Supervised machine learning reveals introgressed loci in the genomes of *Drosophila simulans* and *D. sechellia*

Daniel R. Schrider*,†, Julien Ayroles§, Daniel R. Matute‡, Andrew D. Kern*,†

*Department of Genetics, and †Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08554

§Ecology and Evolutionary Biology Department; Lewis Sigler Institute for Integrative Genomic, Princeton University, Princeton, New Jersey, 08540

‡Biology Department, University of North Carolina, Chapel Hill, NC 27510.

*Corresponding author: Department of Genetics, Rutgers University, 604 Allison Rd., Piscataway, NJ 08854. E-mail: dan.schrider@rutgers.edu

ABSTRACT

Hybridization and gene flow between species appears to be common. Even though it is clear that hybridization is widespread across all surveyed taxonomic groups, the magnitude and consequences of introgression are still largely unknown. Thus it is crucial to develop the statistical machinery required to uncover which genomic regions have recently acquired haplotypes via introgression from a sister population. We developed a novel machine learning framework, called FILET (Finding Introgressed Loci via Extra-Trees) capable of revealing genomic introgression with far greater power than competing methods. FILET works by combining information from a number of population genetic summary statistics, including several new statistics that we introduce, that capture patterns of variation across two populations. We show that FILET is able to identify loci that have experienced gene flow between related species with high accuracy, and in most situations can correctly infer which population was the donor and which was the recipient. Here we describe a data set of outbred diploid *Drosophila sechellia* genomes, and combine them with data from *D. simulans* to examine recent introgression between these species using FILET. Although we find that these populations may have split more recently than previously appreciated, FILET confirms that there has indeed been appreciable recent introgression (some of which might have been adaptive) between these species, and reveals that this gene flow is primarily in the direction of *D. simulans* to *D. sechellia*.
INTRODUCTION

Up to 10% of animal species have the ability to hybridize with other species (Mallet 2005). Hybridization upon secondary contact of diverging populations is quite common which has led to the study of hybrid zones and the phenotypic consequences of hybridization (Barton and Hewitt 1985). Whole-genome sequencing has confirmed the notion that introgression, the genetic exchange between species through fertile hybrids, is also common between closely related species (Begun et al. 2007; Kulathinal et al. 2009; Martin et al. 2013; Brandvain et al. 2014; Fontaine et al. 2015) and in some instances between divergent species (Nürnberg et al. 2016; Turissini and Matute 2017). This is perhaps best known from the case of Neanderthal hybridization with non-African human populations (Green et al. 2010; Sankararaman et al. 2014), which has left modern human genomes with clear examples of introgressed Neanderthal alleles. Depending on the genetic architecture of reproductive isolation (i.e., number of hybrid incompatibilities, dominance of those incompatibilities), introgression might be deleterious (True et al. 1996; Harris and Nielsen 2016; Jurie et al. 2016). Those loci that contribute to reproductive isolation, and as such to the persistence of species in the face of hybridization, should be less likely to be introgressed (Turner et al. 2005). On the other hand, much of the genome may be porous to introgression between closely related species if the net effect of such introgression is fitness neutral. Thus if we could reliably delineate those regions of the genome that have and have not experienced introgression among species, and the magnitude of selection against them, we may be able to understand the genetic underpinnings of reproductive isolation.

Genetic exchange between populations can also provide a potent source of adaptive alleles that may facilitate adaptation to new environments (reviewed in Hedrick 2013). Rather than waiting for one or more new beneficial mutations to arise, a species faced with a new environment may be able to receive these alleles via gene flow from a sympatric species already adapted for that environment (e.g. if the donor population migrated to this new environment first and/or adapted to it more rapidly). For instance, adaptation to high altitude in Tibetans appears to have been caused by introgression of alleles from an archaic Denisovan-like source into modern humans (Huerta-Sánchez et al. 2014). Another particularly well-studied system of adaptive introgression comes from *Heliconius* butterflies where gene exchange has facilitated the origin and maintenance of mimetic rings (Pardo-Diaz et al. 2012) and even of hybrid species (Melo et al. 2009; Salazar et al. 2010). Clearly, hybridization and introgression play an important role in the origin or demise of new species. Yet these isolated examples are not sufficient to elucidate the importance of introgression a source of genetic variation. A reliable framework for the inference of introgressed alleles is therefore sorely needed.

Recent work on uncovering introgressed loci has focused on the use of population genomic data from pairs of species of distinct populations. Largely the methods devised have consisted of new summary statistics that capture elements of the expected coalescent genealogy under a model of recent introgression between species. For example, values of the F_{ST} statistic will be lower in the presence of gene flow (e.g. Neafsey et al. 2010). Another popular point of
departure has been the d_{xy} statistic of Nei and Li (1979) which measures the average pairwise distance between alleles sampled from two populations. Joly et al. (2009) modified this approach by taking the minimum rather than the mean of these pairwise divergence values, termed d_{min}. d_{min} is thus sensitive to abnormally short branch lengths between alleles drawn from two populations, as would be expected under a model of recent introgression. Similarly, Geneva et al. (2015) and Rosenzweig et al. (2016) devised with their own statistics to detect introgression, both based on d_{min} but with added robustness to variation in the neutral mutation rate. Each of these statistics has attractive properties and adequate power in some instances, however no one statistic has perfect sensitivity in every scenario.

In order to fill this void, we introduce a new method for finding introgressed loci based on supervised machine learning that we call FILET (Finding Introgressed Loci using Extra Trees Classifiers). FILET combines a large number of summary statistics (Materials and Methods) that provide complementary information about the shape of the genealogy underlying a region of the genome. These summary statistics include both previously developed statistics (including, but not limited to, those based on d_{min} and d_{xy}) as well as 5 new summary statistics that we describe below. Our reasoning for this approach was that by combining many statistics for detecting introgression we should achieve sensitivity to introgression across a larger range of scenarios than accessible to any individual statistic. Buoyed by our recent work showing the power and flexibility of Extra Trees classifiers (Geurts et al. 2006) for population genomic inference (Schrider and Kern 2016; Schrider and Kern 2017), we leveraged this machine learning paradigm for identification of introgression. Using simulations we show that FILET is far more powerful and versatile than competing methods for identifying introgressed loci. Further we apply FILET to examine patterns of introgression between Drosophila simulans and its island endemic sister taxon Drosophila sechellia.

The speciation event that gave rise to the island endemic Drosophila sechellia from a Drosophila simulans-like ancestor is a textbook example of a specialist species that evolved from a presumably generalist ancestor (Jones 1998, 2005). Indeed, D. sechellia has quite remarkably specialized to breed on the toxic fruit of Morinda citrifolia (Louis and David 1986), while D. simulans (and D. mauritiana) do not tolerate the organic volatile compounds in the ripe fruit (Legal et al. 1994; Farine et al. 1996; Legal et al. 1999). The genetic and neurological underpinnings of this key ecological difference have been identified, at least in part (Dekker et al. 2006; Matsuo et al. 2007; Hungate et al. 2013; Huang and Erezylmaz 2015; Shiao et al. 2015; Andrade López et al. 2017) making the D. simulans/D. sechellia pair one of the most successful cases of genetic dissection the causes of an ecologically relevant trait. While this is so, the population genetics of divergence between these species has only been examined in the context of either population samples from a handful of loci (Hey and Kliman 1993; Kliman et al. 2000; Kern et al. 2004; Legrand et al. 2009) or in the absence of population data (Garrigan et al. 2012). These studies estimated population divergence time between D. simulans and D. sechellia to be as early as ~250,000 years ago (Garrigan et al. 2012) or as old as ~413,000 years ago (Kliman et al. 2000). All population genomic surveys demonstrate that D. sechellia harbors little
genetic variation in comparison to *D. simulans*, perhaps as a result of a population size crash/founder event from which the population has not recovered (Hey and Kliman 1993; Legrand et al. 2009). Moreover it has been suggested that what little variation there is in *D. sechellia* shows little population genetic structure among separate island populations in the Seychelles archipelago (Legrand et al. 2009). Lastly it has been suggested that what little variation there is in *D. sechellia* shows little population genetic structure among separate island populations in the Seychelles archipelago (Legrand et al. 2009). Here we characterize the population genetics of divergence between *D. sechellia* and *D. simulans*, combining existing whole-genome sequences from a mainland population of *D. simulans* (Rogers et al. 2014) with newly generated genome sequences from *D. sechellia*. Applying FILET to these data confirms previous reports of introgression between these species and reveals that this gene flow is primarily in the direction of *D. simulans* to *D. sechellia*. Finally, the success of our approach underscores the potential power of supervised machine learning for evolutionary and population genetic inference.

MATERIALS AND METHODS

Statistics capturing the population genetic signature of introgression

We set out to assemble a set of statistics that could be used in concert to reliably determine whether a given genomic window had experienced recent gene flow. Several statistics that have been designed to this end ask whether there is a pair of samples exhibiting a lower than expected degree of sequence divergence within the window of interest. The most basic of these is d_{min}, the minimum pairwise divergence across all cross-population comparisons (Figure S1; Joly et al. 2009). The reasoning behind d_{min} is that even if only a single sampled individual contains an introgressed haplotype, d_{min} should be lower than expected and the introgression event may be detectable. A related statistic is G_{min}, which is equal to d_{min}/d_{xy} (Geneva et al. 2015); the presence of this term in the denominator is meant to control for variation in the neutral mutation rate across the genome. RND_{min} accomplishes this by dividing d_{min} by the average divergence of all sequences from either species to an outgroup sequence (Rosenzweig et al. 2016). The name of this statistic is derived from its constituent parts, d_{min}, and RND (Feder et al. 2005).

As described in the following section, we incorporated a number of previously devised statistics into our classification approach, including some of those based on d_{min}. We also included some novel statistics that we designed to have improved sensitivity to particularly recent introgression. The first of these is defined as:

$$d_{d1} = d_{\text{min}}/\pi_1$$

where π_1 is nucleotide diversity (Nei and Li 1979) in population 1. Similarly, $d_{d2} = d_{\text{min}}/\pi_2$. d_{d1} and d_{d2} statistics are so named because they compare d_{min} to diversity within populations 1 and 2, respectively. The rationale behind these statistics is that, if there has been recent introgression from population 1 into population 2, and at least one sampled chromosome from population 2
contains the introgressed haplotype, then the cross-population pair of individuals yielding the value of \(d_{\text{min}} \) should both trace their ancestry to population 1. Thus, the sequence divergence between these two individuals should on average be equal to \(\pi_1 \). Similarly, if there was introgression in the reverse direction \(d_{\text{min}} \) would be on the order of \(\pi_2 \). Following similar rationale, we devised two related statistics: \(d_{\text{d-Rank}1} \) and \(d_{\text{d-Rank}2} \). \(d_{\text{d-Rank}1} \) is the percentile ranking of \(d_{\text{min}} \) among all pairwise divergences within population 1; the value of this statistic should be lower when there has been introgression from population 1 into population 2. \(d_{\text{d-Rank}2} \) is the analogous statistic for introgression from population 2 into population 1. We also included a statistic comparing average linkage disequilibrium within populations to average LD within the global population (i.e. lumping all individuals from both species together), as follows:

\[
Z_X = \frac{(Z_{nS1} + Z_{nS2})}{(2 \times Z_{nSG})}
\]

where \(Z_{nS1} \) and \(Z_{nS2} \) measure average LD (Kelly 1997) between all pairs of variants within the window in population 1 and population 2, respectively, and \(Z_{nSG} \) which measures LD within the global population. The reasoning behind this statistic is based on the assumption that, in the presence of gene flow, LD may be elevated within the recipient population(s) but not in the global population. Figure S2 shows that the distributions of these statistics do indeed differ substantially between genealogies with and without introgression (simulation scenarios described below), especially when this introgression occurred recently. In addition to these and other statistics summarizing diversity across the two population samples, we also incorporated several single-population statistics into our classifier (see below), as these may also contain information about recent introgression. For example, separate measures of nucleotide diversity in our two population samples would contain useful information because introgression is expected to increase diversity in the recipient population, especially if the source population was large or if the two populations split long ago.

Description of FILET classifier

We used a supervised machine learning approach to assign a genomic window to one of three distinct classes on the basis of a “feature vector” consisting of a number of statistics summarizing patterns of variation within the window from two closely related populations. These three classes are: introgression from population 1 into population 2, introgression from population 2 into population 1, and the absence of introgression. Specifically, we used an Extra-Trees classifier (Geurts et al. 2006), which is an extension of random forests (Breiman 2001), an ensemble learning technique that creates a large ensemble of semi-randomly generated binary decision trees (Quinlan 1986), before taking a vote among these decision trees in order to decide which class label should be assigned to a given data instance (i.e. genomic window in our case). In an Extra-Trees classifier, the tree building process is even more randomized than in typical random forests: in addition to selecting a random subset of features when generating a tree, the separating threshold for each feature is randomly chosen, rather than selected the threshold that optimally separates the data classes. We require example regions for each class in order to train
the Extra-Trees classifier, so we used coalescent simulations to generate these training examples (described below). Our ultimate goal was to detect introgression within 10kb windows in *Drosophila*, so to train our classifier properly we simulated chromosomal regions approximating this length (simulation details are given below). The target window size could easily be altered by changing the length of the regions simulated for training (i.e. by adjusting the recombination and mutation rates, θ and ρ).

FILET’s feature vector contains a number of single-population summaries of per-base pair genetic variation: π, the variance in pairwise diversity, the density of segregating sites, the density of polymorphisms private to the population, Fay and Wu’s H and H_t statistics (Fay and Wu 2000), and Tajima's D (Tajima 1989). The feature vector also includes two single-population summary statistics that are not normalized per base pair: Z_{ns} (which is averaged across all pairs of SNPs), and the number of distinct haplotypes observed in the window. Each feature vector included values of these 9 statistics for each population, yielding 18 single-population statistics in total. In addition, the two-population statistics included in FILET’s feature vector were as follows: F_{ST} (following Hudson et al. 1992), Hudson’s S_{mn} (Hudson 2000), per-bp d_{xy}, per-bp d_{min}, G_{min}, d_{d1}, d_{d2}, $d_{d-Rank1}$, $d_{d-Rank2}$, Z_{k}, IBS_{MAXB} (the length of the maximum stretch of identity by state [IBS] among all pairwise between-population comparisons), and IBS_{Mean1} and IBS_{Mean2} which capture the average IBS tract length when comparing all pairs of sequences within populations 1 and 2, respectively. These IBS statistics are calculated by examining all pairs of individual sequences within a population (or across populations in the case of IBS_{MAXB}), noting the positions of differences, and examining the distribution of lengths between these positions (as well as between the first position and the beginning of the window and between the last position and the end of the window). Note that we did not include RND_{min} so that FILET would not require alignment to an outgroup sequence, although FILET could easily be extended to do so. Instead, in order to improve robustness to mutational variation, we adopted the approach of drawing the mutation rate from a wide range of values when generating training examples to train FILET to classify data from our Drosophila samples (see below). All code necessary to run the FILET classifier (including calculating summary statistics on both simulated and real data sets, training, and classification) along with the full results of our application to *D. simulans* and *D. sechellia* (described below) are available at https://github.com/kern-lab/FILET/.

Simulated test scenarios

Following Rosenzweig et al. (2016), we used the coalescent simulator mmove (https://github.com/geneva/msmove) to simulate data for testing FILET’s power to detect introgression in populations with four different values of T_D (the time since divergence): $0.25 \times 4N$, $1 \times 4N$, $4 \times 4N$, and $16 \times 4N$ generations ago, where N is the population size. For each of these simulations the population size was held constant (i.e. the ancestral population size equals that of either daughter population). We developed a classifier for each of these scenarios of population divergence. Supervised machine learning techniques such as the Extra-Trees...
classifier require training data consisting of examples from each of the three classes, but in practice a large number of example loci known to have experienced introgression may not be available. We therefore simulated training data sets for each of the four values of \(T_D\). Again following Rosenzweig et al. (2016), the relevant parameters for each of these simulations include: \(T_M\), the time since the introgression event, which we drew from \(\{0.01 \times T_D, 0.05 \times T_D, 0.1 \times T_D, 0.15 \times T_D, \ldots, 0.9 \times T_D\}\) (i.e. multiples of \(0.05 \times T_D\) up to 0.9, and also including \(0.01 \times T_D\)); and \(P_M\), the probability that a given lineage would migrate from the source population to the sink population during the introgression event, which we drew from \(\{0.05, 0.1, 0.15, \ldots, 0.95\}\). We simulated an equal number of training examples for each combination of these two parameter values for both directions of gene flow, yielding \(10^4\) simulations in total for both of these classes, conditioning that each of these instances must have contained at least one migrant lineage. Finally, we simulated an equivalent number of samples without introgression, yielding a balanced training set \((10^4\) examples for each class\). We then computed feature vectors as described above for each of these training examples, and proceeded with training our Extra-Trees classifiers by conducting a grid search of all training parameters precisely as described in Schrider and Kern (2016), and setting the number of trees in the resulting ensemble to 100. All training and classification with the Extra-Trees classifier was performed using the scikit-learn Python library (http://scikit-learn.org; Pedregosa et al. 2011). We also calculated feature importance and rankings thereof by training an Extra-Trees classifier of 500 decision trees on the same training data (using scikit-learn’s defaults for all other learning parameters), and then using this classifier’s “feature_importances_” attribute. Briefly, this feature importance score is the average reduction in Gini impurity contributed by a feature across all trees in the forest, always weighted by the probability of any given data instance reaching the feature’s node as estimated on the training data (Breiman et al. 1984); this measure thus captures both how well a feature separates data into different classes and how often the feature is given the opportunity to split (i.e. how often it is visited in the forest). The values of these scores are then normalized across all features such that they sum to one.

For each \(T_D\), we evaluated the appropriate classifier against a larger set of \(10^4\) simulations generated for each parameter combination along a grid of values of \(T_M\) and \(P_M\). The values of \(P_M\) were drawn from the same set as those in training as described above, while one additional possible value of \(T_M\) was included: \(0.001 \times T_D\). Also note that for these simulations we did not require at least one migrant lineage as we had done for training. In addition to test examples for each direction of gene flow, we simulated \(10^4\) examples where no migration occurred in order to assess false positive rates. In all of our simulations, both for training and testing, we set locus-wide population mutation and recombination rates \(\theta\) and \(\rho\) to 50 and 250, respectively, similar to autosomal values in \(D. melanogaster\) (Chan et al. 2012) and sampled 15 individuals from each population. When testing the sensitivity of our method on these data, we considered a window to be introgressed if FILET’s posterior probability of the no-introgression class was <0.05, except for the scenario with \(T_D\) equal to \(16 \times 4N\) generations ago in which case we used a posterior probability cutoff of 0.01, as we found that this step mitigated the elevated false positive rate.
under this scenario (reducing the rate from >10% to the estimate of 6% shown in Figure S3). In windows labeled as introgressed, the direction of gene flow was determined by asking which of the two introgression classes had a higher posterior probability. Note that we used the same demographic scenario for both the training and test data for each T_D, and discuss the implications of demographic model misspecification in the Results and Discussion.

In order to compute ROC curves we constructed balanced binary training sets composed of 10^4 examples with no introgression, and 10^4 examples allowing for introgression (with equal representation to each combination of T_M, P_M, and direction of introgression. The score that we obtained for each test example in order to compute the ROC curve was one minus the posterior probability of no introgression as generated by the Extra-Trees classifier (i.e. the classifier’s estimated probability of introgression, regardless of directionality).

Drosophila sechellia collection

Drosophila sechellia flies were collected in the islands of Praslin, La Digue, Marianne and Mahé with nets over fresh *Morinda* fruit on the ground. All flies were collected in January of 2012. Flies were aspirated from the nets by mouth (1135A Aspirator – BioQuip; Rancho Domingo, CA) and transferred to empty glass vials with wet paper balls (to provide humidity) where they remained for a period of up to three hours. Flies were then lightly anesthetized using FlyNap (Carolina Biological Supply Company, Burlington, NC) and sorted by sex. Females from the *melanogaster* species subgroup were individualized in plastic vials with instant potato food (Carolina Biologicals, Burlington, NC) supplemented with banana. Propionic acid and a pupation substrate (Kimwipes Delicate Tasks, Irving TX) were added to each vial. Females were allowed to produce progeny and imported using USDA permit P526P-15-02964. The identity of the species was established by looking at the taxonomical traits of the males produced from isofemale lines (genital arches, number of sex combs) and the female mating choice (i.e., whether they chose *D. simulans* or *D. sechellia* in two-male mating trials).

Sequence data and variant calling and phasing

We obtained sequence data from 20 *D. simulans* inbred lines (Rogers et al. 2014) from NCBI’s Short Read Archive (BioProject number PRJNA215932). We also sequenced wild-caught outbred *D. sechellia* individuals (see above) from Praslin ($n=7$ diploid genomes), La Digue ($n=7$), Marianne ($n=2$), and Mahé ($n=7$). These new *D. sechellia* genomes are available on the Short Read Archive (BioProject number PRJNA395473). For each line we then mapped all reads with bwa 0.7.15 using the BWA-MEM algorithm (Li 2013) to the March 2012 release of the *D. simulans* assembly produced by Hu et al. (2013) and also used the accompanying annotation based on mapped FlyBase release 5.33 gene models (Gramates et al. 2017). Next, we removed duplicate fragments using Picard (https://github.com/broadinstitute/picard), before using GATK’s (version 3.7; McKenna et al. 2010; DePristo et al. 2011; Auwera et al. 2013)
HaplotypeCaller in discovery mode with a minimum Phred-scaled variant call quality threshold (-stand_call_conf) of 30. We then used this set of high-quality variants to perform base quality recalibration (with GATK’s BaseRecalibrator program), before again using the HaplotypeCaller in discovery mode on the recalibrated alignments. For this second iteration of variant calling we used the --emitRefConfidence GVCF option in order to obtain confidence scores for each site in the genome, whether polymorphic or invariant. Finally, we used GATK’s GenotypeGVCFs program to synthesize variant calls and confidences across all individuals and produce genotype calls for each site by setting the --includeNonVariantSites flag, before inferring the most probable haplotypic phase using SHAPEIT v2.r837 (Delaneau et al. 2013). The genotyping and phasing steps were performed separately for our D. simulans and D. sechellia data, and for each of step in the pipeline outlined above we used default parameters unless otherwise noted. In order to remove potentially erroneous genotypes (at either polymorphic or invariant sites), we considered genotypes as missing data if they had a quality score lower than 20, or were heterozygous in D. simulans. After throwing out low-confidence genotypes, we masked all sites in the genome missing genotypes for more than 10% of individuals in either species’ population sample, as well as those lying within repetitive elements as predicted by RepeatMasker (http://www.repeatmasker.org). Only SNP calls were included in our downstream analyses (i.e. indels of any size were ignored).

Demographic inference

Having obtained genotype data for our two population samples, we used \(\partial a\bar{a}i \) to model their shared demographic history on the basis of the folded joint site frequency spectrum (downsampled to \(n=18 \) and \(n=12 \) in D. simulans and D. sechellia, respectively); using the folded spectrum allowed us to circumvent the step of producing whole genome alignments to outgroup species in D. simulans coordinate space in order to attempt to infer ancestral states. We used an isolation-with-migration (IM) model that allowed for continual exponential population size change in each daughter population following the split. This model includes parameters for the ancestral population size (\(N_{\text{anc}} \)), the initial and final population sizes for D. simulans (\(N_{\text{sim}}_0 \) and \(N_{\text{sim}} \), respectively), the initial and final sizes for D. sechellia (\(N_{\text{sech}}_0 \) and \(N_{\text{sech}} \), respectively), the time of the population split (\(T_D \)), the rate of migration from D. simulans to D. sechellia (\(m_{\text{sim} \rightarrow \text{sech}} \)), and the rate of migration from D. sechellia to D. simulans (\(m_{\text{sech} \rightarrow \text{sim}} \)). We also fit our data to a pure isolation model that was identical to our IM model but with \(m_{\text{sim} \rightarrow \text{sech}} \) and \(m_{\text{sech} \rightarrow \text{sim}} \) fixed at zero. Our optimization procedure consisted of an initial optimization step using the Augmented Lagrangian Particle Swarm Optimizer (Jansen and Perez 2011), followed by a second step of optimization refining the initial model using the Sequential Least Squares Programming algorithm (Kraft 1988), both of which are included in the pyOpt package for optimization in Python (version 1.2.0; Perez et al. 2012) as in Schrider et al. (2016). We performed ten optimization runs fitting both of these models to our data, each starting from a random initial parameterization, and assessed the fit of each optimization run using the AIC.
score. Code for performing these optimizations can be obtained from https://github.com/kern-
lab/miscDadiScripts, wherein 2popIM.py and 2popIsolation.py fit the IM and isolation models
described above, respectively. For scaling times by years rather than numbers of generations, we
assumed a generation time of 15 gen/year as has been estimated in *D. melanogaster* (Pool 2015).

Training FILET to detect introgression between *D. simulans* and *D. sechellia*

Having obtained a demographic model that provided an adequate fit to our data, we set out to
simulate training examples under this demographic history for each of our three classes (i.e. no
migration, migration from *D. simulans* to *D. sechellia*, and from *D. sechellia* to *D. simulans*). For
training examples including introgression, T_M was drawn uniformly from the range between zero
generations ago and $T_D/4$, while P_M ranged uniformly from (0, 1.0]. In addition, in order to make
our classifier robust to uncertainty in other parameters in our model, for each training example
we drew values of each of the remaining parameters from $[x−(x/2), x+(x/2)]$, where x is our point
estimate of the parameter from $\partial a\partial i$. In addition to the parameters from our demographic model
($T_D, \rho, N_{anc}, N_{sim},$ and N_{sech}), these include the population mutation rate $\theta=4N\mu$ (where μ was set
to 3.5×10^{-9}), and the ratio of θ to the population recombination rate ρ (which we set to 0.2).
Continuous migration rates were set to zero (i.e. the only migration events that occurred were
those governed by the T_M and P_M parameters, and the no-migration examples were truly free of
migrants). In total, this training set comprised of 10^4 examples from each of our three classes.

As described above, we masked genomic positions having too many low confidence
genotypes or lying within repetitive elements (described above) before proceeding with our
classification pipeline. While doing so, we recorded which sites were masked within each 10 kb
window in the genome that we would later attempt to classify. In order to ensure that our
masking procedure affected our simulated training data in the same manner as our real data, for
each simulated 10 kb window we randomly selected a corresponding window from our real
dataset and masked the same sites in the simulated window that had been masked in the real one.
We then trained our classifier in the same manner as described above.

In order to ensure that this classifier would indeed be able to reliably uncover loci
experiencing recent gene flow between our two populations, we assessed its performance on
simulated test data. First, we applied the classifier to test examples simulated under this same
model (again, 10^4 for each class). Next, to address the effect of demographic model
misspecification, we applied our classifier to an isolation model with a different parameterization
and no continuous size change in the daughter populations. For this model we simply set N_{sim}
and N_{sech} to $\pi_{sim}/4\mu$ and $\pi_{sech}/4\mu$, respectively, where π for a species is the average nucleotide
diversity among all windows included in our analysis after filtering, and μ was again set to
3.5×10^{-9}. We then set N_{anc} to be equal to N_{sim}, and set T to $d_{xy}/(2\mu)−2N_{anc}$ generations where d_{xy}
is the average divergence between *D. simulans* and *D. sechellia* sequences across all windows.
This latter value is simply the expected waiting time until coalescence during the one-population (i.e. ancestral) phase of the
model. This simple model thus produces samples with similar levels of nucleotide diversity for the two daughter populations as those produced under our IM model, but that would differ in other respects (e.g. the joint site frequency spectrum and linkage disequilibrium, which would be affected by continuous population size change after the split). For both test sets we masked sites in the same manner as for our training data before running FILET.

Classifying genomic windows with FILET

We examined 10 kb windows in the D. simulans and D. sechellia genomes, summarizing diversity in the joint sample with the same feature vector as used for classification (see above), ignoring sites that were masked as described above. We omitted from this analysis any window for which >25% of sites were masked, and then applied our classifier to each remaining window, calculating posterior class membership probabilities for each class. We then used a simple clustering algorithm to combine adjacent windows showing evidence of introgression into contiguous introgressed elements: we obtained all stretches of consecutive windows with >90% probability of introgression as predicted by FILET (i.e. the probability of no-introgression class <10%), and retained as putatively introgressed regions those that contained at least one window with >95% probability of introgression. In order to test for enrichment of these introgressed regions for genic/intergenic sequence or particular Gene Ontology (GO) terms from the FlyBase 5.33 annotation release (Gramates et al. 2017), we performed a permutation test in which we randomly assigned a new location for each cluster or introgressed windows (ensuring the entire permuted cluster landed within accessible windows of the genome according to our data filtering criteria). We generated 10,000 of these permutations.

RESULTS AND DISCUSSION

FILET detects introgressed loci with high sensitivity and specificity

We sought to devise a bioinformatic approach capable of leveraging population genomic data from two related population samples to uncover introgressed loci with high sensitivity and specificity. In the Materials and Methods, we describe several previous and novel statistics designed to this end. However, rather than preoccupying ourselves with the search for the ideal statistic for this task, we took the alternative approach of assembling a classifier leveraging many statistics that would in concert have greater power to discriminate between introgressed and non-introgressed loci. Supervised machine learning methods have proved highly effective at making inferences in high-dimensional datasets. In this vein, we designed FILET, which uses an extension of random forests called an Extra-Trees classifier (Geurts et al. 2006). We previously succeeded in applying Extra-Trees classifiers for a separate population genetic task—finding recent positive selection and discriminating between hard and soft sweeps (Schrider and Kern...
2016; Schrider and Kern 2017)—though other methods such as support vector machines (Cortes and Vapnik 1995) or deep learning (LeCun et al. 2015) could also be applied to this task.

Briefly, FILET assigns a given genomic window to one of three distinct classes—recent introgression from population 1 into population 2, introgression from population 2 into 1, or the absence of introgression—on the basis of a vector of summary statistics that contain information about the two-population sample’s history. This feature vector contains a variety of statistics summarizing patterns of diversity within each population sample, as well as a number of statistics examining cross-population variation (see Materials and Methods for a full description). FILET must be trained to distinguish among these three classes, which we accomplish by supplying 10,000 simulated example genomic windows of each class, with each example represented by its feature vector. Once this training is complete, FILET can then be used to infer the class membership of additional genomic windows, whether from simulated or real data.

We began by assessing FILET’s power on a number of simulated datasets, examining windows roughly equivalent to 10 kb in length in Drosophila (Materials and Methods). In particular, because the power to detect introgression depends on the time since their divergence, T_D, we measured FILET’s performance under four different values of T_D, training a separate classifier for each. In Figure 1 ($T_D=0.25\times4N$) and Figure S3 (T_D values of 1, 4, and $16\times4N$), we compare FILET’s power to that of two related statistics that have been devised to detect introgressed windows, d_{min} and G_{min} (Materials and Methods). These figures show that FILET has high sensitivity to introgression across a much wider range of introgression timings (T_M) and intensities (P_M) than either of these statistics under each value of T_D, and that this disparity is amplified dramatically for smaller values of T_D. Furthermore, these figures demonstrate that FILET inferences the correct directionality of recent introgression with high accuracy, whereas d_{min} and G_{min} contain no information about the direction of gene flow.

We also note that for d_{min} and G_{min} we established 95% significance thresholds from our simulated training data without introgression, thereby achieving a false positive rate of 5%. In order to assess FILET’s false positive rate, we classified a set of test simulations without introgression and found that FILET’s false positive rate was considerably lower (Figure 1 and Figure S3) except for our largest value of T_D, where it was comparable (0.4% for $T_D=0.25\times4N$ but ~6% for $T_D=16\times4N$). Thus, FILET achieves much greater sensitivity to introgression than d_{min} and G_{min} often at a much lower false positive rate. We also demonstrate the FILET’s greater power than these statistics via ROC curves (Figure S4), where it outperforms each statistic under each scenario. Specifically, the difference in power between FILET and d_{min} is dramatic for smaller values of T_D (area under curve, or AUC, of 0.85 versus 0.73 when $T_D=0.25\times4N$ for FILET and d_{min}, respectively) but comparatively miniscule for our largest T_D (AUC of 0.94 versus 0.93 when $T_D=16\times4N$). It therefore appears that FILET’s performance gain relative to single statistics is highest for the more difficult task of finding introgression between very recently diverged populations, while for the easier case of detecting introgression between highly diverged populations some single statistics may perform nearly as well.
Although our goal was to use a set of statistics to perform more accurate inference than possible using individual ones, our Extra-Trees approach also allows for a natural way to evaluate the extent to which different statistics are informative under different scenarios of introgression. To this end, we used the Extra-Trees classifier to calculate feature importance, which captures each statistic to separate the data into its respective classes (Materials and Methods). We find that for our lowest T_D (a split N generations ago) the top four features, all with similar importance, are the density of private alleles in population 1, the density of private alleles in population 2, $d_{d-Rank1}$, and $d_{d-Rank2}$. For our next-lowest T_D ($4N$ generations ago), the top four, again with similar importance score estimates, are F_{ST}, Z_X, d_{d1}, and d_{d2}. Thus our d_d statistics seem to be particularly informative in the case of recent introgression between closely related populations. For the larger values of T_D, d_{xy} and d_{min} rise to prominence. The complete lists of feature importance for each T_D are shown in Table S1.

The exceptional accuracy with which FILET uncovers introgressed loci underscores the potential for machine learning methods to yield more powerful population genetic inferences than can be achieved via more conventional tools which are often based on a single statistic. Indeed, machine learning tools have been successfully leveraged in efforts to detect recent positive selection (Pavlidis et al. 2010; Lin et al. 2011; Ronen et al. 2013; Pybus et al. 2015; Schrider and Kern 2016), to infer demographic histories (Pudlo et al. 2016), or even to perform both of these tasks concurrently (Sheehan and Song 2016).

Joint demographic history of D. simulans and D. sechellia

As described in the Materials and Methods, we used publically available $D. simulans$ sequence data (Rogers et al. 2014), and collected and sequenced a set of $D. sechellia$ genomes. We mapped reads from these genomes to the $D. simulans$ assembly (Hu et al. 2013), obtaining high coverage $>28\times$ for each sequence (see sampling locations, mapping statistics, and Short Read Archive identifier information listed in Table S2). We do not expect that our reliance on the $D. simulans$ assembly resulted in any appreciable bias, as reads from our $D. sechellia$ genomes were successfully mapped to the reference genome at nearly the same rate as reads from $D. simulans$ (Table S2).

After completing variant calling and phasing (Materials and Methods), we performed principal components analysis on intergenic SNPs at least 5 kb away from the nearest gene in order to mitigate the bias introduced by linked selection (Gazave et al. 2014; Schrider et al. 2016), and observed evidence of population structure within $D. sechellia$. In particular, the samples obtained from Praslin clustered together, while all remaining samples formed a separate cluster (Figure S5A). Running fastStructure (Raj et al. 2014) on this same set of SNPs yielded similar results: when the number of subpopulations, K, was set to 2 (the optimal value for K selected by fastStructure’s chooseK.py script), our data were again subdivided into Praslin and non-Praslin clusters. Indeed, across all values of K between 2 and 8, fastStructure’s results were suggestive of marked subdivision between Praslin and non-Praslin samples, and comparatively
little subdivision within the non-Praslin data (Figure S5B). This surprising result differs qualitatively from previous observations from smaller numbers of loci (Legrand et al. 2009; Legrand et al. 2011), and underscores the importance of using data from many loci—preferably intergenic and genome-wide—in order to infer the presence or absence of population structure.

Next, we examined the site frequency spectra of the Praslin and non-Praslin clusters, noting that both had an excess of intermediate frequency alleles in comparison to that of the D. simulans dataset (Figure S6), in line with our expectations of D. sechellia’s demographic history. We also note that the Praslin samples contained far more variation (50,243 sites were polymorphic within Praslin) than non-Praslin samples (4,108 SNPs within these samples). This difference in levels of variation may reflect a much lesser degree of population structure and/or inbreeding on the island of Praslin than across the other islands, or may result from other demographic processes. Additional samples from across the Seychelles would be required to address this question. In any case, in light of this observation we limited our downstream analyses of D. sechellia sequences to those from Praslin.

Because we required a model from which to simulate training data for FILET, we next inferred a joint demographic history of our population samples using τadv (Gutenkunst et al. 2009). In particular, we fit two demographic models to our dataset: an isolation-with-migration (IM) model allowing for continuous population size change and migration following the population divergence, and an isolation model with the same parameters but fixing migration rates at zero (Materials and Methods). In Table S3 we show our model optimization results, which show clear support for the IM model over the isolation model. The IM model that provided the best fit to our data (Figure 2A) includes a much larger population size in D simulans than D. sechellia (a final size of 9.3 × 10^6 for D. simulans versus 2.6 × 10^4 for sechellia), consistent with the much greater diversity levels in D. simulans (Begun et al. 2007; Legrand et al. 2009). This model also exhibits a modest rate of migration, with a substantially higher rate of gene flow from D. simulans to D. sechellia (2 × N_M, m = 0.086) than vice-versa (2 × N_M, m = 0.013). Thus, the results of our demographic modeling are consistent with the observation of hybrid males in the Seychelles (Matute and Ayroles 2014), and the possibility of recent introgression between these two species across a substantial fraction of the genome (see Garrigan et al. 2012; Navascués et al. 2014).

An interesting characteristic of the model shown in Figure 2A is that, assuming 15 generations per year, the estimated time of the D. simulans- D. sechellia population split is ~86 kya, or 1.3 × 10^6 generations ago, in stark contrast to a recent estimate of the of 2.5 × 10^6 generations ago from Garrigan et al. (2012) which was not based on population genomic data, but rather on single genomes. Supporting our inference, we note that our average intergenic cross-species divergence of 0.017 yields an average TMRCA of ~2.5 × 10^6 generations ago, assuming a mutation rate of 3.5 × 10^-9 mutations per generation as observed in D. melanogaster (Keightley et al. 2009; Schrider et al. 2013), and this estimate would include the time before coalescence in the ancestral population. Unless the mutation rate the D. simulans species complex is substantially lower than in D. melanogaster, a population split time of 2.5 × 10^6
generations ago therefore seems quite unlikely given that the ancestral population size (and therefore the period of time between the population divergence and average TMRCA) was probably large (>500,000 by our estimate). Thus, we conclude that the *D. simulans* and *D. sechellia* populations may have diverged more recently than previously appreciated, perhaps within the last 100,000 years.

Although the specific parameterization of our model should be regarded as a preliminary view of these species’ demographic history that is adequate for the purposes of training FILET, future efforts with larger sample sizes will be required to refine this model. That being said, the basic features of this model—a much larger *D. simulans* population size than *sechellia*, and a fairly large ancestral population size—are unlikely to change qualitatively.

Widespread introgression from *D. simulans* to *D. sechellia*

Accuracy and robustness of FILET under estimated model: Having obtained a suitable model of the *D. simulans*- *D. sechellia* joint demographic history, we proceeded to simulate training data and train FILET for application to our dataset (Materials and Methods). After training FILET and applying it to simulated data under the estimated demographic model, we find that we have good sensitivity to introgression (56% of windows with introgression are detected, on average), and a false positive rate of only 0.2% (Figure 2B). Thus, while we may miss some introgressed loci, we can have a great deal of confidence in the events that we do recover. Our feature rankings for this classifier are included in Table S1—under this scenario the most informative feature is d_{dsim}. Note that we achieve high accuracy despite some of the difficulties presented by the demographic model in Figure 2A, most notably the asymmetry in effective population sizes between our two species. Indeed, because our method is trained under this demographic history, the characteristics of genealogies demographic model (such as asymmetry in π) with and without introgression become the signal used by FILET to make its classifications.

As shown in Figure 2B we find that this classifier has greater sensitivity to introgression from *D. sechellia* to *D. simulans* than vice-versa. The cause of a stronger signal of *D. sechellia*→ *D. simulans* introgression can be understood from a consideration of the d_{min} statistic under each of our three classes. When there is no introgression, d_{min} will be similar to the expected divergence between *D. simulans* and *D. sechellia*; when there is introgression from *D. simulans* to *D. sechellia*, we may expect d_{min} to be proportional to π_{sim}, which may only be a moderate reduction relative to the no-introgression case given the large population size in *D. simulans*; when there is introgression from *D. sechellia* to *D. simulans* then d_{min} is proportional to π_{sech}, which is dramatically lower than the expectation without introgression. While many of our statistics do not rely on d_{min}, this example illustrates an important property of the genealogy of introgression from *D. sechellia* to *D. simulans* that would make it easier to detect than gene flow in the reverse direction.

We also tested this classifier’s performance on a different demographic scenario (Table S3) in order to examine the effect of model misspecification during training. In particular, we
devised a simple island model with two population sizes: a larger size for *D. simulans* and the ancestral population \((7.6 \times 10^5)\), and a smaller size for *D. sechellia* \((5.7 \times 10^4)\) with a split time of \(~59\) kya. Our simple procedure for estimating these values is described in the Materials and Methods. Again, we find that we have good power to detect introgression with a very low false positive rate (0.28%; Figure S7). Although there are myriad incorrect models that we could test FILET against, this example suggests that FILET is robust to demographic misspecification.

Application to population genomic data: We applied FILET to 10,185 non-overlapping 10 kb windows that passed our data quality filters (101.85 Mb in total, or 86.7% of the five major chromosome arms; Materials and Methods). FILET classified 267 windows as introgressed with high-confidence, which we clustered into 94 contiguous regions accounting for 2.93% of the accessible portion of the genome (2.99 Mb in total; Materials and Methods). This finding is qualitatively similar to a previous estimate (4.6%) by Garrigan et al. (2012) based on comparisons of single genomes from each species in the *D. simulans* complex. Unlike this previous effort, FILET is able to infer the directionality of introgression with high confidence (Figure 2B), and we find evidence that the majority of this introgression has been in the direction of *D. simulans* to *D. sechellia*: only 21 of the 267 (7.9%) putatively introgressed windows were classified as introgressed from *sechellia* to *D. simulans*. This finding is not a result of a detection bias, as we have greater power to detect gene flow from *D. sechellia* to *D. simulans* than in the reverse direction. Given that our *D. simulans* sequences are from the mainland, one interpretation of this result is that although there has been recent gene flow from *D. simulans* into the Seychelles, where *D. simulans* and *D. sechellia* occasionally hybridize, there does not appear to be an appreciable rate of back-migration to the mainland of *D. simulans* individuals harboring haplotypes donated from *D. sechellia*. On the other hand, *D. sechellia* alleles may often be purged from *D. simulans* by natural selection. This may be in part due to the reduced ecological niche size of *D. sechellia*, such that any alleles which may introgress into *D. simulans* and lead to preference for or resistance to Morinda fruit may prove deleterious in other environments. More generally, *D. sechellia* haplotypes introgressing into *D. simulans* may harbor more deleterious alleles due to their smaller population size, which will be more effectively purged in the larger *D. simulans* population if mutations are not fully recessive (Harris and Nielsen 2016). Tests of these hypotheses will have to wait for a population sample of genomes from *D. simulans* collected in the Seychelles.

We asked whether our candidate introgressed loci were enriched for particular GO terms using a permutation test (Materials and Methods), finding no such enrichment. We did observe a significant deficit in the number of genes either partially overlapping or contained entirely within introgressed regions in our true set versus the permuted set (297 vs. 373.2, respectively; \(P=0.083\); one-sided permutation test). This paucity of introgressed genes is consistent with introgressed functional sequence often being deleterious.

One notable introgressed region on 3R that FILET identified had been previously found by Garrigan et al. as containing a 15 kb region of introgression. We show that gene flow in this
region actually extends for over 200 kb (Figure 3). When Brand et al. (2013) sequenced the 15
kb region originally flagged by Garrigan et al. in a number of *D. simulans* and *D. sechellia*
individuals, they also uncovered evidence of a selective sweep in *D. sechellia* originating from
an adaptive introgression from *D. simulans*. Our data set also supports the presence of an
adaptive introgression event at this locus: a 10 kb window lying within the putative sweep region
(highlighted in Figure 3) is in the lower 5% tail of both *d*_{min} (consistent with introgression) and
π_{sech} (consistent with a sweep in *sechellia*); this is the only window in the genome that is in the
lower 5% tail for both of these statistics. This region contains two ionotropic glutamate
receptors, *CG3822* and *Ir93a*, which may be involved in chemosensing among other functions
(Benton et al. 2009), and the latter of which appears to play a role in resistance to
entomopathogenic fungi (Lu et al. 2015). Also near the trough of variation within *D. sechellia*
are several members of the *Turandot* gene family, which are involved in humoral stress
responses to various stressors including heat, UV light, and bacterial infection (Ekengren and
Hultmark 2001; Ekengren et al. 2001), and perhaps parasitoid attack as well (Salazar-Jaramillo et
al. 2017). On the other hand, Brand et al. (2013) hypothesize that the target of selection may be a
transcription factor binding hotspot between *RpS30* and *CG15696*, and the phenotypic target of
this sweep remains unclear.

Interestingly, this particular window is the only one in this region that is classified by
FILET as having recent gene flow from *D. sechellia* to *D. simulans*. However this classification
may be erroneous as one might expect FILET, which was not trained on any examples of
adaptive introgression, to make an error in such a scenario because rather than gene flow
increasing polymorphism in the recipient population, diversity is greatly diminished if the
introgressed alleles rapidly sweep toward fixation. We note that this window is immediately
flanked by a large number of windows classified as introgressed from *D. simulans* to *D. sechellia*
and which show a large increase in diversity in the recipient population as expected. Moreover,
Brand et al.’s phylogenetic analysis of introgression in this region also supported gene flow in this direction. Brand et al. also found evidence suggesting that the introgressed haplotype began
sweeping to higher frequency in *D. simulans* (though it has not reached fixation in this species)
prior to the timing of the introgression and subsequent sweep in *D. sechellia*. Thus we conclude
that the adaptive allele probably did indeed originate in *D. simulans* before migrating to *D.
sechellia*, and FILET’s apparent error in this case underscores the genealogical differences
between adaptive gene flow and introgression events involving only neutral alleles.

Concluding remarks

Here we present a novel machine learning approach, FILET, that leverages population genomic
data from two related populations in order to determine whether a given genomic window has
experienced gene flow between these populations, and if so in which direction. We applied
FILET to a set of *D. simulans* genomes as well as a new set of whole genome sequences from the
closely related island endemic *D. sechellia*, confirming widespread introgression and also
inferring that this introgression was largely in the direction of D. simulans to D. sechellia. Future work leveraging D. simulans data sampled from the Seychelles will be required to determine whether this asymmetry is a consequence of low rate of migration of D. simulans back to mainland Africa (where our D. simulans data were obtained), or whether the directionality of gene flow is biased on the islands themselves. In addition to creating FILET, we devised several new statistics, including the d_d statistics and Z_X which our feature rankings show to be quite useful for uncovering gene flow. Despite the success of FILET on both simulated data sets and real data from Drosophila, there are several improvements that could be made. First, by framing the problem as one of parameter estimation (i.e. regression) rather than classification, we may be able to precisely infer the values of relevant parameters of introgression events (i.e. the time of the event and the number of migrant lineages). Deep learning methods, which naturally allow for both classification and regression, may prove particularly useful for this task (LeCun et al. 2015). Indeed, Sheehan and Song (2016) used deep learning to infer demographic parameters (regression) while simultaneously identifying selective sweeps (classification). Another step we have not taken is to explicitly handle adaptive introgression, which could potentially greatly improve our approach’s power to detect such events.

While population genetic inference has traditionally relied on the design of a summary statistic sensitive to the evolutionary force of interest, a number of highly successful supervised machine learning methods have been put forth within the last few years (Pavlidis et al. 2010; Lin et al. 2011; Ronen et al. 2013; Pybus et al. 2015; Pudlo et al. 2016; Schrider and Kern 2016; Sheehan and Song 2016). As genomic data sets continue to grow, we argue that machine learning approaches leveraging high dimensional feature spaces have the potential to revolutionize evolutionary genomic inference.

ACKNOWLEDGMENTS

We thank Michael Llan for his work on an early iteration of this project. D.R.S. was supported by NIH award no. K99HG008696. A.D.K. was supported in part by NIH award no. R01GM078204.

REFERENCES

Gutenkunst RN, Hernandez RD, Williamson SH and Bustamante CD. 2009. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv*.

Fig. 1. Heatmaps showing several methods’ sensitivity to detect introgression. We show the fraction of simulated genomic regions with introgression occurring under various combinations of migration times (T_M, shown as a fraction of the population divergence time T_D) and intensities (P_M, the probability that a given lineage will be included in the introgression event) that are detected successfully by each method. (A) Accuracy of d_{min} and G_{min} statistics, where a simulated region is classified as introgressed if the values of these statistics are found in the lower 5% tail of the distribution under complete isolation (from simulations). Thus, the false positive rate is fixed at 5%. (B) The accuracy of FILET on these same simulations. On the left we show the fraction of regions correctly classified as introgressed (compare to panel A). On the right, we show the fraction of all simulated regions that are not only classified as introgressed, but also for which the direction of gene flow was correctly inferred (i.e. if the direction is inferred with 100% accuracy for a given cell in the heatmap, the color shade of that cell will be identical to that in the heatmap on the left). The false positive rate, as determined from applying FILET to a simulated test set with no migration, is also shown.
Fig. 2. Inferred joint population history of *D. simulans* and *D. sechellia*, and power to detect introgression under this model. (A) The parameterization of our best-fitting demographic model. Migration rates are shown by arrows, and are in units of $2 \times N_{anc} m$, where m is the probability of migration per individual in the source population per generation. (B) Confusion matrix showing FILET’s classification accuracy under this model as assessed on an independent simulated test set. Perfect accuracy would be 100% along the entire diagonal from top-left to bottom-right, and the false positive rate is the sum of top-middle and top-right cells.
Fig. 3. A large genomic region on 3R classified by FILET as introgressed from *D. simulans* to *D. sechellia*. Values of the d_{d-sim} and d_{min} (upper two panels) within each 10 kb window in the region are shown, along with the posterior probability of introgression from FILET (i.e. $1 - P(\text{no introgression})$). Clustered regions classified as introgressed are shown as gray rectangles superimposed over these probabilities. Also shown are windowed values of π in *D. sechellia*, with the sweep region highlighted in red, and the locations of annotated genes with associated FlyBase identifiers (Gramates et al. 2017).
SUPPLEMENTAL FIGURE AND TABLE LEGENDS

Figure S1. Illustration of the difference in values of the d_{min} statistic calculated from joint population samples with and without introgression.

Figure S2. Violin plots showing the values of d_{min}, all four d_{l} statistics, and Z_{X} under simulated scenarios including introgression or lacking it for each values of T_{D}. The values of these statistics were obtained from the training data sets described in the Materials and Methods.

Figure S3. Heatmaps showing several methods’ sensitivity to detect introgression. Same as Figure 1, but for other values of T_{D}. (A) Accuracy for d_{min} and G_{min} when $T_{D} = 1\times4N$ generations. (B) Accuracy of FILET when $T_{D} = 1\times4N$. (C) and (D) show the same when $T_{D} = 4\times4N$. (E) and (F) show the same when $16\times4N$.

Figure S4. ROC curves showing power of FILET, d_{min} and G_{min} under each value of T_{D}. In order to generate these curves we transformed the classification task into a binary one: discriminating between isolation and introgression in either direction. (A) $T_{D} = 0.25\times4N$ generations. (B) $T_{D} = 1\times4N$ generations. (C) $T_{D} = 4\times4N$. (D) $T_{D} = 16\times4N$. Training and test sets for these problems contained equal numbers of examples of introgression from population 1 into 2 and introgression from population 2 into 1.

Figure S5. Population structure within *D. sechellia*. (A) The top three principal components of all *D. sechellia* diploid genomes. The cluster on the left shows the individuals from Praslin, while the cluster on the right shows all other individuals. Note that the cluster on the right is far less dispersed due to the very small amount of polymorphism among these individuals. The numbers in parentheses on each axis show the fraction of the variance explained by each principal component. (B) Results of running fastStructure on our *D. sechellia* samples with the number of subpopulations (K) ranging from 2 to 8.

Figure S6. Site frequency spectra of *D. sechellia* samples from Praslin, *D. sechellia* samples from all other locations, and *D. simulans* samples. The *D. sechellia* samples were both downsampled to $n=12$ as described in the text, while *D. simulans* was downsampled to $n=18$ (i.e. the same sample sizes used for our demographic inference). These SFS show the fraction of all polymorphisms found in each bin rather than the raw number of polymorphisms, and thus do not contain information about the total number of SNPs. As described in the text, there is >12-fold more polymorphism in the Praslin samples than in the non-Praslin samples.

Figure S7. Confusion matrix showing FILET’s classification accuracy when trained under our inferred model of the *simulans-sechellia* joint demographic history, but applied to test data generated under a different model (described in Materials and Methods and shown in Table S3).
under this model as assessed on an independent simulated test set. Perfect accuracy would be
100% along the entire diagonal from top-left to bottom-right, and the false positive rate is the
sum of top-middle and top-right cells.

Table S1. Feature importance and rankings for each classifier used in this study.

Table S2. Sampling location, sequencing/mapping statistics, and SRA identifiers for each
genome included in this study.

Table S3. Demographic parameter estimates inferred by $\partial a \partial i$, along with a simple naïve model.