females Age MMSE* 

Healthy controls (CN4) 80 44 73 (6.99) 29 (1.26) 

Alzheimer’s disease (AD2) 51 32 73 (7.37) 22 (5.4) 

All statistics here are displayed in median (SD) format. 
 

ABIDE dataset 
 
In order to study whether the conclusions drawn from the ADNI dataset generalize to a very 
different disease cohort, we obtained the Freesurfer parcellations (version 5.1) from the Autism 
Brain Imaging Data Exchange (ABIDE) preprocessed dataset made available freely on the 
ABIDE website (Craddock, Cameron and Benhajali, Yassine and Chu, Carlton and Chouinard, 
Francois and Evans, Alan and Jakab, Andr?s and Khundrakpam, Budhachandra Singh and 
Lewis, John David and Li, Qingyang and Milham, Michael and Yan, Chaogan and Bellec, Pierre 
2013). A random subset of cortical parcellations (n=227) have been visually inspected by PRR 
for errors in geometry estimation and value ranges (using the same in-house tools and 
processed used on the ADNI dataset) to eliminate any subjects showing even a mild chance of 
failure. From the passing subjects (n=226), we randomly selected 200 subjects (100 samples per 
diagnostic group) whose demographics are presented in Table 3 and the subject IDs are listed in 
the Appendix. Owing to the random selection, they come from multiple sites, which is akin to 
the ADNI dataset used in this study. Previous research (Abraham et al. 2017) showed that the 
site heterogeneity has little or no impact on the predictive accuracy of network-level features 
derived from task-free fMRI data. The distribution of the sites represented in this study are 
shown in Appendix D. 
 
Table 3: ABIDE I demographics 
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Dataset 3: ABIDE 

Diagnostic Group N Females Age FIQ* PIQ VIQ* 

Healthy controls (CN3) 100 17 17.27 (7.68) 109.10 
(12.35) 

105.64 
(12.74) 111.89 (13.52) 

Autism (AUT) 100 9 15.82 (5.93) 103.49 
(14.68) 

104.57 
(14.68) 101.36 (15.86) 

ABIDE: FIQ and VIQ are significantly different between CN3 & AUT with p < 0:05. 
FIQ: Full IQ standard score 
VIQ: Verbal IQ standard score 
PIQ: Performance IQ standard score 
 

Feature extraction 
In the following sections, we describe the steps involved in the extraction of weighted networks 
based on T1 MRI scans of the different subjects in the two independent datasets. 

Alignment and dimensionality reduction 
Cortical thickness features studied here were obtained from the Freesurfer parcellations (gray 
and white matter surfaces). They were then resampled to the fsaverage atlas and smoothed at 
fwhm=10mm to reduce the impact of noise. This is achieved by Freesurfer `-qcache` processing 
option, which registers each of the subjects to the fsaverage atlas (provided with Freesurfer) to 
establish vertex-wise correspondence across all the subjects.  

Cortical subdivision 
In order to avoid the curse of dimensionality and to reduce the computational burden, the atlas 
has been subdivided using a surface-based, patch-wise parcellation technique originally 
presented in (Raamana et al. 2015). This technique is based on Freesurfer parcellation which 
consists of 34 ROIs per hemisphere, which vary in size (number of vertices) greatly. In order to 
obtain uniform sized patches, we subdivide each of these ROIs into smaller patches, while 
respecting the anatomical boundaries of each ROI.  Here, we use an adaptive version wherein 
the patch-size is controlled by number of vertices (denoted by m=vertices/patch), instead of 
choosing a globally fixed number of patches (say 10) per Freesurfer APARC label regardless of 
its size (which can vary widely resulting in vastly different patch sizes within the same subject). 
As we change m, the subdivision of the cortical labels is performed purely on the existing mesh, 
and neither the geometrical parcellation itself nor the vertex density are modified. Here, m can 
be taken as the size of the graph node (imagine the node as a small patch within different 
Freesurfer labels). Alternatively, m can be seen as the spatial scale of the graph analysis, whose 
impact is being assessed for different values of m. When m is small (say 100), this results in large 
number (273) of total patches (sum of number of patches for each aparc label) across the whole 
cortex, whereas it results in only 68 patches when it is very high (m=10000), as such a large 
patch covered the full extent of all the 68 Freesurfer APARC labels currently defined on 
fsaverage cortical parcellation. We have analyzed the following values of m= 1000, 2000, 3000, 
5000 and 10000, which resulted in the following total number of non-overlapping patches in the 
whole cortex: 273, 136, 97, 74 and 68 respectively. 
 
Table 3: Variety of edge weights analyzed in this study 

Type of base 
representation 

Type of edge weight 
metric Acronym Mathematical definition 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2020. ; https://doi.org/10.1101/170381doi: bioRxiv preprint 

https://doi.org/10.1101/170381
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

Summarized  
(median/mean in 

a patch) 

Similarity 
(Raamana et al. 2015) MD |𝑀# − 𝑀%| 

exp(similarity) EMD 
 

Raw distribution Wilcoxon ranksum 
statistic RS Ranksum test statistic 

Normalized 
histogram 

Histogram correlation HCOR  

Χ2 statistic CHI2 

 

Histogram intersection HINT 
 

This table presents the list of edge weights compared in this study. Notation: each patch is indexed by i or 
j. For patches i and j, M, 𝜇 and 𝜎 are the median, mean and standard deviation of the within-patch 
distribution of vertex-wise thickness values; hi is the normalized histogram of a given distribution. N is 
the number of bins in the histogram, which is fixed at N=100 bins.; ⍴ is the Pearson correlation coefficient 
between two vectors of equal length. 

Network Computation 
 
Construction of thickness networks in their early form were based on group-wise correlations 
(He and Chen 2007). Our previous publications based on cortical thickness (Raamana et al. 2015; 
Raamana, Wen, et al. 2014) and other interesting studies on gray matter density (Tijms et al. 
2012; Wee et al. 2012) extend the earlier approaches to individualized subject-wise network 
extraction methods. Many of these previous studies relied on summarizing the thickness 
distribution in a given ROI (e.g. using mean within the entire Freesurfer label as in (Tijms et al. 
2012)) or within a patch (Freesurfer label subdivided further as in (Raamana et al. 2015)), before 
constructing the networks. Although such approaches reduce the dimensionality and provide 
us with smooth features, they do not utilize the rich description and variance of the distribution 
of features. Moreover, studies thus far computed characteristic features from a binary network 
(by applying an optimized threshold (Raamana et al. 2015)) or using a vector representation of 
weighted graphs (vector of distances in the upper triangular part of the edge weight matrix, as 
they are symmetric (Tijms et al. 2012)). Here, in order to enable a principled comparison across 
the different edge weights (and to avoid the optimization of an arbitrary threshold required to 
binarize the edge weight matrix), we study weighted-networks only, whose derivation is 
described below. 

HIstogram WEighted NETworks (HiWeNet) 
 
In this section, we describe the method employed in constructing the HIstogram WEighted 
NETworks (HiWeNet) based on cortical thickness. First, to improve the robustness of the 
features, 5% outliers from both tails of the distribution of cortical thickness values are discarded 
from each patch at a given scale m (see Appendix for more information). The residual 
distribution is converted into a histogram by binning into uniformly spaced n = 100 bins. Then 
the histogram counts are normalized using 
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for k = 1 : N, where hi is the histogram of patch i.  This method (illustrated further in Figure 1) 
enables the computation of the pairwise edge-weight (distance between the histograms, 
denoted by EW) for the two patches i and j. A variety of histogram distances as listed in Table 3 
are studied in this paper to analyze their impact on predictive power. 
 

 
Fig. 1: Construction of histogram-distance weighted networks (HiWeNet) based on cortical thickness 
features using edge-weight calculations (applicable to HCOR, CHI2 and HINT metrics in Table 3). The 
four smaller subpanels on the left show typical distributions of cortical thickness values for four random 
pairs of patches (in green and red) in a given subject (shown on cortical visualization on right). They 
demonstrate the means and shape of these distributions can vary substantially as you traverse across 
different pairs of cortical patches. The large panel in the middle illustrates the type of binning used to 
construct the histogram from each patch. 
 
To analyze the relative benefit of HiWeNet, we compare the histogram-based methods to three 
commonly used inter-nodal weights based on descriptive summary statistics (denoted as MD, 
EMD and RS in Table 3). Once the edge weight matrix is computed (which is symmetric), we 
extract the upper-triangular part of the matrix and vectorize it (of length n*(n-1)/2, where n is 
the number of patches on the cortex for a given number of vertices/patch m). The vectorized 
array of edge weights (VEW) forms the input to the classifier. Each element of VEW 
corresponds to a unique edge in the matrix of pairwise edges. In addition, in Appendix C, we 
present and analyze the performance of an alternative network-representation method.  

Note on test-retest reliability 
 
The reliability of this network approach developed in HiWeNet (pairwise distances between 
ROIs) boils down to the reliability of the method to measure cortical thickness at the vertex-
level, as the remaining parts of the algorithm are deterministic. Several studies have previously 
shown that cortical thickness estimation (and Freesurfer as a tool) have high test-retest 
reliability (Han et al. 2006; Iscan et al. 2015) and that the brain-behaviour relationships e.g. 
between cortical thickness and cognitive performance are stable across different sessions, 
scanner platforms and field strengths (Dickerson et al. 2008). In addition, given our choice of 
employing distance between thickness distributions over relatively large patches (1000 vertices 
or more), small changes in thickness (e.g. 0.2mm) would be absorbed into the distance 
calculations, and hence are unlikely to change the results presented herein.

Comparison of predictive utility 
 
In this section, we describe the procedure and techniques used to evaluate and compare the 
predictive power of multiple variations of the network-level features. Thanks to the relatively 
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large sample sizes, particularly for ADNI and ABIDE, we could employ a repeated nested split-
half cross-validation (CV) scheme, with 50% reserved for training, in order to maximize the 
sizes of training and test sets. Moreover, in each iteration of CV, all the methods are trained and 
assessed on the exact same training and test sets, in order to “pair” the performance estimates. 
This technique is shown to produce reliable and stable estimates of differences in predictive 
performance across different methods (Dietterich 1998; Burman 1989; Demšar 2006), instead of 
pooling multiple sets of performance distributions estimated separately on different training 
and test sets for each method independently. This setup allows us to compare large numbers of 
methods and their variants simultaneously within each dataset. 

Cross-validation scheme 
 
The comparison scheme employed is comprised of the following steps – for a schematic, see Fig. 
4 in (Raamana et al. 2015): 
 

1) repeated split-half cross-validation scheme, with class-sizes stratified in the training set 
(RHsT) (Raamana et al. 2015), to minimize class-imbalance. This scheme is repeated 
N=200 times, to obtain the N paired estimates of classification performance. 

2) In each CV run, 
a) feature selection (from vectorized array of edge weights, VEW) on one split (training 

set of size Ntrain) is performed based on t-statistic based ranking (based on group-
wise differences in the training set only), selecting only the top Ntrain/10 elements. 
The frequency of selection of a particular element (which is an edge in the 
cortical space) over different CV trials by the t-statistic ranking is an indication of 
its discriminative utility, and will be visualized to obtain better insight into the 
process.   

b)Support vector machine (SVM) is chosen as the classifier to discriminate the two 
groups in each experiment. SVM is optimized in an additional inner split-half CV 
applied to the training set via a grid search. We have employed the following 
ranges of values in the grid search for the margin control parameter C = 10p; p = -
3 : 5 and the kernel bandwidth = 2q; q = -5 : 4. 

c) The optimized SVM is tested on the second split (test) to evaluate its performance.  
3) The process in Step 2 is repeated N=200 times (Varoquaux et al. 2016; Raamana et al. 

2015) to obtain 200 independent estimates for each method being compared. 
4) In this study, we measure the performance by area under the predictive receiver 

operating characteristic (ROC) curve (denoted by AUC), whose distributions for 
different methods are shown in Figure 3. 

 
The results in this study were produced using Raamana’s programming library implemented in 
Matlab based on the built-in statistics and machine learning toolbox. 

Open source software 
Most of the computational code applied on the ADNI and ABIDE datasets had been 
implemented in Matlab. In order to enable other researchers to utilize the methods presented 
here easily without having to pay for expensive Matlab licenses, we have re-implemented them 
in python following the best practices of open science. Moreover, we have processed the AIBL 
dataset using the open source alternatives, and showed that our results replicate on an 
independent dataset, despite differences in the following 3 layers of software. 
 
Quality Control via VisualQC: 
To achieve higher rigor as well as ease of use, we have developed an interactive version of 
Freesurfer QC tool, which is available as part of the VisualQC package at 
github.com/raamana/VisualQC. This tool, applied on AIBL dataset, is more sensitive in 
detecting parcellation errors compared to the in-house Matlab tools and other existing protocols 
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applied on the ADNI and ABIDE datasets (study to be published). 
 
Feature Extraction via graynet:  
The core HiWeNet algorithm has been implemented in Python and is publicly available at this 
URL: https://github.com/raamana/hiwenet (Raamana and Strother 2017). We have also 
published the original Matlab code for the computation of adjacency matrices used for this 
study, within the hiwenet package. 
 
Further, in order to make this research even more accessible, we have implemented the entire 
workflow of morphometric network extraction as a seamless pipeline called graynet, 
implemented entirely in Python (Raamana and Strother 2018a). Using this tool would enable 
those without much software engineering experience to simply run Freesurfer and then run 
graynet to get started with morphometric network analyses. This frees them from the hassle of 
assembling complicated data,  implementing graph theoretical operations and managing the 
pipeline following the best practices, which can be a barrier to many laboratories with limited 
computational and software expertise. In addition, we employed this tool to process the AIBL 
dataset, and show that patterns in performance comparison across different weights are 
retained compared to those of the original Matlab toolbox. 
 
Evaluating predictive utility via neuropredict: In order to enable a much wider audience (those 
without access to a Matlab license or its expensive statistical learning toolboxes (each to, or 
those who do not have the necessary programming skills or machine learning expertise) utilize 
a comprehensive performance evaluation tool, we have also built an open source tool called 
neuropredict (Raamana 2017) at github.com/raamana/neuropredict. Once the researchers run 
Freesurfer successfully, they can run graynet (Raamana and Strother 2018a), which produces the 
necessary single-subject morphometric networks. The outputs from graynet in turn serve as 
direct input to neuropredict, which runs the cross-validation scheme described in the above 
section to produce a comprehensive report on their predictive power. In addition, we employed 
this tool to evaluate the performance of network features from the AIBL dataset (CN4 vs. AD2), 
matching the techniques and specific optimizations to the extent possible. This showed that our 
findings replicated compared to that of the original Matlab toolbox, which validates 
neuropredict as a useful open source alternative. 

Results and Discussion 
Within-group networks 
To obtain better insight into the topology of the networks defined above, it is helpful to 
visualize seed-based networks and analyze their connections. A common approach to this end 
involves picking the posterior cingulate gyrus (core hub of the default mode network, DMN) as 
the seed and analyzing its connections in healthy controls, and esp. how they change for 
different edge metrics. The seed-based network visualizations are produced for each edge 
weight method separately for m=2000, identical to the network construction method described 
in the Methods section: compute histogram-distance between the thickness distribution of the 
seed and all the other ROIs, averaging this edge weight across all the healthy subjects, and 
retaining only the strongest edges (top 5%).  
 
To make the comparison across the three datasets easy, they are grouped for each metric e.g. for 
median difference (MD), the comparison is shown below for healthy controls. From this figure, 
we can clearly see a pattern resembling the default mode network, in healthy controls from all 
the three samples. This is consistent with the results reported in previous structural covariance 
studies (Spreng and Turner 2013; Evans 2013; Spreng et al. 2013; Power et al. 2011).  
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Caption: seed-based connectivity networks for the MD metric (m=2000), showing average weights across 
each healthy control sample from the three datasets (as labelled). The colors on the edges represent the 
edge weight using a jet colormap (with blues indicating the weaker and reds indicating stronger weights). 
From this figure, we can clearly see a pattern resembling the default mode network, in healthy controls 
from all the three samples. 
 
To get a sense of how these networks change with different EW metric, we show two other 
networks corresponding to HCOR and CHI2 metrics below (each figure is labelled with the 
metric and summary statistic being displayed e.g. HCOR mean). This HCOR network loses 
resemblance to the DMN (e.g. loss of edges to superior frontal, banks of the superior temporal 
sulcus, frontal pole, fusiform), and the edge weight distribution varies widely across the three 
samples. However, the CHI2 network resembles the DMN pattern seen in MD network well, 
suggesting the similarity of the two networks. 

 
Caption: network showing edge weights(mean across samples) derived via HCOR metric. Layout of the 
figure is the same as above for the MD network. 
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Caption: network showing edge weights (mean across samples) derived via CHI2 metric. Layout of the 
figure is the same as above for MD. 

Group-wise differences 
To illustrate the differences between the proposed methods of computing edge weights, we 
compute the distributions of vertex-wise mean thickness values for CN1 and AD separately. We 
then visualize them in the form of a matrix of pairwise edge weights at m=2000, as shown in 
Figures 2 (a) and 2(b). Each row (say node i) in a given edge-weight matrix (from one group say 
CN1 in Fig. 2 (a)) here refers to the pairwise edge weights w.r.t remaining nodes j, j = 1:N. As 
the differences are subtle and spatially distributed, for easy comparison between the two 
classes, we visualize the arithmetic differences between the two classes in Fig. 2 (c). 
 
The visualizations in Fig. 2(c) offer useful insight into the group-wise differences between CN1 
and AD, and across different edge weight distances. However, visual differences do not imply 
differences in predictive power of features extracted these networks of weights. Hence, it is 
important to assess their predictive utility in discriminating AD from CN1.  
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(a) Group-wise average in CN1               (b) Group-wise average in AD         (c) Group-wise differences AD – CN1 
 
Fig. 2. Edge weights derived from group-wise average thicknesses for three definitions of edge weight. (a) 
healthy controls (CN1) (b) Edge weights group-wise average in Alzheimer’s disease (AD), both at 
m=2000. (c) Arithmetic differences i.e. AD – CN1. The three panels in each subfigure show the edge 
weights from MD, CHI2 and HINT methods as defined in Table 3. In each of the panels, we present the 
upper triangular part of the edge-weight matrix (pairwise) computed using the corresponding equations 
in Table 3. We notice there are clear differences among the patterns in the three panels. The panels (a) and 
(b) appear similar at first glance, but they are sufficiently different to be observed in panel (c). 

Predictive utility 
 
The RHsT cross-validation scheme is employed for each of the three classification experiments 
from two independent datasets i.e. CN1 vs. AD, CN2 vs. MCIc and CN3 vs. AUT. The 
performance distributions for the different combinations are shown in Fig. 3. 
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Fig. 3. Classification performance for the different network methods (different edge weight metrics at 
different spatial resolutions of m) in discriminating AD (top panel), MCIc (middle panel) and AUT 
(bottom) panel from their respective control groups under a rigorous CV scheme. The data for three 
experits come from ADNI, ADNI and ABIDE datasets respectively (see Tables 1 and 2). The performance 
presented here is a distribution of AUC values from 200 randomized train/test splits of RHsT (whose 
median is shown with a red cross-hair symbol).  
 
Focusing on the top panel (CN1 vs. AD), there are numerical differences in performance among 
different methods at fixed scale (m). However, the pattern remains similar across different 
spatial scales. The MD, EMD, CHI2 and HINT methods are consistently outperforming, 
numerically speaking, the RS and HCOR methods across different values of m. Broadly 
speaking, the patterns of change in AUC in Fig. 3 within each panel as we move from left to 
right (going over different combinations) are quite similar to the rest, although at a different 
median baseline (at AUC=0.87 for CN1 vs. AD, at AUC=0.75 for CN2 vs. MCIc and at AUC=0.6 
for CN3 vs. AUT). 

Statistical significance testing 
In order to assess the statistical significance of differences among this large set of methods, we 
performed a nonparametric Friedman test (Dietterich 1998) comparing the performance of the 
30 different classifiers (6 methods at 5 spatial scales) simultaneously, for each of the three 
experiments separately. The results from post-hoc Nemenyi test (Demšar 2006) are visualized in 
a convenient critical difference (CD) diagram (Kourentzes 2016) as shown in Figure 4. 
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Fig. 4. Critical difference diagram comparing the ranks of different classification methods in a non-
parametric Friedman test based on classification performance results from a rigorous CV evaluation 
method using 200 iterations of holdout. Here, smaller numerical values for rank implies higher 
performance. The vertical axis presents the ranks (better ranks and methods at the top, and worse ranks 
and methods to the bottom). The performance of any two methods are statistically significantly different 
from each other, if their ranks differ by at least the critical difference (CD), which is noted on top of each of 
the three panels. If a group of methods (annotations on the left within each panel) are connected by a line, 
they are not statistically significantly different from each other. Different colored lines here present 
groups of methods that are not significantly different from each other in ranks, each one using a different 
method as its reference point. For example, in the leftmost panel presenting the results from CN1 vs. AD 
experiment, the leftmost blue line connects all the methods between the highest ranked HINT:m=1000 
(ranked 6.96) to the HINT:m=3000 method (ranked 15.06), including themselves, which implies they are 
not statistically significantly different from each other. In the same panel, the highest-ranked 
HINT:m=1000 method is not connected to RS:m=1000 (least-ranked 24.38) via any of the colored lines - 
hence they are indeed statistically significantly different from each other (difference in ranks higher than 
CD). The values of m= 1000, 2000, 3000, 5000 and 10000 correspond to the following total number of 
non-overlapping patches in the whole cortex: 273, 136, 97, 74 and 68 respectively  
 
The left panel in Fig. 4 shows that only the top 6 methods (with median ranks from 6.96 to 
11.35) are statistically significantly different from the lowest-ranked methods, at α=0.05, 
correcting for multiple comparisons. The remaining 24 methods, when compared together 
simultaneously, are not significantly different from each other. Similarly, the top-ranked 6 
methods are not statistically significantly different from each other. We observe a similar 
pattern in the center panel (CN2 vs. MCIc), except only the top 5 are statistically significantly 
different from the lowest ranked methods. In the CN3 vs. AUT case, there are no significant 
differences at all, possibly due to rather low performance from all the methods to begin with 
(median AUC across methods is around 0.55). 
 
When the comparison is made at a fixed scale m, within each experiment, the performance of 
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the 6 different methods (simultaneous comparison of 6 methods) for most values of m are not 
statistically significantly different from each other, except for m=1000 (CD diagrams are not 
shown). When the comparison is done for a fixed edge-weight metric at different values of m, 
the performance is not statistically significantly different for any m. Also, the top 2 methods are 
MD and EMD networks (based on differences in median and mean respectively) at the highest 
resolution m = 1000 and also at the lowest resolution m = 10,000. This indicates that impact of 
the nodal size on the predictive performance of a network method may be insignificant. This 
result is consistent with the findings of (Zalesky et al. 2010; Evans 2013), wherein it was 
observed that group-wise small-worldness and scale-freeness are unaffected by spatial scale. 

Most discriminative regions 
As noted in our CV section earlier, our method records the frequency (across the N CV 
iterations) of selection (of each weighted connection in VEW) from the t-statistic based ranking 
method applied on the training set. This helps us gain insight into which pair-wise links have 
been most frequently discriminative. This pair-wise link frequency can be mapped back to 
individual cortical patches for intuitive visualization, identifying most discriminative regions 
(MDRs). One such visualization, thresholding the importance at 50% derived at m=2000, is 
shown in Fig 5. Each color of patch on the cortex represents a particular EW metric (labelled on 
the colorbar) that led to its selection, and when multiple methods selected the same region 
(indicating additional importance), we painted it red and labelled it “Multiple”. Note the input 
to the SVM classifier was a vector of edge weights (from upper-triangular part of the edge 
weight matrix), and hence the selection of a particular edge leads to highlighting both the 
regions forming the link. Moreover, the importance of a particular node (cortical patch) could 
be accumulated from its multiple links, if any. 
 
Fig. 5 shows the red MDRs (identified by multiple methods as MDR) cover a large 
cortical area, which is not unexpected, given the changes caused by full AD are known 
to be widespread over the cortex. In Fig. 6, we observe the MDRs in areas consistently 
identified with progressive MCI or early stage AD such as middle temporal lobe, 
cingulate (anterior and inferior), cuneus and precuneus. Of interest here is the clear 
hemispheric asymmetry to the left, which can also be observed to a lesser extent in the 
MDRs for AD in Fig. 5. The MDRs identified in discriminating AUT from CN3 are 
shown in Fig. 7. They appear in the lingual, supra-marginal, post- and precentral areas, which 
are consistent with previous reports on Autism studying the group differences in 
developmental patterns of cortical thickness (Smith et al. 2016; Scheel et al. 2011), as well as 
found to be important in other prediction tasks (Moradi et al. 2017).  
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Fig 5: Visualization of the most discriminative regions as derived from the CN1 vs. AD experiment at 
m=2000. Due to the distributed nature of the degeneration caused by AD, we expect the MDRs to span a 
wide area of the cortex as observed here. The color of the patch on the cortex represents a particular EW 
metric (labelled on the colorbar) that led to its selection, and when multiple methods selected the same 
region (indicating additional importance), we painted it red and labelled it “Multiple”. 
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Fig 6: Visualization of the most discriminative regions as derived from the CN2 vs. MCIc experiment at 
m=2000. MDRs in this experiment identify regions in middle temporal lobe, cingulate (anterior and 
inferior), cuneus and precuneus, which are known to be associated with progressive MCI and prodromal 
AD. 
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Fig 7: Visualization of the most discriminative regions as derived from the CN3 vs. AUT experiment at 
m=2000. These regions cover the lingual, supra-marginal, post- and precentral areas. 

Replication in AIBL dataset 
In order to test whether the results and insights from this study on ADNI would generalize to a 
similar dataset, we’ve analyzed the AIBL dataset (see Table 2). The predictive utility for 
different combinations of edge weights and spatial scale (m) are shown in Figure 8. Although 
there are numerical differences in performance among different methods at fixed scale (m), their 
pattern remains similar across different spatial scales within the same dataset, as was observed 
in Fig 3 for the ADNI and ABIDE datasets. Based on posthoc statistical analyses (in the same 
fashion described earlier), we learn they are indeed not statistically significantly different from 
each other (the critical difference figure is not shown here to save space, as it is a single line 
connecting them all). That lack of significant differences is also true either for a fixed m (across 
different EW), or for a fixed EW (across different m). 
 
We note that the median AUC (to discriminate AD2 from CN4) across all combinations for the 
AIBL dataset is 0.83. This is in the typical range of NC vs. AD performance we notice in the 
Alzheimer’s literature, although lower than that noticed in the ADNI1 dataset of 0.87. This 
slight difference could be attributed to a number of factors, including a slightly different 
population, different feature extraction library (graynet relies on fully python-based stack), 
different machine learning library (scikit-learn based on libsvm vs. Matlab’s built-in SVM 
implementation), and most of all to a much smaller sample (n=131, which is only a third of the 
corresponding ADNI1 subset with n=412). That said, the patterns in performance observed in 
Fig. 8 i.e. lack of significant differences in performance for a fixed spatial scale (m), or for a fixed 
EW, replicate the main patterns from the ADNI1 dataset in the AIBL dataset. 
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Fig. 8. Classification performance for the different network methods (different edge weight metrics at 
different spatial resolutions of m) in discriminating AD2 from their respective control groups (CN4) from 
the AIBL dataset (see Table 2). The performance presented here is a distribution of AUC values from 200 
randomized train/test splits of RHsT. It is clear that AUC for different combinations is quite similar to 
each other (as in Fig 3 for ADNI and ABIDE datasets). That is also true either for a fixed m (and different 
edge weights) or a fixed edge weight (and different values of m). 
 

Future directions 
While we present the results from a large number of experiments (n=90, 6 edge weights at 5 
different scales m for the 3 datasets) covering two large publicly available datasets, two disease 
and age groups and three different levels of separability, there is certainly room for further 
analysis. Future studies could consider additional histogram distances, and performing the 
comparison with different types of classifiers (other than SVM such as linear discriminant or 
random forests). 
 
It is possible that lack of sufficiently large sample size could be a contributor to the observed 
lack of statistically significant differences. This might especially be the case in challenging 
classification experiments such as CN3 vs. AUT. Moreover, given the multi-site nature of these 
large public datasets, properly accounting for the site and other relevant confounds would be 
worthy of further investigation.  Such a broadening of scope for the study is not only 
computationally very intensive, but we believe studying the above is unlikely to change the 
conclusions. It would be nevertheless useful to quantitatively support it.  
 
It would also be interesting to study the impact of different atlas choices (other than fsaverage, 
such as MNI152), parcellation (such as (Destrieux et al. 2010)) and subdivision schemes 
(functional or geometric or multimodal) (Eickhoff et al. 2015; Glasser et al. 2016), potential 
neuroimaging artifacts and confounds (Churchill et al. 2015; J. P. Lerch, van der Kouwe, and 
Raznahan 2017), but this would be demanding not only computationally but also in expert 
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manpower for quality control (typically unavailable). It would also be quite interesting to 
replicate this study in the context of differential diagnosis (Raamana, Rosen, et al. 2014). A 
cross-modal comparison (Reid et al. 2015), in terms of predictive performance, with network-
level features derived from modalities such as task-free fMRI would also be interesting.  

Conclusions 
 
We have studied six different ways of constructing weighted networks derived from cortical 
thickness features, based on a novel method to derive edge weights based on histogram 
distances. We performed a comprehensive model comparison based on extensive cross-
validation of their predictive utility and nonparametric statistical tests. This has been studied 
under three separabilities (ranging from pronounced, mild to subtle differences) derived from 
three independent and large publicly available datasets.  
 
Some interesting results of this study based on the single-subject classification results are:  

● the simpler methods of edge weight computation such as the difference in median 
thickness are as predictive as the sophisticated methods relying on the richer 
descriptions based on complete histograms.  

● within a given method, the impact of a spatial scale m on predictive performance is not 
significant. The most popular way of computing edge weights in group-wise analysis i.e. 
histogram correlation, is shown to be the least predictive of disease-status in the context 
of individualized prediction via HiWeNet. 

 
We have also developed and shared multiple open source toolboxes called graynet, visualqc 
and neuropredict to enable easy reuse of the methods and best practices presented in this study. 
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Supplementary material 

Appendix A - Details of subjects used in this study. 

Subject IDs from ADNI in Table 1 
Note these subjects are all from baseline. 

AD from Table 1 
011_S_0003 128_S_0310 018_S_0633 126_S_0891 109_S_1157 127_S_1382 005_S_0814 
022_S_0007 031_S_0321 021_S_0642 023_S_0916 013_S_1161 027_S_1385 002_S_0816 
011_S_0010 035_S_0341 006_S_0653 005_S_0929 094_S_1164 094_S_1397 137_S_0841 
067_S_0029 021_S_0343 018_S_0682 002_S_0955 133_S_1170 128_S_1409 127_S_0844 
011_S_0053 137_S_0366 012_S_0689 114_S_0979 024_S_1171 041_S_1435 098_S_0884 
067_S_0076 116_S_0370 012_S_0712 016_S_0991 067_S_1185 023_S_0078 002_S_0938 
023_S_0083 114_S_0374 012_S_0720 100_S_0995 109_S_1192 098_S_0149 130_S_0956 
023_S_0084 116_S_0392 033_S_0733 013_S_0996 013_S_1205 128_S_0167 029_S_0999 
123_S_0088 032_S_0400 128_S_0740 036_S_1001 126_S_1221 100_S_0190 094_S_1027 
123_S_0091 027_S_0404 100_S_0747 002_S_1018 067_S_1253 128_S_0216 027_S_1081 
023_S_0093 136_S_0426 021_S_0753 141_S_1024 027_S_1254 022_S_0219 094_S_1090 
123_S_0094 127_S_0431 127_S_0754 032_S_1037 003_S_1257 007_S_0316 014_S_1095 
068_S_0109 137_S_0438 036_S_0759 137_S_1041 023_S_1262 014_S_0328 100_S_1113 
067_S_0110 099_S_0470 036_S_0760 053_S_1044 016_S_1263 018_S_0335 029_S_1184 
022_S_0129 116_S_0487 109_S_0777 133_S_1055 033_S_1281 014_S_0356 130_S_1201 
023_S_0139 099_S_0492 010_S_0786 029_S_1056 033_S_1283 099_S_0372 031_S_1209 
032_S_0147 131_S_0497 141_S_0790 003_S_1059 033_S_1285 057_S_0474 007_S_1248 
123_S_0162 128_S_0517 062_S_0793 100_S_1062 023_S_1289 073_S_0565 007_S_1304 
011_S_0183 128_S_0528 012_S_0803 082_S_1079 130_S_1290 037_S_0627 009_S_1334 
136_S_0194 062_S_0535 067_S_0812 027_S_1082 051_S_1296 062_S_0690 007_S_1339 
020_S_0213 022_S_0543 067_S_0828 032_S_1101 024_S_1307 131_S_0691 005_S_1341 
005_S_0221 006_S_0547 010_S_0829 094_S_1102 033_S_1308 141_S_0696 057_S_1371 
114_S_0228 031_S_0554 029_S_0836 021_S_1109 130_S_1337 013_S_0699 057_S_1379 
128_S_0266 036_S_0577 027_S_0850 141_S_1137 009_S_1354 033_S_0724 041_S_1391 
018_S_0286 013_S_0592 141_S_0852 099_S_1144 041_S_1368 062_S_0730 094_S_1402 
136_S_0299 126_S_0606 141_S_0853 141_S_1152 057_S_1373 100_S_0743 128_S_1430 
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136_S_0300 002_S_0619 033_S_0889 100_S_1154 082_S_1377 126_S_0784  
 

CN1 subjects used in Table 1 
 
011_S_0002 123_S_0106 073_S_0312 013_S_0502 127_S_0684 003_S_0931 116_S_1249 

011_S_0005 123_S_0113 072_S_0315 126_S_0506 002_S_0685 057_S_0934 052_S_1250 

011_S_0008 027_S_0120 131_S_0319 033_S_0516 137_S_0686 052_S_0951 052_S_1251 

022_S_0014 131_S_0123 037_S_0327 014_S_0519 094_S_0692 023_S_0963 082_S_1256 

100_S_0015 041_S_0125 021_S_0337 128_S_0522 141_S_0717 109_S_0967 002_S_1261 

011_S_0016 068_S_0127 099_S_0352 133_S_0525 141_S_0726 130_S_0969 094_S_1267 

067_S_0019 035_S_0156 016_S_0359 094_S_0526 006_S_0731 137_S_0972 013_S_1276 

011_S_0021 021_S_0159 116_S_0360 099_S_0534 033_S_0734 041_S_1002 002_S_1280 

011_S_0022 114_S_0166 082_S_0363 016_S_0538 033_S_0741 012_S_1009 100_S_1286 

011_S_0023 098_S_0171 018_S_0369 128_S_0545 009_S_0751 109_S_1013 020_S_1288 

023_S_0031 098_S_0172 116_S_0382 014_S_0548 082_S_0761 109_S_1014 131_S_1301 

100_S_0035 114_S_0173 073_S_0386 035_S_0555 141_S_0767 033_S_1016 035_S_0048 

099_S_0040 067_S_0177 027_S_0403 014_S_0558 062_S_0768 036_S_1023 022_S_0066 

018_S_0043 136_S_0184 126_S_0405 002_S_0559 057_S_0779 024_S_1063 022_S_0130 

100_S_0047 136_S_0186 002_S_0413 013_S_0575 141_S_0810 033_S_1086 136_S_0196 

067_S_0056 068_S_0210 114_S_0416 036_S_0576 036_S_0813 141_S_1094 073_S_0311 

023_S_0058 005_S_0223 010_S_0419 062_S_0578 057_S_0818 033_S_1098 131_S_0441 

067_S_0059 128_S_0229 010_S_0420 114_S_0601 009_S_0842 051_S_1123 014_S_0520 

023_S_0061 128_S_0230 018_S_0425 005_S_0602 029_S_0843 012_S_1133 005_S_0553 

010_S_0067 130_S_0232 133_S_0433 126_S_0605 029_S_0845 032_S_1169 116_S_0648 

007_S_0068 128_S_0245 131_S_0436 005_S_0610 009_S_0862 023_S_1190 094_S_0711 

100_S_0069 067_S_0257 037_S_0454 031_S_0618 128_S_0863 068_S_1191 129_S_0778 

007_S_0070 127_S_0259 137_S_0459 127_S_0622 029_S_0866 941_S_1194 029_S_0824 

123_S_0072 127_S_0260 037_S_0467 012_S_0637 109_S_0876 941_S_1195 003_S_0907 

027_S_0074 041_S_0262 010_S_0472 082_S_0640 020_S_0883 941_S_1197 003_S_0981 

023_S_0081 128_S_0272 032_S_0479 057_S_0643 130_S_0886 941_S_1202 021_S_0984 

136_S_0086 137_S_0283 006_S_0484 021_S_0647 098_S_0896 941_S_1203 024_S_0985 

073_S_0089 002_S_0295 133_S_0488 116_S_0657 041_S_0898 007_S_1206 003_S_1021 

099_S_0090 123_S_0298 094_S_0489 036_S_0672 020_S_0899 007_S_1222 062_S_1099 

032_S_0095 137_S_0301 133_S_0493 032_S_0677 033_S_0920 116_S_1232 130_S_1200 
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022_S_0096 037_S_0303 006_S_0498 126_S_0680 033_S_0923 094_S_1241 012_S_1212 

020_S_0097 082_S_0304 128_S_0500 006_S_0681 023_S_0926 128_S_1242 023_S_1306 
 

MCIc subjects used in Table 1 

002_S_0954 023_S_0042 035_S_0204 127_S_0394 011_S_0861 041_S_0549 126_S_1077 

002_S_1070 023_S_0388 035_S_0997 133_S_0638 011_S_1282 041_S_1412 127_S_1427 

005_S_0222 023_S_0604 051_S_1331 136_S_0195 013_S_0325 041_S_1423 128_S_0947 

007_S_0041 023_S_0855 052_S_0952 141_S_0982 014_S_0658 057_S_0941 130_S_0423 

007_S_0128 023_S_0887 052_S_1054 941_S_1311 023_S_0030 057_S_1217 133_S_0727 

007_S_0344 023_S_1247 053_S_0507 941_S_1363 023_S_0625 067_S_0045 133_S_0913 

011_S_0856 027_S_0461 062_S_1299 002_S_0729 027_S_0179 067_S_0077 136_S_0695 

013_S_0240 033_S_0723 067_S_0243 005_S_0572 027_S_0256 094_S_0434 141_S_0915 

013_S_0860 033_S_0725 067_S_0336 006_S_1130 027_S_1213 098_S_0269 141_S_1244 

022_S_0750 033_S_0906 094_S_1015 007_S_0249 027_S_1387 099_S_0054 941_S_1295 

022_S_1394 033_S_0922 094_S_1398 011_S_0241 033_S_0567 099_S_0111  
 

CN2 subjects used in Table 1 

011_S_0002 020_S_0097 073_S_0386 002_S_0559 062_S_0768 041_S_1002 013_S_1276 

011_S_0005 027_S_0120 027_S_0403 013_S_0575 057_S_0779 109_S_1013 002_S_1280 

011_S_0008 131_S_0123 126_S_0405 036_S_0576 141_S_0810 109_S_1014 020_S_1288 

022_S_0014 041_S_0125 002_S_0413 062_S_0578 036_S_0813 033_S_1016 131_S_1301 

011_S_0016 035_S_0156 114_S_0416 114_S_0601 029_S_0843 036_S_1023 035_S_0048 

067_S_0019 114_S_0166 133_S_0433 005_S_0602 029_S_0845 024_S_1063 022_S_0066 

011_S_0021 098_S_0171 131_S_0436 126_S_0605 128_S_0863 033_S_1086 022_S_0130 

011_S_0022 098_S_0172 006_S_0484 005_S_0610 029_S_0866 141_S_1094 136_S_0196 

011_S_0023 114_S_0173 133_S_0488 127_S_0622 109_S_0876 033_S_1098 073_S_0311 

023_S_0031 067_S_0177 094_S_0489 082_S_0640 020_S_0883 051_S_1123 131_S_0441 

099_S_0040 136_S_0184 133_S_0493 057_S_0643 130_S_0886 023_S_1190 014_S_0520 

067_S_0056 136_S_0186 006_S_0498 036_S_0672 098_S_0896 941_S_1194 005_S_0553 

023_S_0058 130_S_0232 013_S_0502 126_S_0680 041_S_0898 941_S_1195 094_S_0711 

067_S_0059 067_S_0257 126_S_0506 006_S_0681 020_S_0899 941_S_1197 029_S_0824 

023_S_0061 127_S_0259 033_S_0516 127_S_0684 033_S_0920 941_S_1202 003_S_0907 

007_S_0068 127_S_0260 014_S_0519 002_S_0685 033_S_0923 941_S_1203 003_S_0981 
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007_S_0070 002_S_0295 133_S_0525 094_S_0692 023_S_0926 007_S_1206 024_S_0985 

027_S_0074 082_S_0304 094_S_0526 141_S_0717 003_S_0931 007_S_1222 003_S_1021 

023_S_0081 073_S_0312 099_S_0534 006_S_0731 057_S_0934 052_S_1250 062_S_1099 

136_S_0086 131_S_0319 016_S_0538 033_S_0734 052_S_0951 052_S_1251 130_S_1200 

073_S_0089 099_S_0352 014_S_0548 033_S_0741 023_S_0963 082_S_1256 023_S_1306 

099_S_0090 016_S_0359 035_S_0555 082_S_0761 109_S_0967 002_S_1261  

022_S_0096 082_S_0363 014_S_0558 141_S_0767 130_S_0969 094_S_1267  
 

Subject IDs excluded from the ADNI cohort  
owing to failure in Freesurfer processing or other errors 
 
006_S_0322 018_S_0277 062_S_1091 109_S_0840 

006_S_0521 027_S_0948 067_S_0020 128_S_0701 

010_S_0662 027_S_1335 067_S_0024 128_S_0805 

010_S_0788 031_S_0773 073_S_1207 128_S_1181 

011_S_0326 033_S_0888 094_S_0964 130_S_0460 

014_S_0357 033_S_1087 100_S_0893 141_S_0340 
 

Subjects IDs used from ABIDE in this study 

CN3 subjects used in Table 3 

Pitt_0050038 Pitt_0050047 UM_2_0050428 UCLA_1_0051281 KKI_0050776 

Pitt_0050039 Pitt_0050046 UM_2_0050426 Caltech_0051484 UM_1_0050334 

NYU_0051036 Trinity_0051142 UM_2_0050424 SBL_0051562 UM_1_0050335 

Pitt_0050034 Leuven_1_0050703 Leuven_2_0050730 NYU_0051090 Yale_0050577 

Pitt_0050035 Leuven_1_0050701 Leuven_2_0050731 Leuven_1_0050699 SBL_0051566 

Pitt_0050036 NYU_0051105 Leuven_2_0050732 NYU_0051039 NYU_0051041 

Pitt_0050037 NYU_0051104 Leuven_2_0050733 UM_2_0050417 Yale_0050558 

Pitt_0050030 NYU_0051107 Leuven_2_0050735 Olin_0050122 UM_1_0050366 

Pitt_0050031 NYU_0051106 Leuven_2_0050736 Yale_0050553 Trinity_0051137 

Pitt_0050032 NYU_0051101 Leuven_2_0050737 Olin_0050109 Pitt_0050050 

Pitt_0050033 NYU_0051100 Leuven_2_0050738 SBL_0051561 UCLA_2_0051309 

Pitt_0050049 NYU_0051103 Leuven_2_0050739 Trinity_0051141 UCLA_2_0051306 

Pitt_0050048 NYU_0051102 MaxMun_a_0051370 UM_2_0050414 UCLA_1_0051272 
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NYU_0051038 NYU_0051109 Leuven_2_0050741 Leuven_2_0050722 NYU_0051079 

Pitt_0050041 KKI_0050782 Leuven_2_0050740 UM_2_0050422 USM_0050436 

Pitt_0050040 USM_0050463 Leuven_2_0050742 UM_2_0050421 USM_0050433 

Pitt_0050043 USM_0050466 Trinity_0050257 UM_2_0050427 Olin_0050119 

Pitt_0050042 USM_0050467 KKI_0050820 UM_2_0050425 Trinity_0050266 

Pitt_0050045 USM_0050468 SBL_0051567 NYU_0051129 SDSU_0050196 

Pitt_0050044 USM_0050469 SBL_0051564 NYU_0051084 Olin_0050113 

AUT subjects used in Table 3 

NYU_0051032 UM_1_0050296 UCLA_1_0051224 MaxMun_d_0051350 UM_1_0050326 

NYU_0051034 Pitt_0050028 UCLA_1_0051225 NYU_0050985 NYU_0050984 

UCLA_1_0051240 Pitt_0050027 UCLA_1_0051226 USM_0050523 Leuven_2_0050753 

Leuven_1_0050702 NYU_0051028 USM_0050488 NYU_0050994 Leuven_2_0050751 

USM_0050509 Leuven_1_0050694 USM_0050487 NYU_0050997 Leuven_2_0050757 

USM_0050505 CMU_a_0050654 Leuven_2_0050748 NYU_0051008 Leuven_2_0050754 

USM_0050501 Leuven_1_0050711 KKI_0050801 NYU_0051009 NYU_0050954 

USM_0050500 USM_0050518 KKI_0050802 NYU_0051006 NYU_0050956 

UM_1_0050315 UM_1_0050278 KKI_0050804 NYU_0051007 UCLA_2_0051302 

Leuven_2_0050746 UM_1_0050308 Pitt_0050011 NYU_0051001 CMU_b_0050652 

Trinity_0050251 UM_2_0050410 Pitt_0050016 UCLA_1_0051237 Pitt_0050007 

Trinity_0050250 USM_0050531 Pitt_0050015 UCLA_1_0051235 Pitt_0050003 

UCLA_1_0051219 Trinity_0050249 UCLA_1_0051231 UCLA_1_0051234 USM_0050532 

UCLA_1_0051218 Trinity_0050242 USM_0050520 Pitt_0050057 UCLA_1_0051209 

UCLA_1_0051215 Trinity_0050245 USM_0050525 Pitt_0050055 UCLA_1_0051206 

UCLA_1_0051214 Trinity_0050246 NYU_0050987 Pitt_0050053 UCLA_1_0051205 

USM_0050491 SBL_0051585 NYU_0050986 NYU_0050998 UCLA_1_0051201 

USM_0050493 NYU_0051012 UM_2_0050402 Caltech_0051468 NYU_0050989 

USM_0050492 UCLA_2_0051317 UM_2_0050406 UM_1_0050321 UM_1_0050285 

UM_1_0050298 UCLA_1_0051223 UCLA_2_0051293 UM_1_0050320 Leuven_1_0050689 
 

Subjects IDs used from the AIBL dataset 

CN4: Baseline healthy controls  
 

498 98 1283 117 23 1225 38 
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90 1330 786 1153 1501 622 1001 

68 329 707 661 1355 1295 121 

134 1432 605 509 135 444 1215 

1517 125 52 1050 411 891 1194 

1341 484 14 1421 1365 198 29 

1361 430 1453 314 698 1309 75 

1541 1340 1343 415 1255 627 1249 

1192 1187 190 615 817 604 
 

655 1285 236 516 16 294 
 

27 50 46 1370 269 1147 
 

1419 1303 784 1312 51 570 
 

AD2: Baseline Alzheimer’s  
 

371 838 1135 1273 19 819 665 102 
1316 567 1264 1013 1437 1549 1046 952 
1484 1089 1482 1442 1547 1056 1513 

 

488 893 1504 494 919 1032 978 
 

1122 510 373 1457 361 970 1078 
 

917 1559 417 1575 1090 1209 895 
 

1577 1368 1260 993 1537 259 1066 
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Appendix B 

The need for a trimmed estimator 
 
In the Methods section, when describing the computation behind HiWeNet, we note that we 
remove 5% outliers from both tails of the thickness value distribution. The need to trim the 
distribution arises from the presence of several outlying values as can be seen from Fig. B1.  
There are a large number of vertices with zero and very small values (which are zoomed-in in 
the right panel in Figure B) as well as few unnaturally large values (over 6mm), making it 
necessary to trim the patch-wise distributions to stabilize the distance estimates between a 
random pair of patch-wise histograms. We observe similar trends across all patch sizes (all 
values of m). 

 
Figure B1: the full distribution of thickness values from ADNI1 dataset using all the subjects (CN1, 
CN2, MCI and AD) included in this study. It is clear there are a large number of vertices with zero and 
very small values, making it necessary to trim the patch-wise distributions to stabilize the distance 
estimates between a random pair of patch-wise histograms. 
 

Appendix C 
To explore alternative representations for network-level features, we have extracted the 
following features: 1) compute a histogram for the distribution of thickness values from the 
entire cortex (‘grand histogram’), and 2) for each patch, represent its value by the histogram 
distance between its own histogram and the grand mean histogram. Let’s denote this method 
`relative_to_all` . This method results in a vector of length n only (number of patches for a given 
m) as opposed to fully-pairwise method adopted in this paper which results in n*(n-1)/2 
features. To understand their utility, we have evaluated their predictive performance for the 30 
different feature sets based on `relative_to_all` edge weight. Their performance did not differ 
substantially from the fully-pairwise network-level counterparts - see the figure below. The 
median baseline performance (median of the 30 median AUCs each from 200 CV repetitions) is 
at AUC=0.89 in the CN1 vs. AD experiment (compared to AUC=0.87 for the fully-pairwise 
network features), at AUC= 0.77 (compared to AUC=0.75) for CN2 vs. MCIc and at AUC=0.56 
(compared to AUC=0.6) for CN3 vs. AUT. Although the simpler relative_to_all method seems 
to perform just as well or slightly numerically better when the differences are pronounced (CN1 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2020. ; https://doi.org/10.1101/170381doi: bioRxiv preprint 

https://doi.org/10.1101/170381
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

34 

vs. AD and MCIc), it does slightly worse in the more challenging experiment (CN3 vs. AUT). 
This is consistent with our previous experience wherein fully-pairwise network-level features 
performed increasingly better as the predictive challenge increased with decreasing separability 
(Raamana et al. 2015). These results are now included in Appendix C. 
 
We’ve also updated our open source hiwenet package to provide this feature, crediting this 
reviewer for the idea (anonymously). 

 
 
 

Appendix D 
The sites represented per diagnostic group in the ABIDE dataset are shown in the table below: 
 
 

Site Controls Autism 
Pitt 21 10 
NYU 17 19 
Trinity 5 6 
Leuven 16 10 
KKI 3 3 
USM 7 15 
UM 12 12 

MaxMun 1 1 
SBL 5 1 
UCLA 4 20 
Caltech 1 1 
Olin 4 0 
Yale 3 0 
SDSU 1 0 
CMU 0 2 
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