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ABSTRACT 17 
 18 
Hybridization and gene flow between species appears to be common. Even though it is clear that 19 
hybridization is widespread across all surveyed taxonomic groups, the magnitude and 20 
consequences of introgression are still largely unknown. Thus it is crucial to develop the 21 
statistical machinery required to uncover which genomic regions have recently acquired 22 
haplotypes via introgression from a sister population. We developed a novel machine learning 23 
framework, called FILET (Finding Introgressed Loci via Extra-Trees) capable of revealing 24 
genomic introgression with far greater power than competing methods. FILET works by 25 
combining information from a number of population genetic summary statistics, including 26 
several new statistics that we introduce, that capture patterns of variation across two populations. 27 
We show that FILET is able to identify loci that have experienced gene flow between related 28 
species with high accuracy, and in most situations can correctly infer which population was the 29 
donor and which was the recipient. Here we describe a data set of outbred diploid Drosophila 30 
sechellia genomes, and combine them with data from D. simulans to examine recent 31 
introgression between these species using FILET. Although we find that these populations may 32 
have split more recently than previously appreciated, FILET confirms that there has indeed been 33 
appreciable recent introgression (some of which might have been adaptive) between these 34 
species, and reveals that this gene flow is primarily in the direction of D. simulans to D. 35 
sechellia.  36 
 37 
 38 
 39 
 40 
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AUTHOR SUMMARY 41 
 42 
Understanding the extent to which species or diverged populations hybridize in nature is 43 
crucially important if we are to understand the speciation process. Accordingly numerous 44 
research groups have developed methodology for finding the genetic evidence of such 45 
introgression. In this report we develop a supervised machine learning approach for uncovering 46 
loci which have introgressed across species boundaries. We show that our method, FILET, has 47 
greater accuracy and power than competing methods in discovering introgression, and in 48 
addition can detect the directionality associated with the gene flow between species. Using whole 49 
genome sequences from Drosophila simulans and Drosophila sechellia we show that FILET 50 
discovers quite extensive introgression between these species that has occurred mostly from D. 51 
simulans to D. sechellia. Our work highlights the complex process of speciation even within a 52 
well-studied system and points to the growing importance of supervised machine learning in 53 
population genetics.  54 
  55 
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INTRODUCTION 56 
 57 
Up to 10% of animal [1] and plant [2] species have the ability to hybridize with other species. 58 
Our recent ability to collect large-scale genomic data has confirmed that hybridization is 59 
common in nature. Indeed the ubiquity of hybridization upon secondary contact raises the 60 
question of how large a role hybridization plays in the emergence or collapse of new lineages 61 
[3].  62 

Three general patterns have emerged from recent efforts to search for introgression in 63 
genomic data. First, whole-genome sequencing has shown that introgression occurs in all taxa 64 
for which its signature has been systematically sought (primates reviewed in [4], plants in [5, 6], 65 
fungi [7] and oomycetes in [8]). In general, genetic exchange between species through fertile 66 
hybrids might be common between closely related species [9-13] but can also occur between 67 
divergent species [14-17].  68 

Second, introgression is heterogeneously distributed across the genome. For instance, 69 
mitochondrial genome exchange is surprisingly common (e.g., [18-20] among many) between 70 
species, whereas sex chromosomes are less likely to cross species-boundaries, perhaps due to 71 
their disproportionate role in hybrid incompatibilities [17, 21-24]. Generally it seems that 72 
functional regions of the genome might be less likely to participate in introgression. This is 73 
perhaps best known from the case of Neanderthal hybridization with non-African human 74 
populations [25, 26], which has left modern human genomes distinct gradients of introgression 75 
across different functional compartments of the genome.  76 

Finally, the mode and intensity of natural selection acting on introgressed DNA can vary 77 
substantially. Loci that contribute to reproductive isolation, and as such to the persistence of 78 
species in the face of hybridization, should be less likely to be introgressed [27] as a result of 79 
purifying selection in hybrids. Additionally, introgressed haplotypes containing mildly 80 
deleterious variants may be purged after migrating into a population with a larger effective size 81 
where selection is more effective [28, 29]. On the other hand, much of the genome may be 82 
porous to introgression between closely related species if the net effect of such introgressed 83 
variation is fitness neutral. Of course genetic exchange between populations can also provide a 84 
source of adaptive alleles that may facilitate adaptation to new environments (reviewed in ref. 85 
[30]). Introgressions have indeed been shown to be involved in adaptation in animals (e.g. [31-86 
33]), plants (e.g. [34]) and fungi [35]. For instance, adaptation to high altitude in Tibetans 87 
appears to have been caused by introgression of alleles from an archaic Denisovan-like source 88 
into modern humans [36]. Another particularly well-studied system of adaptive introgression 89 
comes from Heliconius butterflies where gene exchange has facilitated the origin and 90 
maintenance of mimetic rings [32] and even of hybrid species [37, 38].  91 

Clearly, hybridization and introgression play an important role in shaping the landscape 92 
of genetic variation, thus if we wish to fully understand its evolutionary role a reliable 93 
framework for the inference of introgressed alleles is needed. Approaches to detect introgression 94 
in the genome fall into a few different camps. Genome-wide approaches can identify whether 95 
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admixture has occurred in a set of populations. These include clustering methods which seek to 96 
infer which individuals are admixed and to assign a proportion of admixture to each individual 97 
without previous knowledge of the parental populations [39-41]. Some genome-wide approaches 98 
instead attempt to infer the directionality of introgression by examining allele frequency 99 
differences among populations [25, 42]. The main limitation of this class of methods is that they 100 
cannot identify which regions of the genome are likely to have crossed species boundaries.  101 

On the other hand, locus-specific ancestry approaches (e.g. [43-47]) seek to uncover the 102 
mosaic of ancestry for each sampled haplotype, and thus can also identify portions of haplotypes 103 
that have been introgressed between species or populations. These fine-resolution approaches are 104 
powerful but often have assumptions and requirements that cannot be fulfilled in many taxa 105 
which range from the need of phased haplotypes to recombination maps. The main limitation of 106 
these approaches is that many require a set of reference haplotypes—individuals known to be 107 
unadmixed representatives of either population—in order to properly infer the origin of each 108 
allele in each (non-reference) sample haplotype.  109 

The last family of approaches designed to uncover introgressed loci has focused on the 110 
use of relative and absolute levels of divergence measured in genomic windows. Largely such 111 
methods have consisted of new summary statistics that capture elements of the expected 112 
coalescent genealogy under a model of recent introgression between species. These approaches 113 
have the advantage that no donor or recipient populations must be identified a priori. Among the 114 
measurements of divergence, FST [48] is most commonly used. Another popular point of 115 
departure has been the dxy statistic of Nei and Li [49] which measures the average pairwise 116 
distance between alleles sampled from two populations. For instance, Joly et al. [50], Geneva et 117 
al. [51] and Rosenzweig et al. [52] use the minimum rather than the mean of these pairwise 118 
divergence values, termed dmin. dmin is sensitive to abnormally short branch lengths between 119 
alleles drawn from two populations, as would be expected when introgression is recent. Each of 120 
these statistics has attractive properties and adequate power in some instances, however no one 121 
statistic has perfect sensitivity in every scenario. 122 

Here we introduce a new method for finding introgressed loci based on supervised 123 
machine learning that we call FILET (Finding Introgressed Loci using Extra Trees Classifiers). 124 
FILET combines a large number of summary statistics (Materials and Methods) that provide 125 
complementary information about the shape of the genealogy underlying a region of the genome. 126 
These summary statistics include both previously developed statistics (including, but not limited 127 
to, those based on dmin and dxy) as well as 5 new summary statistics that we describe below. Our 128 
reasoning for this approach was that by combining many statistics for detecting introgression we 129 
should achieve sensitivity to introgression across a larger range of scenarios than accessible to 130 
any individual statistic. Buoyed by our recent work showing the power and flexibility of Extra 131 
Trees classifiers [53] for population genomic inference [54, 55], we leveraged this machine 132 
learning paradigm for identification of introgression. Using simulations we show that FILET is 133 
far more powerful and versatile than competing methods for identifying introgressed loci. 134 
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Further we apply FILET to examine patterns of introgression between Drosophila simulans and 135 
its island endemic sister taxon Drosophila sechellia. 136 

The speciation event that gave rise to the island endemic Drosophila sechellia from a 137 
Drosophila simulans-like ancestor is a textbook example of a specialist species that evolved 138 
from a presumably generalist ancestor [56, 57]. Indeed, D. sechellia has quite remarkably 139 
specialized to breed on the toxic fruit of Morinda citrifolia [58], while D. simulans (and D. 140 
mauritiana) do not tolerate the organic volatile compounds in the ripe fruit [59-61]. The genetic 141 
and neurological underpinnings of this key ecological difference have been identified, at least in 142 
part [62-67] making the D. simulans/D. sechellia pair one of the most successful cases of genetic 143 
dissection of the causes of an ecologically relevant trait. While this is so, the population genetics 144 
of divergence between these species has only been examined in the context of either population 145 
samples from a handful of loci [68-71] or in the absence of population data [72]. These studies 146 
estimated population divergence time between D. simulans and D. sechellia to be as early as 147 
~250,000 years ago [72] or as old as ~413,000 years ago [70]. All population genomic surveys 148 
demonstrate that D. sechellia harbors little genetic variation in comparison to D. simulans, 149 
perhaps as a result of a population size crash/founder event from which the population has not 150 
recovered [68, 71]. Moreover it has been suggested that what little variation there is in D. 151 
sechellia shows little population genetic structure among separate island populations in the 152 
Seychelles archipelago [71]. Lastly there is some evidence of introgression between each pair of 153 
species within the D. simulans complex [72], and D. simulans and D. sechellia have been found 154 
to hybridize in the field [73]. Here we characterize the population genetics of divergence 155 
between D. sechellia and D. simulans, combining existing whole-genome sequences from a 156 
mainland population of D. simulans [74] with newly generated genome sequences from D. 157 
sechellia. Applying FILET to these data confirms previous reports of introgression between 158 
these species and reveals that this gene flow is primarily in the direction of D. simulans to D. 159 
sechellia. Finally, the success of our approach underscores the potential power of supervised 160 
machine learning for evolutionary and population genetic inference. 161 
 162 
MATERIALS AND METHODS 163 
 164 
Statistics capturing the population genetic signature of introgression  165 
 166 
We set out to assemble a set of statistics that could be used in concert to reliably determine 167 
whether a given genomic window had experienced recent gene flow. Several statistics that have 168 
been designed to this end ask whether there is a pair of samples exhibiting a lower than expected 169 
degree of sequence divergence within the window of interest. The most basic of these is dmin, the 170 
minimum pairwise divergence across all cross-population comparisons (S1 Fig; [50]). The 171 
reasoning behind dmin is that even if only a single sampled individual contains an introgressed 172 
haplotype, dmin should be lower than expected and the introgression event may be detectable. A 173 
related statistic is Gmin, which is equal to dmin/dxy [51]; the presence of this term in the 174 
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denominator is meant to control for variation in the neutral mutation rate across the genome. 175 
RNDmin accomplishes this by dividing dmin by the average divergence of all sequences from either 176 
species to an outgroup sequence [52]. The name of this statistic is derived from its constituent 177 
parts, dmin, and RND [75]. 178 

As described in the following section, we incorporated a number of previously devised 179 
statistics into our classification approach, including some of those based on dmin. We also 180 
included some novel statistics that we designed to have improved sensitivity to particularly 181 
recent introgression. The first of these is defined as: 182 

dd1 = dmin/π1 183 
where π1 is nucleotide diversity [49] in population 1. Similarly, dd2 = dmin/π2. dd1 and dd2 statistics 184 
are so named because they compare dmin to diversity within populations 1 and 2, respectively. 185 
The rationale behind these statistics is that, if there has been recent introgression from population 186 
1 into population 2, and at least one sampled chromosome from population 2 contains the 187 
introgressed haplotype, then the cross-population pair of individuals yielding the value of dmin 188 
should both trace their ancestry to population 1. Thus, the sequence divergence between these 189 
two individuals should on average be equal to π1. Similarly, if there was introgression in the 190 
reverse direction dmin would be on the order of π2. Following similar rationale, we devised two 191 
related statistics: dd-Rank1 and dd-Rank2. dd-Rank1 is the percentile ranking of dmin among all pairwise 192 
divergences within population 1; the value of this statistic should be lower when there has been 193 
introgression from population 1 into population 2. dd-Rank2 is the analogous statistic for 194 
introgression from population 2 into population 1. We also included a statistic comparing 195 
average linkage disequilibrium within populations to average LD within the global population 196 
(i.e. lumping all individuals from both species together), as follows: 197 

ZX = (ZnS1 + ZnS2) / (2 × ZnSG) 198 
where ZnS1, and ZnS2 measure average LD [76] between all pairs of variants within the window in 199 
population 1 and population 2, respectively, and ZnSG which measures LD within the global 200 
population. The reasoning behind this statistic is based on the assumption that, in the presence of 201 
gene flow, LD may be elevated within the recipient population(s) but not in the global 202 
population. S2 Fig shows that the distributions of these statistics do indeed differ substantially 203 
between genealogies with and without introgression (simulation scenarios described below), 204 
especially when this introgression occurred recently. In addition to these and other statistics 205 
summarizing diversity across the two population samples, we also incorporated several single-206 
population statistics into our classifier (see below), as these may also contain information about 207 
recent introgression. For example, separate measures of nucleotide diversity in our two 208 
population samples would contain useful information because introgression is expected to 209 
increase diversity in the recipient population, especially if the source population was large or if 210 
the two populations split long ago. 211 
 212 
Description of FILET classifier 213 

 214 
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We used a supervised machine learning approach to assign a genomic window to one of three 215 
distinct classes on the basis of a “feature vector” consisting of a number of statistics 216 
summarizing patterns of variation within the window from two closely related populations. 217 
These three classes are: introgression from population 1 into population 2, introgression from 218 
population 2 into population 1, and the absence of introgression. Specifically, we used an Extra-219 
Trees classifier [53], which is an extension of random forests [77], an ensemble learning 220 
technique that creates a large ensemble of semi-randomly generated binary decision trees [78], 221 
before taking a vote among these decision trees in order to decide which class label should be 222 
assigned to a given data instance (i.e. genomic window in our case). In an Extra-Trees classifier, 223 
the tree building process is even more randomized than in typical random forests: in addition to 224 
selecting a random subset of features when generating a tree, the separating threshold for each 225 
feature is randomly chosen, rather than selected the threshold that optimally separates the data 226 
classes. We require example regions for each class in order to train the Extra-Trees classifier, so 227 
we used coalescent simulations to generate these training examples (described below). Our 228 
ultimate goal was to detect introgression within 10 kb windows in Drosophila, so to train our 229 
classifier properly we simulated chromosomal regions approximating this length (simulation 230 
details are given below). The target window size could easily be altered by changing the length 231 
of the regions simulated for training (i.e. by adjusting the recombination and mutation rates, θ 232 
and ρ). 233 

FILET's feature vector contains a number of single-population summaries of per-base 234 
pair genetic variation: π, the variance in pairwise distances among individuals, the density of 235 
segregating sites, the density of polymorphisms private to the population, Fay and Wu's H and θH 236 
statistics [79], and Tajima's D [80]. The feature vector also includes two single-population 237 
summary statistics that are not normalized per base pair: ZnS (which is averaged across all pairs 238 
of SNPs), and the number of distinct haplotypes observed in the window. Each feature vector 239 
included values of these 9 statistics for each population, yielding 18 single-population statistics 240 
in total. In addition, the two-population statistics included in FILET's feature vector were as 241 
follows: FST (following ref. [81]), Hudson's Snn [82], per-bp dxy, per-bp dmin, Gmin, dd1, dd2, dd-242 
Rank1, dd-Rank2, ZX, IBSMaxB (the length of the maximum stretch of identity by state, or IBS, among 243 
all pairwise between-population comparisons), and IBSMean1 and IBSMean2 which capture the 244 
average IBS tract length when comparing all pairs of sequences within populations 1 and 2, 245 
respectively. These IBS statistics are calculated by examining all pairs of individual sequences 246 
within a population (or across populations in the case of IBSMaxB), noting the positions of 247 
differences, and examining the distribution of lengths between these positions (as well as 248 
between the first position and the beginning of the window and between the last position and the 249 
end of the window). Note that we did not include RNDmin or other measures such as Patterson’s 250 
D and F4 statistics [83] that require alignment to one or more additional species along with the 251 
focal pair, because we designed FILET so that it would not require outgroup information. We 252 
note however that through its use of supervised machine learning, FILET could easily be 253 
extended to incorporate such data. Instead, in order to improve robustness to mutational 254 
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variation, we adopted the approach of drawing the mutation rate from a wide range of values 255 
when generating training examples to train FILET to classify data from our Drosophila samples 256 
(see below). All code necessary to run the FILET classifier (including calculating summary 257 
statistics on both simulated and real data sets, training, and classification) along with the full 258 
results of our application to D. simulans and D. sechellia (described below) are available at 259 
https://github.com/kern-lab/FILET/. 260 

 261 
Simulated test scenarios 262 

 263 
Following Rosenzweig et al. [52], we used the coalescent simulator msmove 264 
(https://github.com/geneva/msmove) to simulate data for testing FILET’s power to detect 265 
introgression in populations with four different values of TD (the time since divergence): 266 
0.25×4N, 1×4N, 4×4N, and 16×4N generations ago, where N is the population size. For each of 267 
these simulations the population size was held constant (i.e. the ancestral population size equals 268 
that of both daughter populations). We developed a classifier for each of these scenarios of 269 
population divergence. Supervised machine learning techniques such as the Extra-Trees 270 
classifier require training data consisting of examples from each of the three classes, but in 271 
practice a large number of example loci known to have experienced introgression may not be 272 
available. We therefore simulated training data sets for each of the four values of TD. Again 273 
following Rosenzweig et al. [52], the relevant parameters for each of these simulations include: 274 
TM, the time since the introgression event, which we drew from {0.01×TD, 0.05×TD, 0.1×TD, 275 
0.15×TD, …, 0.9×TD} (i.e. multiples of 0.05×TD up to 0.9, and also including 0.01×TD); and PM, 276 
the probability that a given lineage would migrate from the source population to the sink 277 
population during the introgression event, which we drew from {0.05, 0.1, 0.15, … , 0.95}. We 278 
simulated an equal number of training examples for each combination of these two parameter 279 
values for both directions of gene flow, yielding 104 simulations in total for both of these classes, 280 
conditioning that each of these instances must have contained at least one migrant lineage. 281 
Finally, we simulated an equivalent number of samples without introgression, yielding a 282 
balanced training set (104 examples for each class).  283 

Next, we computed feature vectors as described above for each of these training 284 
examples, and proceeded with training our Extra-Trees classifiers by conducting a grid search of 285 
all training parameters precisely as described in Schrider and Kern [54], and setting the number 286 
of trees in the resulting ensemble to 100. All training and classification with the Extra-Trees 287 
classifier was performed using the scikit-learn Python library (http://scikit-learn.org; [84]). We 288 
also calculated feature importance and rankings thereof by training an Extra-Trees classifier of 289 
500 decision trees on the same training data (using scikit-learn’s defaults for all other learning 290 
parameters), and then using this classifier’s “feature_importances_” attribute. Briefly, this 291 
feature importance score is the average reduction in Gini impurity contributed by a feature across 292 
all trees in the forest, always weighted by the probability of any given data instance reaching the 293 
feature’s node as estimated on the training data [85]; this measure thus captures both how well a 294 
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feature separates data into different classes and how often the feature is given the opportunity to 295 
split (i.e. how often it is visited in the forest). The values of these scores are then normalized 296 
across all features such that they sum to one. 297 

For each TD, we evaluated the appropriate classifier against a larger set of 104 simulations 298 
generated for each parameter combination along a grid of values of TM and PM. The values of PM 299 
were drawn from the same set as those in training as described above, while one additional 300 
possible value of TM was included: 0.001×TD. Also note that for these simulations we did not 301 
require at least one migrant lineage as we had done for training (information that is recorded by 302 
msmove). For test simulations with bidirectional migration, we did not require each replicate 303 
sample to contain at least one migrant lineage, though we modified msmove to record which 304 
samples did in fact experience migration. In addition to test examples for each direction of gene 305 
flow, we simulated 104 examples where no migration occurred in order to assess false positive 306 
rates. In order to examine the performance of FILET when an unsampled ghost lineage was the 307 
source of introgression, we generated test simulations with the same values of TD, TM, and PM as 308 
above, but where the source of the introgression was a third, unsampled population that separated 309 
from the two sampled populations at time TD. In all of our simulations, both for training and 310 
testing, we set locus-wide population mutation and recombination rates θ and ρ to 50 and 250, 311 
respectively, similar to autosomal values in 10 kb windows in D. melanogaster [86] and sampled 312 
15 individuals from each population. We also experimented with different window sizes, 313 
simulating training and test data (1,000 replicates for each class for each set) with window sizes 314 
corresponding to 1 kb, 10 kb, 5 kb, and 50 kb by multiplying θ and ρ by the appropriate scalar. 315 
When testing the sensitivity of our method on these data, we considered a window to be 316 
introgressed if FILET’s posterior probability of the no-introgression class was <0.05, except for 317 
the scenario with TD equal to 16×4N generations ago in which case we used a posterior 318 
probability cutoff of 0.01, as we found that this step mitigated the elevated false positive rate 319 
under this scenario (reducing the rate from >10% to the estimate of 6% shown in S3 Fig). In 320 
windows labeled as introgressed, the direction of gene flow was determined by asking which of 321 
the two introgression classes had a higher posterior probability. Note that we used the same 322 
demographic scenario for both the training and test data for each TD, and discuss the implications 323 
of demographic model misspecification in the Results and Discussion. 324 

In order to compute receiver operator characteristic (ROC) curves we constructed 325 
balanced binary training sets composed of 104 examples with no introgression, and 104 examples 326 
allowing for introgression (with equal representation to each combination of TM, PM, and 327 
direction of introgression. The score that we obtained for each test example in order to compute 328 
the ROC curve was one minus the posterior probability of no introgression as generated by the 329 
Extra-Trees classifier (i.e. the classifier’s estimated probability of introgression, regardless of 330 
directionality). 331 
 332 
Comparison to ChromoPainter 333 
 334 
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We compared FILET’s accuracy to that of ChromoPainter [46], a software program that utilizes 335 
a variant of the copying model first proposed by Li and Stephens [87]. In this model each sample 336 
haplotype is a mosaic composed of chromosomal segments chosen from a set of possible 337 
ancestral haplotypes, allowing for differences caused by mutation and the potential for changes 338 
in ancestry at recombination breakpoints. Such an approach can thus be used to predict the 339 
ancestry of each individual at each polymorphism—these predictions are referred to as 340 
“paintings” by ChromoPainter. To this end we repeated our simulations above but increased the 341 
size of the chromosomal segments to 1 Mb by increasing θ and ρ to 5000 and 25000. In these 342 
simulations only gene flow from population 2 to population 1 was allowed, and we modified 343 
msmove to record the coordinates of introgressed segments, and to restrict introgression events 344 
to those involving segments falling entirely within the central 100 kb of the chromosome. For 345 
each combination of TM and PM we generated 10 replicate simulations, including 10 replicates 346 
without introgression. 347 
 We ran ChromoPainter with the following parameters: the “-a 0 0” switch to model each 348 
individual haplotype as a mosaic of each other individual rather than using a set of predefined 349 
reference haplotypes, “-i 10” and “-ip” options to estimate copying proportions over 10 350 
Expectation-Maximization (EM) iterations, and the default “-s 10” switch to stochastically draw 351 
10 chromosome paintings for each individual from the HMM following EM. We then used the 352 
output from ChromoPainter to predict introgressed chromosomal segments as follows: 353 
 For each polymorphism, we examine each haplotype i among our n haplotypes, and 354 
record which of the other n-1 haplotypes serves as the best ancestor for i in each of our 10 355 
paintings. We then examine each individual in population 2 (the recipient population), and count 356 
the number of paintings for which the ancestral haplotype is from population 1. If this number is 357 
> 5 (i.e. a majority) for any of our individuals in population 2, then we consider this focal 358 
polymorphism to be introgressed. If two adjacent polymorphisms are predicted to be 359 
introgressed, all sites between them are also considered to be introgressed. If only 1 360 
polymorphism is predicted, then just that one site is considered introgressed. We also produced a 361 
more stringent version of these predictions by only retaining introgressed segments consisting of 362 
at least 25 consecutive introgressed polymorphisms. Note that ChromoPainter requires base pair 363 
positions, and msmove uses an infinite sites model where polymorphisms are located in a 364 
continuous space between zero and one. Thus in order to perform this analysis we had to map 365 
msmove’s continuous locations to physical locations, which we accomplished by multiplying by 366 
106 and rounding to the nearest available position. 367 
 We compared ChromoPainter to a sliding-window application of FILET’s classifier for 368 
10 kb windows (with 1 kb step sizes). We also produced finer-scale FILET predictions using a 1 369 
kb classifier (with 100 bp step sizes) to refine predictions made by the 10 kb classifier: only 370 
sliding windows predicted as introgressed by the 1 kb classifier and lying within introgressed 371 
segments predicted by the 10 kb classifier were retained as candidates by this version. For the 372 
refinement step, FILET’s posterior probability cutoff for introgression was relaxed to 0.5 (i.e. 373 
introgression more probable than not); a more lenient cutoff is appropriate here because this 374 
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classifier was only applied within regions already predicted to be introgressed by the 10 kb 375 
classifier. 376 
 377 
Drosophila sechellia collection 378 
 379 
Drosophila sechellia flies were collected in the islands of Praslin, La Digue, Marianne and Mahé 380 
with nets over fresh Morinda fruit on the ground. All flies were collected in January of 2012. 381 
Flies were aspirated from the nets by mouth (1135A Aspirator – BioQuip; Rancho Domingo, 382 
CA) and transferred to empty glass vials with wet paper balls (to provide humidity) where they 383 
remained for a period of up to three hours. Flies were then lightly anesthetized using FlyNap 384 
(Carolina Biological Supply Company, Burlington, NC) and sorted by sex. Females from the 385 
melanogaster species subgroup were individualized in plastic vials with instant potato food 386 
(Carolina Biologicals, Burlington, NC) supplemented with banana. Propionic acid and a pupation 387 
substrate (Kimwipes Delicate Tasks, Irving TX) were added to each vial. Females were allowed 388 
to produce progeny and imported using USDA permit P526P-15-02964. The identity of the 389 
species was established by looking at the taxonomical traits of the males produced from 390 
isofemale lines (genital arches, number of sex combs) and the female mating choice (i.e., 391 
whether they chose D. simulans or D. sechellia in two-male mating trials). 392 
 393 
Sequence data and variant calling and phasing 394 
 395 
We obtained sequence data from 20 D. simulans inbred lines [74] from NCBI’s Short Read 396 
Archive (BioProject number PRJNA215932). We also sequenced wild-caught outbred D. 397 
sechellia females (see above) from Praslin (n=7 diploid genomes), La Digue (n=7), Marianne 398 
(n=2), and Mahé (n=7). These new D. sechellia genomes are available on the Short Read 399 
Archive (BioProject number PRJNA395473). For each line we then mapped all reads with bwa 400 
0.7.15 using the BWA-MEM algorithm [88] to the March 2012 release of the D. simulans 401 
assembly produced by Hu et al. [89] and also used the accompanying annotation based on 402 
mapped FlyBase release 5.33 gene models [90]. Next, we removed duplicate fragments using 403 
Picard (https://github.com/broadinstitute/picard), before using GATK’s HaplotypeCaller (version 404 
3.7; [91-93]) in discovery mode with a minimum Phred-scaled variant call quality threshold (-405 
stand_call_conf) of 30. We then used this set of high-quality variants to perform base quality 406 
recalibration (with GATK’s BaseRecalibrator program), before again using the HaplotypeCaller 407 
in discovery mode on the recalibrated alignments. For this second iteration of variant calling we 408 
used the --emitRefConfidence GVCF option in order to obtain confidence scores for each site in 409 
the genome, whether polymorphic or invariant. Finally, we used GATK’s GenotypeGVCFs 410 
program to synthesize variant calls and confidences across all individuals and produce genotype 411 
calls for each site by setting the --includeNonVariantSites flag, before inferring the most 412 
probable haplotypic phase using SHAPEIT v2.r837 [94]. The genotyping and phasing steps were 413 
performed separately for our D. simulans and D. sechellia data, and for each of step in the 414 
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pipeline outlined above we used default parameters unless otherwise noted. In order to remove 415 
potentially erroneous genotypes (at either polymorphic or invariant sites), we considered 416 
genotypes as missing data if they had a quality score lower than 20, or were heterozygous in D. 417 
simulans. After throwing out low-confidence genotypes, we masked all sites in the genome 418 
missing genotypes for more than 10% of individuals in either species’ population sample, as well 419 
as those lying within repetitive elements as predicted by RepeatMasker 420 
(http://www.repeatmasker.org). Only SNP calls were included in our downstream analyses (i.e. 421 
indels of any size were ignored). These phased and masked data are available at 422 
https://zenodo.org/record/1166021. 423 
 424 
Demographic inference 425 
 426 
Having obtained genotype data for our two population samples, we used 𝜕a𝜕i [95] to model their 427 
shared demographic history on the basis of the folded joint site frequency spectrum 428 
(downsampled to n=18 and n=12 in D. simulans and D. sechellia, respectively); using the folded 429 
spectrum allowed us to circumvent the step of producing whole genome alignments to outgroup 430 
species in D. simulans coordinate space in order to attempt to infer ancestral states. We used an 431 
isolation-with-migration (IM) model that allowed for continual exponential population size 432 
change in each daughter population following the split. This model includes parameters for the 433 
ancestral population size (Nanc), the initial and final population sizes for D. simulans (Nsim_0 and 434 
Nsim, respectively), the initial and final sizes for D. sechellia (Nsech_0 and Nsech, respectively), the 435 
time of the population split (TD), the rate of migration from D. simulans to D. sechellia 436 
(msim→sech), and the rate of migration from D. sechellia to D. simulans (msech→sim). We also fit our 437 
data to a pure isolation model that was identical to our IM model but with msim→sech and msech→sim 438 
fixed at zero. Finally, we fit our data to an admixture model identical to the isolation model but 439 
with the addition of two parameters: the time of a pulse admixture event from D. simulans into 440 
D. sechellia (TAD) and the proportion of individuals in D. sechellia migrating from D. simulans 441 
during this event (PAD). Our optimization procedure consisted of an initial optimization step 442 
using the Augmented Lagrangian Particle Swarm Optimizer [96], followed by a second step of 443 
optimization refining the initial model using the Sequential Least Squares Programming 444 
algorithm [97], both of which are included in the pyOpt package for optimization in Python 445 
(version 1.2.0; [98]) as in Schrider et al. [99]. We performed ten optimization runs fitting both of 446 
these models to our data, each starting from a random initial parameterization, and assessed the 447 
fit of each optimization run using the AIC score. Code for performing these optimizations can be 448 
obtained from https://github.com/kern-lab/miscDadiScripts, wherein 2popIM.py, 449 
2popIsolation.py, 2popIsolation_admixture.py fit the IM, isolation, and admixture models 450 
described above, respectively. For scaling times by years rather than numbers of generations, we 451 
assumed a generation time of 15 gen/year as has been estimated in D. melanogaster [100]. 452 
 453 
Training FILET to detect introgression between D. simulans and D. sechellia 454 
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 455 
Having obtained a demographic model that provided an adequate fit to our data, we set out to 456 
simulate training examples under this demographic history for each of our three classes (i.e. no 457 
migration, migration from D. simulans to D. sechellia, and from D. sechellia to D. simulans). For 458 
training examples including introgression, TM was drawn uniformly from the range between zero 459 
generations ago and TD/4, while PM raged uniformly from (0, 1.0]. In addition, in order to make 460 
our classifier robust to uncertainty in other parameters in our model, for each training example 461 
we drew values of each of the remaining parameters from [x−(x/2), x+(x/2)], where x is our point 462 
estimate of the parameter from 𝜕a𝜕i. In addition to the parameters from our demographic model 463 
(TD, ρ, Nanc, Nsim, and Nsech), these include the population mutation rate θ=4Nµ (where µ was set 464 
to 3.5×10-9), and the ratio of θ to the population recombination rate ρ (which we set to 0.2). 465 
Continuous migration rates were set to zero (i.e. the only migration events that occurred were 466 
those governed by the TM and PM parameters, and the no-migration examples were truly free of 467 
migrants). In total, this training set comprised of 104 examples from each of our three classes. 468 

As described above, we masked genomic positions having too many low confidence 469 
genotypes or lying within repetitive elements (described above) before proceeding with our 470 
classification pipeline. While doing so, we recorded which sites were masked within each 10 kb 471 
window in the genome that we would later attempt to classify. In order to ensure that our 472 
masking procedure affected our simulated training data in the same manner as our real data, for 473 
each simulated 10 kb window we randomly selected a corresponding window from our real 474 
dataset and masked the same sites in the simulated window that had been masked in the real one. 475 
We then trained our classifier in the same manner as described above. 476 

In order to ensure that this classifier would indeed be able to reliably uncover loci 477 
experiencing recent gene flow between our two populations, we assessed its performance on 478 
simulated test data. First, we applied the classifier to test examples simulated under this same 479 
model (again, 104 for each class). Next, to address the effect of demographic model 480 
misspecification, we applied our classifier to an isolation model with a different parameterization 481 
and no continuous size change in the daughter populations. For this model we simply set Nsim 482 
and Nsech to πsim/4µ and πsech/4µ, respectively, where π for a species is the average nucleotide 483 
diversity among all windows included in our analysis after filtering, and µ was again set to 484 
3.5×10-9. We then set Nanc to be equal to Nsim, and set T to dxy/(2µ) − 2Nanc generations where dxy 485 
is the average divergence between D. simulans and D. sechellia sequences across all windows. 486 
This latter value is simply the expected TMRCA for cross-species pairs of genomes, minus the 487 
expected waiting time until coalescence during the one-population (i.e. ancestral) phase of the 488 
model. This simple model thus produces samples with similar levels of nucleotide diversity for 489 
the two daughter populations as those produced under our IM model, but that would differ in 490 
other respects (e.g. the joint site frequency spectrum and linkage disequilibrium, which would be 491 
affected by continuous population size change after the split). For both test sets we masked sites 492 
in the same manner as for our training data before running FILET. 493 
 494 
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Classifying genomic windows with FILET 495 
 496 
We examined 10 kb windows in the D. simulans and D. sechellia genomes, summarizing 497 
diversity in the joint sample with the same feature vector as used for classification (see above), 498 
ignoring sites that were masked as described above. We omitted from this analysis any window 499 
for which >25% of sites were masked, and then applied our classifier to each remaining window, 500 
calculating posterior class membership probabilities for each class. We then used a simple 501 
clustering algorithm to combine adjacent windows showing evidence of introgression into 502 
contiguous introgressed elements: we obtained all stretches of consecutive windows with >90% 503 
probability of introgression as predicted by FILET (i.e. the probability of no-introgression class 504 
<10%), and retained as putatively introgressed regions those that contained at least one window 505 
with >95% probability of introgression. In order to test for enrichment of these introgressed 506 
regions for genic/intergenic sequence or particular Gene Ontology (GO) terms from the FlyBase 507 
5.33 annotation release [90], we performed a permutation test in which we randomly assigned a 508 
new location for each cluster or introgressed windows (ensuring the entire permuted cluster 509 
landed within accessible windows of the genome according to our data filtering criteria). We 510 
generated 10,000 of these permutations. 511 
 512 
RESULTS AND DISCUSSION 513 
 514 
FILET detects introgressed loci with high sensitivity and specificity 515 
 516 
We sought to devise a bioinformatic approach capable of leveraging population genomic data 517 
from two related population samples to uncover introgressed loci with high sensitivity and 518 
specificity. In the Materials and Methods, we describe several previous and novel statistics 519 
designed to this end. However, rather than preoccupying ourselves with the search for the ideal 520 
statistic for this task, we took the alternative approach of assembling a classifier leveraging many 521 
statistics that would in concert have greater power to discriminate between introgressed and non-522 
introgressed loci. Supervised machine learning methods have proved highly effective at making 523 
inferences in high-dimensional datasets and are beginning to make inroads in population genetics 524 
[101]. In this vein, we designed FILET, which uses an extension of random forests called an 525 
Extra-Trees classifier [53]. We previously succeeded in applying Extra-Trees classifiers for a 526 
separate population genetic task—finding recent positive selection and discriminating between 527 
hard and soft sweeps [54, 55]—though other methods such as support vector machines [102] or 528 
deep learning [103] could also be applied to this task. 529 
 Briefly, FILET assigns a given genomic window to one of three distinct classes—recent 530 
introgression from population 1 into population 2, introgression from population 2 into 1, or the 531 
absence of introgression—on the basis of a vector of summary statistics that contain information 532 
about the two-population sample’s history. This feature vector contains a variety of statistics 533 
summarizing patterns of diversity within each population sample, as well as a number of 534 
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statistics examining cross-population variation (see Materials and Methods for a full description). 535 
FILET must be trained to distinguish among these three classes, which we accomplish by 536 
supplying 10,000 simulated example genomic windows of each class, with each example 537 
represented by its feature vector. Because we expect that the majority of introgression events to 538 
be non-adaptive, these simulations did not include natural selection. Once this training is 539 
complete, FILET can then be used to infer the class membership of additional genomic windows, 540 
whether from simulated or real data. 541 
 We began by assessing FILET’s power on a number of simulated datasets, examining 542 
windows roughly equivalent to 10 kb in length in Drosophila (Materials and Methods). In 543 
particular, because the power to detect introgression depends on the time since their divergence, 544 
TD, we measured FILET’s performance under four different values of TD, training a separate 545 
classifier for each. In Figure 1 (TD=0.25×4N) and S3 Fig (TD values of 1, 4, and 16×4N), we 546 
compare FILET’s power to that of two related statistics that have been devised to detect 547 
introgressed windows, dmin and Gmin (Materials and Methods). These figures show that FILET 548 
has high sensitivity to introgression across a much wider range of introgression timings (TM) and 549 
intensities (PM) than either of these statistics under each value of TD, and that this disparity is 550 
amplified dramatically for smaller values of TD. Furthermore, these figures demonstrate that 551 
FILET infers the correct directionality of recent introgression with high accuracy, whereas dmin 552 
and Gmin contain no information about the direction of gene flow. Finally, FILET does not appear 553 
especially sensitive when the source of gene flow is an unsampled ghost population rather than 554 
one of the two sequenced populations (S4 Fig), though it could potentially be trained to detect 555 
such cases if desired. 556 

We also note that for dmin and Gmin we established 95% significance thresholds from our 557 
simulated training data without introgression, thereby achieving a false positive rate of 5%. In 558 
order to assess FILET’s false positive rate, we classified a set of test simulations without 559 
introgression and found that FILET’s false positive rate was considerably lower (Figure 1 and S3 560 
Fig) except for our largest value of TD, where it was initially higher (0.4% for TD=0.25×4N but 561 
>10% for TD=16×4N), despite our selection of a posterior probability cutoff of 95% (Methods). 562 
This illustrates an important issue with posterior probability estimates produced by supervised 563 
machine learning methods: they may occasionally be miscalibrated. We therefore adjusted the 564 
cutoff for the TD=16×4N scenario (to 99% probability of introgression) which lowered our false 565 
positive rate to 6% as shown in S3 Fig. Thus, when an appropriate posterior probability cutoff is 566 
chosen—a task that can be performed in a straightforward manner by testing on simulated data—567 
FILET achieves much greater sensitivity to introgression than dmin and Gmin often at a much 568 
lower false positive rate. We also demonstrate the FILET’s greater power than these statistics via 569 
ROC curves (S5 Fig), where it outperforms each statistic under each scenario. Specifically, the 570 
difference in power between FILET and dmin is dramatic for smaller values of TD (area under 571 
curve, or AUC, of 0.85 versus 0.73 when TD=0.25×4N for FILET and dmin, respectively) but 572 
comparatively miniscule for our largest TD (AUC of 0.94 versus 0.93 when TD=16×4N). It 573 
therefore appears that FILET’s performance gain relative to single statistics is highest for the 574 
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more difficult task of finding introgression between very recently diverged populations, while for 575 
the easier case of detecting introgression between highly diverged populations some single 576 
statistics may perform nearly as well. 577 

We also experimented with smaller training sets, finding similar classification power 578 
(measured by AUC) as above when we trained FILET using only 1000 or even 100 simulated 579 
examples per class (S6 Fig), though in the latter case estimated class posterior probabilities were 580 
far less accurate. In addition, we examined the effect of altering the target window size used 581 
when training and testing FILET (S7 Fig). 582 
 583 
A comparison of the power and resolution of FILET and ChromoPainter 584 
 585 
Methods designed to uncover changes in ancestry along a recombining chromosome within 586 
admixed populations can also be used to recover introgressed regions. To this end we used 587 
ChromoPainter [46] which has the advantage of not requiring a set of “reference haplotypes” 588 
known to be free of introgression from each population, and can instead predict for each 589 
haplotype, which of all the other haplotypes in the sample (from either population) is most 590 
closely related. We simulated two-population samples for 1 Mb chromosomes where 591 
introgression from population 2 to population 1 was allowed in the central 100 kb window, and 592 
used ChromoPainter to identify introgressed loci (see Methods). We then ran FILET on these 593 
simulations, this time using a sliding-window approach to detect introgressed segments 594 
(Methods). 595 

Figure 2 shows that FILET has substantially higher sensitivity than ChromoPainter—596 
summing across the entire parameter space (including many scenarios where introgression is 597 
quite difficult to detect) FILET recovered 27.7% of introgressed base pairs compared to 19.4% 598 
for ChromoPainter—while having a roughly 20-fold lower false positive rate (0.42% for FILET 599 
versus 9.31% for ChromoPainter). For scenarios with more ancient and less intense 600 
introgression, we did observe somewhat higher sensitivity in ChromoPainter’s predictions. 601 
However, this seems to be driven largely by ChromoPainter’s propensity to identify a larger 602 
fraction of base pairs as introgressed regardless of their true ancestry, as evidenced by its higher 603 
false positive rate. To demonstrate this further we show for the positive predictive value (the 604 
number of base pairs correctly predicted to be introgressed divided by the total number of base 605 
pairs predicted to be introgressed) for each method in S8 Fig. This figure shows that FILET’s 606 
positive predictive is consistently far higher than ChromoPainter’s. We sought to improve this by 607 
adopting a more stringent threshold for ChromoPainter’s predictions, requiring at least 25 608 
adjacent polymorphisms to be called introgressed in order to retain the candidate region. This 609 
approach did succeed at reducing the false positive rate to 1.15%, though this is still substantially 610 
higher than FILET’s, but this improvement came at the cost of ChromoPainter’s sensitivity, 611 
which was reduced to 8.6%, roughly one-third that of FILET (Figure 2 and S8 Fig). We also 612 
tried an intermediate threshold (5 polymorphisms), but did not observe a substantial increase in 613 
specificity compared to our initial more lenient approach (8.49% false positive rate). Thus, while 614 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2018. ; https://doi.org/10.1101/170670doi: bioRxiv preprint 

https://doi.org/10.1101/170670
http://creativecommons.org/licenses/by/4.0/


	

 17 

we cannot rule out that it may be possible to devise a method to leverage ChromoPainter’s model 615 
to predict introgression that exceeds the performance of our application of ChromoPainter here, 616 
our results suggest that it is unlikely that such an approach would eclipse the performance of 617 
FILET. We note that ChromoPainter does have the advantage of not requiring simulated training 618 
data. ChromoPainter also has the potential to identify donor and recipient haplotypes, which 619 
FILET currently does not, but the far greater power of FILET demonstrated above will make it 620 
preferable to many researchers who are interested in identifying introgressed regions. Moreover 621 
our above results imply that predictions of the span and origin of introgressed haplotypes made 622 
directly from ChromoPainter’s output may not always be particularly reliable. 623 

It is important to note that in the above simulations many introgressed regions will be 624 
considerably smaller than our 10 kb window size. This fact, combined with our use of accuracy 625 
measurements counting the number of individual base pairs correctly classified, makes the 626 
results presented above useful for evaluating FILET’s resolution and the impact of window size 627 
on our predictions. By these measures FILET outperforms ChromoPainter, which does not use 628 
windows and is only limited in scale by the density of polymorphisms. This suggests that when 629 
using sliding windows FILET is able to achieve adequate resolution regardless of its use of a 630 
predefined window size. Nonetheless we sought to improve our resolution further by using a 631 
finer-scale FILET classifier trained on 1 kb windows as described above to refine the location of 632 
putatively introgressed regions identified by the 10 kb classifier (see Methods). While this did 633 
marginally reduce our false positive rates and increase our positive predictive values (see Figure 634 
2 and S8 Fig), sensitivity was also somewhat reduced (to 25.7%; Figure 2). The relatively minor 635 
effect of adding this refinement step reinforces the notion that a predefined window size is not a 636 
major hindrance to our methods’ effectiveness. Thus for most applications a window size that 637 
yields enough polymorphisms to reliably calculate the statistics included in our feature vectors 638 
may suffice. 639 

Overall, FILET detects introgressed regions with greater power and resolution than 640 
ChromoPainter, a method designed to detect ancestry tracks along recombining chromosomes. 641 
However we note that many methods of this class exist, and it is possible that some may achieve 642 
greater accuracy in some circumstances (e.g. if reference haplotype panels are used). 643 

 644 
Sensitivity to continuous gene flow 645 
 646 
While FILET is designed for identifying particular genomic windows that experienced 647 
introgression as a result of a pulse migration event, genomic windows with genealogies that 648 
include introgression may of course also be produced by continuous migration, with the timing 649 
of geneflow varying from window to window. We therefore simulated genomic windows 650 
experiencing a variety of bidirectional migration rates under each of our values of TD and 651 
recorded the fraction of windows for which our sampled individuals contained at least one 652 
migrant lineage. Next, for each simulated window we applied the FILET classifier trained under 653 
the appropriate divergence time as described above, recording the fraction of windows with at 654 
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least one migrant lineage that were classified as introgressed by FILET. The results of these tests 655 
(S1 Table) show that for each value of TD, the lowest bidirectional migration rates that we tested 656 
do not produce migrant lineages, while higher rates will produce a small to modest fraction 657 
migrants, most of which are undetected (e.g. when m=0.01, 23% and 59% of windows contain at 658 
least one migrant when TD=0.25 and TD=1, respectively, but <5% are detected by FILET). Thus, 659 
FILET, as currently trained, may not be sensitive to gene flow produced by low levels of 660 
continuous migration. However, as the migration rate increases further, more and more of these 661 
migrant windows will be detected (e.g. when m=1, 70% and 100% of windows are detected as 662 
migrants by FILET when TD=0.25 and TD=1, respectively). 663 
 664 
Ranking the importance of statistics for detecting introgression 665 
 666 
Although our goal was to use a set of statistics to perform more accurate inference than possible 667 
using individual ones, another benefit of our Extra-Trees approach is that it also allows for a 668 
natural way to evaluate the extent to which different statistics are informative under different 669 
scenarios of introgression. To this end, we used the Extra-Trees classifier to calculate feature 670 
importance, which captures the ability of each statistic to separate the data into its respective 671 
classes (Materials and Methods). We find that for our lowest TD (a split N generations ago) the 672 
top four features, all with similar importance, are the density of private alleles in population 1, 673 
the density of private alleles in population 2, dd-Rank1, and dd-Rank2. For our next-lowest TD (4N 674 
generations ago), the top four, again with similar importance score estimates, are FST, ZX, dd1, and 675 
dd2. Thus our newly devised dd and ZX statistics seem to be particularly informative in the case of 676 
recent introgression between closely related populations. For the larger values of TD, dxy and dmin 677 
rise to prominence. The complete lists of feature importance for each TD are shown in S2 Table. 678 
 The exceptional accuracy with which FILET uncovers introgressed loci underscores the 679 
potential for machine learning methods to yield more powerful population genetic inferences 680 
than can be achieved via more conventional tools which are often based on a single statistic. 681 
Indeed, machine learning tools have been successfully leveraged in efforts to detect recent 682 
positive selection [54, 104-107], to infer demographic histories [108], or even to perform both of 683 
these tasks concurrently [109].  684 
 685 
Joint demographic history of D. simulans and D. sechellia 686 
 687 
As described in the Materials and Methods, we used publically available D. simulans sequence 688 
data [74], and collected and sequenced a set of D. sechellia genomes. We mapped reads from 689 
these genomes to the D. simulans assembly [89], obtaining high coverage >28× for each 690 
sequence (see sampling locations, mapping statistics, and Short Read Archive identifier 691 
information listed in S3 Table). We do not expect that our reliance on the D. simulans assembly 692 
resulted in any appreciable bias, as reads from our D. sechellia genomes were successfully 693 
mapped to the reference genome at nearly the same rate as reads from D. simulans (S3 Table). 694 
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 After completing variant calling and phasing (Materials and Methods), we performed 695 
principal components analysis on intergenic SNPs at least 5 kb away from the nearest gene in 696 
order to mitigate the bias introduced by linked selection [99, 110, 111]. While this is unlikely to 697 
completely eliminate the confounding effect of linked selection in Drosophila, the fraction of 698 
mutations that are deleterious is far greater in coding regions than in intergenic regions (~90% 699 
versus <50% according to [112]); thus it is reasonable to presume that the impact of linked 700 
selection is reduced several kilobases away from genes [113]. We observed evidence of 701 
population structure within D. sechellia. In particular, the samples obtained from Praslin 702 
clustered together, while all remaining samples formed a separate cluster (S9 FigA). Running 703 
fastStructure [114] on this same set of SNPs yielded similar results: when the number of 704 
subpopulations, K, was set to 2 (the optimal value for K selected by fastStructure’s chooseK.py 705 
script), our data were again subdivided into Praslin and non-Praslin clusters. Indeed, across all 706 
values of K between 2 and 8, fastStructure’s results were suggestive of marked subdivision 707 
between Praslin and non-Praslin samples, and comparatively little subdivision within the non-708 
Praslin data (S9 FigB). This surprising result differs qualitatively from previous observations 709 
from smaller numbers of loci [71, 115], and underscores the importance of using data from many 710 
loci—preferably intergenic and genome-wide—in order to infer the presence or absence of 711 
population structure.  712 

Next, we examined the site frequency spectra of the Praslin and non-Praslin clusters, 713 
noting that both had an excess of intermediate frequency alleles in comparison to that of the D. 714 
simulans dataset (S10 Fig), in line with our expectations of D. sechellia’s demographic history. 715 
We also note that the Praslin samples contained far more variation (50,243 sites were 716 
polymorphic within Praslin) than non-Praslin samples (4,108 SNPs within these samples). This 717 
difference in levels of variation may reflect a much lesser degree of population structure and/or 718 
inbreeding on the island of Praslin than across the other islands, or may result from other 719 
demographic processes. Additional samples from across the Seychelles would be required to 720 
address this question. In any case, in light of this observation we limited our downstream 721 
analyses of D. sechellia sequences to those from Praslin. 722 
 Because we required a model from which to simulate training data for FILET, we next 723 
inferred a joint demographic history of our population samples using 𝜕a𝜕i [95]. In particular, we 724 
fit three demographic models to our dataset: an isolation-with-migration (IM) model allowing for 725 
continuous population size change and migration following the population divergence, an 726 
isolation model with the same parameters but fixing migration rates at zero, and an isolation 727 
model with one burst of pulse migration from D. simulans into D. sechellia (Materials and 728 
Methods). In S4 Table we show our model optimization results, which show clear support for the 729 
IM model over the other models. The IM model that provided the best fit to our data (Figure 3A) 730 
includes a much larger population size in D simulans than D. sechellia (a final size of 9.3×106 731 
for D. simulans versus 2.6×104 for D. sechellia), consistent with the much greater diversity 732 
levels in D. simulans [10, 71]. This model also exhibits a modest rate of migration, with a 733 
substantially higher rate of gene flow from D. simulans to D. sechellia (2×Nancm=0.086) than 734 
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vice-versa (2×Nancm=0.013). Thus, the results of our demographic modeling are consistent with 735 
the observation of hybrid males in the Seychelles [73], and the possibility of recent introgression 736 
between these two species across a substantial fraction of the genome (see refs. [72, 116]). 737 
 An interesting characteristic of the model shown in Figure 3A is that, assuming 15 738 
generations per year, the estimated time of the D. simulans- D. sechellia population split is ~86 739 
kya, or 1.3×106 generations ago. This contrasts with a recent estimate of 2.5×106 generations ago 740 
from Garrigan et al. [72] which was based on single genomes rather than population genomic 741 
data, but did account for ancestral polymorphism, as did estimates from Obbard et al. [117] 742 
which yielded even older split times. Supporting our inference, we note that our average 743 
intergenic cross-species divergence of 0.017 yields an average TMRCA of ~2.5×106 generations 744 
ago, assuming a mutation rate of 3.5×10-9 mutations per generation as observed in D. 745 
melanogaster [112, 118], and this estimate would include the time before coalescence in the 746 
ancestral population. Unless the mutation rate the D. simulans species complex is substantially 747 
lower than in D. melanogaster, a population split time of 2.5×106 generations ago therefore 748 
seems unlikely given that the ancestral population size (and therefore the period of time between 749 
the population divergence and average TMRCA) was probably large (>500,000 by our estimate). 750 
Thus, we conclude that the D. simulans and D. sechellia populations may have diverged more 751 
recently than previously appreciated, perhaps within the last 100,000 years. 752 

Although the specific parameterization of our model should be regarded as a preliminary 753 
view of these species’ demographic history that is adequate for the purposes of training FILET, 754 
future efforts with larger sample sizes will be required to refine this model. That being said, the 755 
basic features of this model—a much larger D. simulans population size than sechellia, and a 756 
fairly large ancestral population size—are unlikely to change qualitatively.  757 
 758 
Widespread introgression from D. simulans to D. sechellia 759 
 760 
Accuracy and robustness of FILET under estimated model: Having obtained a suitable model of 761 
the D. simulans- D. sechellia joint demographic history, we proceeded to simulate training data 762 
and train FILET for application to our dataset (Materials and Methods). After training FILET 763 
and applying it to simulated data under the estimated demographic model, we find that we have 764 
good sensitivity to introgression (56% of windows with introgression are detected, on average), 765 
and a false positive rate of only 0.2% (Figure 3B). Thus, while we may miss some introgressed 766 
loci, we can have a great deal of confidence in the events that we do recover. Our feature 767 
rankings for this classifier are included in S2 Table—under this scenario the most informative 768 
feature is our newly devised dd-sim. Note that we achieve high accuracy despite some of the 769 
difficulties presented by the demographic model in Figure 3A, most notably the asymmetry in 770 
effective population sizes between our two species. Indeed, because our method is trained under 771 
this demographic history, such characteristics of genealogies produced under the assumed 772 
demographic history (such as asymmetry in π) with and without introgression become the signals 773 
used by FILET to make its classifications. 774 
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 As shown in Figure 3B we find that this classifier has greater sensitivity to introgression 775 
from D. sechellia to D. simulans than vice-versa. The cause of a stronger signal of D. sechellia→ 776 
D. simulans introgression can be understood from a consideration of the dmin statistic under each 777 
of our three classes. When there is no introgression, dmin will be similar to the expected 778 
divergence between D. simulans and D. sechellia; when there is introgression from D. simulans 779 
to D. sechellia, we may expect dmin to be proportional to πsim, which may only be a moderate 780 
reduction relative to the no-introgression case given the large population size in D. simulans; 781 
when there is introgression from D. sechellia to D. simulans then dmin is proportional to πsech 782 
which is dramatically lower than the expectation without introgression. While many of our 783 
statistics do not rely on dmin, this example illustrates an important property of the genealogies 784 
which include introgression from D. sechellia to D. simulans that would make them easier to 785 
detect than gene flow in the reverse direction. 786 

We also tested this classifier’s performance on a different demographic scenario (S4 787 
Table) in order to examine the effect of model misspecification during training. In particular, we 788 
devised a simple island model with two population sizes: a larger size for D. simulans and the 789 
ancestral population (7.6×105), and a smaller size for D. sechellia (5.7×104) with a split time of 790 
~59 kya. Our simple procedure for estimating these values is described in the Materials and 791 
Methods. Again, we find that we have good power to detect introgression with a very low false 792 
positive rate (0.28%; S11 Fig). Although there are myriad incorrect models that we could test 793 
FILET against, this example suggests that FILET’s performance is robust to at least some 794 
scenarios of demographic misspecification. 795 
 796 
Application to population genomic data: We applied FILET to 10,185 non-overlapping 10 kb 797 
windows that passed our data quality filters (101.85 Mb in total, or 86.7% of the five major 798 
chromosome arms; Materials and Methods). FILET classified 267 windows as introgressed with 799 
high-confidence, which we clustered into 94 contiguous regions accounting for 2.93% of the 800 
accessible portion of the genome (2.99 Mb in total; Materials and Methods). This finding is 801 
qualitatively similar to a previous estimate (4.6%) by Garrigan et al. [72] based on comparisons 802 
of single genomes from each species in the D. simulans complex. Unlike this previous effort, 803 
FILET is able to infer the directionality of introgression with high confidence (Figure 3B), and 804 
we find evidence that the majority of this introgression has been in the direction of D. simulans 805 
to D. sechellia: only 21 of the 267 (7.9%) putatively introgressed windows were classified as 806 
introgressed from sechellia to D. simulans. This finding is not a result of a detection bias, as we 807 
have greater power to detect gene flow from D. sechellia to D. simulans than in the reverse 808 
direction. Given that our D. simulans sequences are from the mainland, one interpretation of this 809 
result is that although there has been recent gene flow from D. simulans into the Seychelles, 810 
where D. simulans and D. sechellia occasionally hybridize, there does not appear to be an 811 
appreciable rate of back-migration to the mainland of D. simulans individuals harboring 812 
haplotypes donated from D. sechellia. On the other hand, D. sechellia alleles may often be 813 
purged from D. simulans by natural selection. This may be in part due to the reduced ecological 814 
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niche size of D. sechellia, such that any alleles which may introgress into D. simulans and lead to 815 
preference for or resistance to Morinda fruit may prove deleterious in other environments. More 816 
generally, D. sechellia haplotypes introgressing into D. simulans may harbor more deleterious 817 
alleles due to their smaller population size, which will be more effectively purged in the larger D. 818 
simulans population if mutations are not fully recessive [28]. Tests of these hypotheses will have 819 
to wait for a population sample of genomes from D. simulans collected in the Seychelles. 820 
 We asked whether our candidate introgressed loci were enriched for particular GO terms 821 
using a permutation test (Materials and Methods), finding no such enrichment. We did observe a 822 
deficit in the number of genes either partially overlapping or contained entirely within 823 
introgressed regions in our true set versus the permuted set; although a paucity of introgressed 824 
genes would be consistent with introgressed functional sequence often being deleterious, this 825 
difference was not significant (297 vs. 373.2, respectively; P=0.083; one-sided permutation test). 826 

One notable introgressed region on 3R that FILET identified had been previously found 827 
by Garrigan et al. as containing a 15 kb region of introgression. We show that gene flow in this 828 
region actually extends for over 200 kb (Figure 4). When Brand et al. [119] sequenced the 15 kb 829 
region originally flagged by Garrigan et al. in a number of D. simulans and D. sechellia 830 
individuals, they also uncovered evidence of a selective sweep in D. sechellia originating from 831 
an adaptive introgression from D. simulans. Our data set also supports the presence of an 832 
adaptive introgression event at this locus: a 10 kb window lying within the putative sweep region 833 
(highlighted in Figure 4) is in the lower 5% tail of both dmin (consistent with introgression) and 834 
πsech (consistent with a sweep in sechellia); this is the only window in the genome that is in the 835 
lower 5% tail for both of these statistics. This region contains two ionotropic glutamate 836 
receptors, CG3822 and Ir93a, which may be involved in chemosensing among other functions 837 
[120], and the latter of which appears to play a role in resistance to entomopathogenic fungi 838 
[121]. Also near the trough of variation within D. sechellia are several members of the Turandot 839 
gene family, which are involved in humoral stress responses to various stressors including heat, 840 
UV light, and bacterial infection [122, 123], and perhaps parasitoid attack as well [124]. On the 841 
other hand, Brand et al. [119] hypothesize that the target of selection may be a transcription 842 
factor binding hotspot between RpS30 and CG15696, and the phenotypic target of this sweep 843 
remains unclear. 844 

Interestingly, this particular window is the only one in this region that is classified by 845 
FILET as having recent gene flow from D. sechellia to D. simulans. However this classification 846 
may be erroneous as one might expect FILET, which was not trained on any examples of 847 
adaptive introgression, to make an error in such a scenario because rather than gene flow 848 
increasing polymorphism in the recipient population, diversity is greatly diminished if the 849 
introgressed alleles rapidly sweep toward fixation. We note that this window is immediately 850 
flanked by a large number of windows classified as introgressed from D. simulans to D. sechellia 851 
and which show a large increase in diversity in the recipient population as expected. Moreover, 852 
Brand et al.’s phylogenetic analysis of introgression in this region also supported gene flow in 853 
this direction. Brand et al. also found evidence suggesting that the introgressed haplotype began 854 
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sweeping to higher frequency in D. simulans (though it has not reached fixation in this species) 855 
prior to the timing of the introgression and subsequent sweep in D. sechellia. Thus we conclude 856 
that the adaptive allele probably did indeed originate in D. simulans before migrating to D. 857 
sechellia, and FILET’s apparent error in this case underscores the genealogical differences 858 
between adaptive gene flow and introgression events involving only neutral alleles. 859 
 860 
Concluding remarks 861 
 862 
Here we present a novel machine learning approach, FILET, that leverages population genomic 863 
data from two related populations in order to determine whether a given genomic window has 864 
experienced gene flow between these populations, and if so in which direction. We applied 865 
FILET to a set of D. simulans genomes as well as a new set of whole genome sequences from the 866 
closely related island endemic D. sechellia, confirming widespread introgression and also 867 
inferring that this introgression was largely in the direction of D. simulans to D. sechellia. Future 868 
work leveraging D. simulans data sampled from the Seychelles will be required to determine 869 
whether this asymmetry is a consequence of low rate of migration of D. simulans back to 870 
mainland Africa (where our D. simulans data were obtained), or whether the directionality of 871 
gene flow is biased on the islands themselves. In addition to creating FILET, we devised several 872 
new statistics, including the dd statistics and ZX which our feature rankings show to be quite 873 
useful for uncovering gene flow. 874 

Despite the success of FILET on both simulated data sets and real data from Drosophila, 875 
there are several improvements that could be made. First, by framing the problem as one of 876 
parameter estimation (i.e. regression) rather than classification, we may be able to precisely infer 877 
the values of relevant parameters of introgression events (i.e. the time of the event and the 878 
number of migrant lineages). Deep learning methods, which naturally allow for both 879 
classification and regression, may prove particularly useful for this task [103]. Indeed, Sheehan 880 
and Song [109] used deep learning to infer demographic parameters (regression) while 881 
simultaneously identifying selective sweeps (classification). Another step we have not taken is to 882 
explicitly handle adaptive introgression, which could potentially greatly improve our approach’s 883 
power to detect such events. 884 

While population genetic inference has traditionally relied on the design of a summary 885 
statistic sensitive to the evolutionary force of interest, a number of highly successful supervised 886 
machine learning methods have been put forth within the last few years [54, 104-109]. These 887 
methods are often thought of as black boxes, a characterization that may not always be fair [125]. 888 
Indeed in the context of evolutionary genetics such machine learning approaches are easily 889 
interpreted as we have strong generative models that guide our intuition. Nonetheless, classical 890 
statistical estimation from parametric models may often be more interpretable. Hybrid 891 
approaches combining machine learning techniques with Bayesian approaches to estimate 892 
posterior distributions of evolutionary parameters (e.g. [127]) thus represent an attractive 893 
alternative to either approach in their “pure” form. As genomic data sets continue to grow, we 894 
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argue that machine learning approaches—in whatever shape they eventually take—leveraging 895 
high dimensional feature spaces have the potential to revolutionize evolutionary genomic 896 
inference. 897 
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 1221 
Fig. 1. Heatmaps showing several methods’ sensitivity to detect introgression. We show the 1222 
fraction of simulated genomic regions with introgression occurring under various combinations 1223 
of migration times (TM, shown as a fraction of the population divergence time TD) and intensities 1224 
(PM, the probability that a given lineage will be included in the introgression event) that are 1225 
detected successfully by each method. (A) Accuracy of dmin and Gmin statistics, where a simulated 1226 
region is classified as introgressed if the values of these statistics are found in the lower 5% tail 1227 
of the distribution under complete isolation (from simulations). Thus, the false positive rate is 1228 
fixed at 5%. (B) The accuracy of FILET on these same simulations. On the left we show the 1229 
fraction of regions correctly classified as introgressed (compare to panel A). On the right, we 1230 
show the fraction of all simulated regions that are not only classified as introgressed, but also for 1231 
which the direction of gene flow was correctly inferred (i.e. if the direction is inferred with 100% 1232 
accuracy for a given cell in the heatmap, the color shade of that cell will be identical to that in 1233 
the heatmap on the left). The false positive rate, as determined from applying FILET to a 1234 
simulated test set with no migration, is also shown. 1235 
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 1237 
Fig. 2. A comparison of the power and resolution of FILET and ChromoPainter using 1238 
simulations of a 1 Mb chromosome where introgression was allowed within the central 100 kb 1239 
region. As in Figure 1, the population split time was set to N generations ago, and the darkness of 1240 
the heatmap shows sensitivity to introgression. Unlike Figure 1, here we are measuring 1241 
sensitivity at the level of the individual base pair rather than evaluating the question of whether a 1242 
window at large was recovered as containing introgressed alleles. The “coarse” version of FILET 1243 
refers to a FILET classifier trained to detect introgression in 10 kb windows, which was applied 1244 
to sliding windows (1 kb step size) across the chromosome. The “fine” version of FILET applied 1245 
a classifier trained on 1 kb windows to sliding windows (100 bp step size) within those regions 1246 
classified as introgressed by the FILET classifier. The lenient version of ChromoPainter required 1247 
evidence of introgression at a single SNP to identify introgression, while the stringent version 1248 
required candidate regions to contain at least 25 consecutive SNPs supporting introgression.  1249 
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 1250 
Fig. 3. Inferred joint population history of D. simulans and D. sechellia, and power to detect 1251 
introgression under this model. (A) The parameterization of our best-fitting demographic model. 1252 
Migration rates are shown by arrows, and are in units of 2×Nancm, where m is the probability of 1253 
migration per individual in the source population per generation. (B) Confusion matrix showing 1254 
FILET’s classification accuracy under this model as assessed on an independent simulated test 1255 
set. Perfect accuracy would be 100% along the entire diagonal from top-left to bottom-right, and 1256 
the false positive rate is the sum of top-middle and top-right cells. 1257 
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 1259 
Fig. 4. A large genomic region on 3R classified by FILET as introgressed from D. simulans to D. 1260 
sechellia. Values of the dd-sim and dmin (upper two panels) within each 10 kb window in the region 1261 
are shown, along with the posterior probability of introgression from FILET (i.e. 1 – P(no 1262 
introgression)). Clustered regions classified as introgressed are shown as gray rectangles superimposed 1263 
over these probabilities. Also shown are windowed values of π in D. sechellia, with the sweep region 1264 
highlighted in red, and the locations of annotated genes with associated FlyBase identifiers [90]. 1265 
  1266 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2018. ; https://doi.org/10.1101/170670doi: bioRxiv preprint 

https://doi.org/10.1101/170670
http://creativecommons.org/licenses/by/4.0/


	

 37 

SUPPLEMENTAL FIGURE AND TABLE LEGENDS 1267 
 1268 
S1 Fig. Illustration of the difference in values of the dmin statistic calculated from joint population 1269 
samples with and without introgression. 1270 
 1271 
S2 Fig. Violin plots showing the values of dmin, all four dd statistics, and ZX under simulated 1272 
scenarios including introgression or lacking it for each values of TD. The values of these statistics 1273 
were obtained from the training data sets described in the Materials and Methods. 1274 
 1275 
S3 Fig. Heatmaps showing several methods’ sensitivity to detect introgression. Same as Figure 1276 
1, but for other values of TD. (A) Accuracy for dmin and Gmin when TD = 1×4N generations. (B) 1277 
Accuracy of FILET when TD = 1×4N. (C) and (D) show the same when TD = 4×4N. (E) and (F) 1278 
show the same when 16×4N. 1279 
 1280 
S4 Fig. Heatmaps showing FILET’s sensitivity to introgression from an unsampled ghost 1281 
population. (A) Sensitivity when TD = 0.25×4N generations. (B) Sensitivity when TD = 1×4N 1282 
generations. (C) TD = 4×4N generations. (D) TD = 16×4N. 1283 
 1284 
S5 Fig. ROC curves showing power of FILET, dmin and Gmin under each value of TD. In order to 1285 
generate these curves we transformed the classification task into a binary one: discriminating 1286 
between isolation and introgression in either direction. (A) TD = 0.25×4N generations. (B) TD = 1287 
1×4N generations. (C) TD = 4×4N. (D) TD = 16×4N. Training and test sets for these problems 1288 
contained equal numbers of examples of introgression from population 1 into 2 and introgression 1289 
from population 2 into 1. 1290 
 1291 
S6 Fig. ROC curves showing power of versions of FILET trained with decreasing numbers of 1292 
training instances (ranging from 100 to 10000 for each class). (A) TD = 0.25×4N generations. (B) 1293 
TD = 1×4N generations. (C) TD = 4×4N. (D) TD = 16×4N. 1294 
 1295 
S7 Fig. ROC curve showing FILET’s power when trained and tested on simulated examples with 1296 
different window sizes with TD = 0.25×4N generations.  1297 
 1298 
S8 Fig. A comparison of the positive predictive value of FILET and ChromoPainter on the same 1299 
simulated data used for Fig 2. The “coarse” and “fine” versions of FILET, and lenient and 1300 
stringent versions of ChromoPainter’s predictions, are as defined for Fig 2. In cases where the 1301 
positive predictive value is undefined (i.e. no base pairs were predicted to be introgressed), it is 1302 
displayed as zero (i.e. a white cell in the heatmap). 1303 
 1304 
S9 Fig. Population structure within D. sechellia. (A) The top three principal components of all D. 1305 
sechellia diploid genomes. The cluster on the left shows the individuals from Praslin, while the 1306 
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cluster on the right shows all other individuals. Note that the cluster on the right is far less 1307 
dispersed due to the very small amount of polymorphism among these individuals. The numbers 1308 
in parentheses on each axis show the fraction of the variance explained by each principal 1309 
component. (B) Results of running fastStructure on our D. sechellia samples with the number of 1310 
subpopulations (K) ranging from 2 to 8. 1311 
 1312 
S10 Fig. Site frequency spectra of D. sechellia samples from Praslin, D. sechellia samples from 1313 
all other locations, and D. simulans samples. The D. sechellia samples were both downsampled 1314 
to n=12 as described in the text, while D. simulans was downsampled to n=18 (i.e. the same 1315 
sample sizes used for our demographic inference). These SFS show the fraction of all 1316 
polymorphisms found in each bin rather than the raw number of polymorphisms, and thus do not 1317 
contain information about the total number of SNPs. As described in the text, there is >12-fold 1318 
more polymorphism in the Praslin samples than in the non-Praslin samples. 1319 
 1320 
S11 Fig. Confusion matrix showing FILET’s classification accuracy when trained under out 1321 
inferred model of the simulans-sechellia joint demographic history, but applied to test data 1322 
generated under a different model (described in Materials and Methods and shown in S4 Table). 1323 
under this model as assessed on an independent simulated test set. Perfect accuracy would be 1324 
100% along the entire diagonal from top-left to bottom-right, and the false positive rate is the 1325 
sum of top-middle and top-right cells. 1326 
 1327 
S1 Table. Results when applying FILET to simulations with constant bidirectional migration. 1328 
10000 simulated replicates were tested for each parameter combination. 1329 
 1330 
S2 Table. Feature importance and rankings for each classifier used in this study. 1331 
 1332 
S3 Table. Sampling location, sequencing/mapping statistics, and SRA identifiers for each 1333 
genome included in this study. 1334 
 1335 
S4 Table. Demographic parameter estimates inferred by 𝜕a𝜕i, along with a simple naïve model. 1336 
 1337 
 1338 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2018. ; https://doi.org/10.1101/170670doi: bioRxiv preprint 

https://doi.org/10.1101/170670
http://creativecommons.org/licenses/by/4.0/

