
gkm-DNN: efficient prediction using gapped k-mer features

and deep neural networks

Zhen Cao1 and Shihua Zhang1,2*
1National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and

Systems Science, Chinese Academy of Sciences, Beijing 100190, China; 2School of

Mathematics Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

*To whom correspondence should be addressed.

Abstract

How to extract informative features from genome sequence is a challenging issue. Gapped k-mers

frequency vectors (gkm-fv) has been presented as a new type of features in the last few years.

Coupled with support vector machine (gkm-SVM), gkm-fvs have been used to achieve an effective

sequence-based prediction (e.g., transcription factor binding site prediction). However, the huge

computation of a large kernel matrix prevents it from using large amount of data. To this end, we

proposed a flexible and scalable framework gkm-DNN to achieve feature representation and

prediction from high-dimensional gkm-fvs using deep neural networks (DNN). We first

implemented an efficient method to calculate the gkm-fv of a given sequence. We then adopted a

DNN model with gkm-fvs as input to achieve a prediction task. Here, we took the transcription

factor binding site prediction as an illustrative application. We applied gkm-DNN onto 467 small

and 69 big human ENCODE ChIP-seq datasets to demonstrate its performance and compared it

with the state-of-the-art method gkm-SVM. We demonstrated that gkm-DNN can not only

overcome the drawbacks of high dimensionality, colinearity and sparsity of gkm-fvs, but also make

comparable overall performance and distinct better accuracy compared with gkm-SVM in much

shorter time. Moreover, gkm-DNN can be easily adapted to other applications and combine different

types of data using computational graphs.

Availability: All source codes of gkm-DNN are available at http://page.amss.ac.cn/shihua.zhang/.

Contact: zsh@amss.ac.cn.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

mailto:zsh@amss.ac.cn
https://doi.org/10.1101/170761

1 Introduction

It is still a major challenge to study the function of primary DNA sequences in non-coding

regions (Alexander et al., 2010; Mercer et al., 2009). The regulatory elements located in these

regions usually contain several transcription factor binding sites (TFBSs), whose activities

regulate multiple biological processes such as gene expression (Kasowski et al., 2010). More

importantly, some genetic variations in regulatory elements cause hereditary disease, which

attracts more attention (Smyth et al., 2008). In the past decade, several large-scale projects such

as Encyclopedia of DNA Elements (ENCODE) and Roadmap Epigenomics Program have been

launched to generate and profile large amounts of genome-wide data to figure out the

mechanisms behind these regulatory processes (Bernstein et al., 2010; Dunham et al. 2012).

In this background, using statistical and machine learning methods to study the regulatory

elements is a promising paradigm. For example, Wang et al. (2012) used an expectation

maximization (EM) based method to analyze position weight matrix (PWM) for 457 ENCODE

ChIP-seq data sets of 119 different transcription factors. They profiled the sequence features

and chromatin structure around the corresponding TFBSs. Liu et al. (2016) integrated

oligomers of short length (known as l-mers) and six DNA local parameters to identify enhancers

along with their intensity. Ghandi et al. (2014a) used gapped k-mer (oligomers of length l with

l – k non-informative positions) frequency vectors and support vector machines (gkm-SVM) to

precisely predict the TFBSs. They also used the scores of gkm-SVM to successfully predict the

impact of regulatory variants from DNA sequence (Lee et al., 2015). More recently, Kelley et

al. (2016) used one-hot coding format of DNA sequences and then applied deep convolutional

neural networks (CNNs) to predict the chromatin accessibility of 164 cell types, and interpret

some disease-related single nucleotide polymorphisms.

Yet, how to extract informative features from genome sequence is still a primary challenging

issue despite the great success in studying the regulatory elements. The core of all above

approaches is extracting features from genome sequences, while all of them have pros and cons.

The position weight matrix (PWM) approach is close to the biological nature (e.g., motifs), but

requires large amounts of data to determine appropriate scoring thresholds (Stormo, 2000). The

one-hot coding format of DNA sequences resolves limited information explicitly, which puts

the heavy pressure on model training (Alipanahi et al., 2015; Kelley et al., 2016; Zhou and

Troyanskaya, 2015). As a supplement, using the frequencies of all l-mers to form feature

vectors (l-mer frequency vector, abbreviated as lmer-fv) can resolve most of the information

before training and prediction, while they becomes sparse and unstable as l increases (Ghandi

et al., 2014b). Compared to lmer-fvs, gapped k-mer frequency vectors (abbreviated as gkm-fvs)

are not only close to the biological nature, but also more robust (Ghandi et al., 2014b).

Therefore, gkm-fv based methods have been used as benchmark methods for many

bioinformatics problems (Kelley et al., 2016; Qin and Feng, 2017; Zhou and Troyanskaya,

2015). However, there still exist limitations to be addressed when using gkm-fvs as features.

For example, the dimensions of gkm-fvs grow exponentially as either l or k increases, which

quickly become intractable. Besides, they are somehow sparse and highly collinear due to the

inner structure of gkm-fvs (Ghandi et al., 2014b). The popular method gkm-SVM adopts

support vector machines with sophisticated kernel tricks to tackle the problems (Ghandi et al.,

2014a; Ghandi et al., 2016). However, gkm-SVM cannot quickly deal with large amount of

data due to inefficient computation of large-scale kernel matrix. More recently, LS-GKM (the

large-scale gkm-SVM) has been invented to deal with large amount of data by skipping

calculating the full kernel matrix (Lee, 2016). Yet, one cannot easily tune the hyper-parameters,

since every time it is totally new to train another model. The shortcomings of kernel tricks may

hinder the advantage of gkm-fvs. Thus, efficient methods are still needed to make full use of

gkm-fvs.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

https://doi.org/10.1101/170761

In the last few years, the fast development of deep neural networks (DNNs) attracts great

attentions in bioinformatics community due to several reasons. First, the rapid accumulation of

diverse biological data fits in with the usability of DNN models. Second, the use of graphics

processing unit (GPU) makes the training process of DNNs extremely faster than before

(Ciregan et al., 2012; Coates et al., 2013). Third, it is easier to train models with the help of

DNN specific technologies such as dropout and batch normalization (Hinton et al., 2012; Ioffe

and Szegedy, 2015). Therefore, DNNs have achieved state-of-the-art performance in a wide

range of applications such as image classification and speech recognition (Hinton et al., 2012;

Krizhevsky et al., 2012). In addition, bioinformatics community has also successfully applied

DNNs to the predictions of transcription factor binding sites, genome variants, gene expression

and so on (Alipanahi et al., 2015; Chen, et al., 2016; Zhou and Troyanskaya, 2015). The power

of DNN in handling extremely large-scale datasets and learning hierarchical nonlinear data

representation enables it has the potential to make full use of gkm-fvs.

To this end, we proposed a flexible and scalable method gkm-DNN to achieve feature

representation and prediction from high-dimensional gkm sequence features using DNN (Fig.

1). We first implemented an efficient method to calculate the gkm-fvs (Fig. 1A). Next we took

the gkm-fvs as input for DNN to achieve a prediction task (Fig. 1B). We took the TFBS

prediction as an illustrative example, which is a widely studied problem. We demonstrated that

gkm-DNN can not only overcome the drawbacks of high dimensionality, colinearity and

sparsity of gkm-fvs, but also make comparable overall performance and distinct better accuracy

compared with gkm-SVM in much shorter time. This is the first time to directly use gkm-fvs

as features without using kernel tricks.

Fig. 1. The key components of constructing a gkm-DNN prediction model. (A) A quick method

to calculate the gapped k-mer frequency vector (gkm-fv). (B) Illustration of a DNN model.

After normalization, the gkm-fvs are taken as input for a multi-layer perceptron model. This

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

https://doi.org/10.1101/170761

model is trained using the standard error back-propagation algorithm and mini-batch stochastic

gradient descent method.

2 Materials and methods

2.1 Datasets

We downloaded all the 467 ENCODE ChIP-seq datasets used in (Ghandi et al., 2014a) from

http://www.beerlab.org/gkm-SVM/ to demonstrate the performance of gkm-DNN and

compared it with gkm-SVM. All positive and negative sequences are the same as used in

(Ghandi et al., 2014a). Each dataset contains at most 5000 positive sequences and the same

number of negative sequences.

We also collected 69 high-quality datasets of larger size for further tests from ENCODE

(Dunham et al., 2012). To ensure the quality of data, we downloaded all the datasets in the

format of optimal idr thresholded peaks from the K562 cell lines. We only retained peaks with

q-value < 0.01 and selected datasets with more than 25000 peaks. Given a dataset, we sort peaks

first by -log(q-value), and then by its count in descending order. We only kept the top 20000

peaks for further analysis since there are always a lot of noises in ChIP-seq datasets (Park,

2009). If a peak is shorter than 301bp, we extended this peak from its midpoint to 301bp. If a

peak is longer than 601bp, we cut down the peak to 601bp centered at the raw midpoint. After

processing, we finally got 69 high-quality datasets. Each dataset contains 20000 positive

samples.

Given positive samples, we also generated the same number of negative samples. We

randomly sampled sequences of approximately the same length of positive samples from the

whole genome. The randomly selected sequences were dropped if they have overlap with

optimal idr thresholded peaks.

2.2 Calculating gkm-fvs

Oligomers of fixed length l are commonly known as l-mers. Gapped k-mers are l-mers with l –

k non-informative positions (Supplementary Fig. S1). In other words, for gapped k-mers, there

are two parameters: word length l and matched position k (k < l, hence there are l – k gaps).

Given l and k, the frequencies of all gapped k-mers form a vector of length 4k l k

lC  , which is called

gapped k-mer frequency vector (gkm-fv) in this paper. Different from the kernel computation

of gkm-SVM, gkm-DNN directly uses the gkm-fvs as input. However, it is not a trivial task to

calculate the gkm-fvs of hundreds of thousands of DNA sequences. Almost all methods use

kernel tricks to skip its direct calculation. To the best of our knowledge, there is no quick

program to directly calculate the gkm-fvs. For the first time, we implemented a fast method to

calculate it.

The first step is to get l-mer frequency vector (lmer-fv), whose length is 4l . Given a single

strand DNA sequence s, we split it into length(s)-l+1 l-mers, and count their frequencies. We

turn the l-mers into a quaternary representation (A→0, C→1, G→2, T→3), which induces their

positions in the ordered lmer-fv to be a decimal integer (e.g., ACTGTCA→0132310 of base 4

→1972 of base 10). The computing using the quaternary representation is very fast, which skips

the calculation of string matching. Hence, given a sequence, we can efficiently get its lmer-fv

in a sparse manner.

The second step is to transform an lmer-fv to a gkm-fv with word length l. As illustrated in

(Ghandi et al., 2014b), an lmer-fv can fully determine a gkm-fv using a linear transformation.

We calculate this transformation matrix and save it in a sparse manner. Next we use a sparse

matrix multiplication to transform an lmer-fv to its corresponding gkm-fv.

In this paper, we consider the double strands DNA sequences. Instead of counting exact

gapped k-mers, we also count their reverse complements and remove redundant gapped k-mers.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

http://www.beerlab.org/gkmsvm/
https://doi.org/10.1101/170761

For example, two gapped k-mers ANNCTG and CAGNNT are reverse complements to each

other and have exactly the same frequencies. Thus, we only kept one of them. This step not

only reduces the input sizes, but also well captures the double strands information.

We normalize the frequency vectors before training the DNNs. Given a DNA sequence, we

divide its gkm-fv by the length of the sequence. Then we multiply the frequencies with

min(4 / 2,128)l to reduce the floating point error caused by GPU calculation.

2.3 gkm-DNN model

Here we adopted a multi-layer feedforward neural network model to achieve the prediction task

with the gkm-fv of a sequence as an input feature vector (Fig. 1B). It contains one input layer,

one or multiple hidden layers and one output layer. All the layers are fully-connected. The

feedforward calculation is a linear transformation with an activation function (Fig. 1B).

Specifically, given the values of layer m-1, the values of layer m is calculated as:

1 1 1()T

m m m mO f W O b    , (1)

where 𝑂𝑚−1is the values of layer m-1, {𝑊𝑚−1, 𝑏𝑚−1} are the weights and the bias associated

with layer m-1 that need to be learned. For the hidden layers, 𝑓(∙) is the RELU activation

function. The sigmoid activation function (or softmax function) is applied to the output unit for

the classification purpose:

 1
()

1 x
f x

e



. (2)

The cross entropy is used as the loss function for training, namely,

1

1
ˆ ˆ ˆ(,) (log() (1)log(1))

N

i i i i i i

i

CE y y y y y y
N 

     , (3)

where ˆ
iy is the output of an input sequence, 1iy  for a positive sequence, 1iy  for a

negative sequence and N is the number of all training samples. Given the loss function and

hyper-parameters (see below), the model is trained using the standard error back-propagation

algorithm and mini-batch stochastic gradient descent method. We also used two tricks namely

dropout and early stopping (Supplementary Materials and Supplementary Fig. S3). Passing all

the training data through the model once is an epoch. Training is stopped when it hits the

maximal training epoch given in advance.

2.4 Setup of gkm-DNN

There are some hyper-parameters for gkm-DNN. First, we set the word length l = 7 and the

matched position k = 5 as default (see Results). The depth and width are different for datasets

of different sizes. For the 467 small ENCODE ChIP-seq datasets (sample size: 10000), we only

used one hidden layer and set the number of hidden nodes as {100, 400, 700} for further

analysis. For the 69 high-quality datasets (sample size: 40000), we set the number of hidden

nodes as 700 and the number of hidden layers as {1, 2, 3} for further analysis. For all models,

we always applied dropout to the last two layers. The dropout rate was set as

{10%, 20%, 30%} for further discussion. More details about hyper-parameters of gkm-DNN

can be seen in the Supplementary Materials, Tables S1 and S2.

In this paper, we applied several practical ways to accelerate the training (Supplementary

Materials). For input, we saved our data in a binary format in advance, which greatly reduces

the time of input and output. For calculation, we used GPU (one NVIDIA GTX 1080) to train

the model, which is about 10 times faster than using CPU alone (one Intel Xeon e5 1603 v3).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

https://doi.org/10.1101/170761

Given the training sequences, we first calculated the gkm-fvs (l = 7, k = 5) and then

normalized them. Then we randomly split the total training set into a smaller training set and a

validation set (1/ 8 of the total training set in this paper). For each group of hyper-parameters,

we trained the gkm-DNN model using early stopping and got the best model for this group of

hyper-parameters. Then we chose the best model for all groups of hyper-parameters according

to their performances on the validation set. Note that once the total training set is given, our

method will automatically give a best model. The validation set was only used internally in this

method.

Given a test DNA sequence, we calculated the gkm-fv using corresponding l and k and

normalized it. Next we used the best model to do prediction. The output is an estimated

posterior probability on how likely this sequence is a positive one (i.e., how likely the

transcription factor binds to this sequence). The default decision rule is set as: sequences whose

output probabilities >= 0.5 are deemed as positive ones, otherwise negative ones.

2.5 Setup of gkm-SVM

In this paper, we used both the gkm-SVM R package and LS-GKM to implement gkm-SVM

(Ghandi et al., 2016; Lee, 2016). On both 467 small and 69 big ChIP-seq datasets, we trained

gkm-SVM with l = 7, k = 5 and l = 10, k = 6 for comparison. Other parameters are set as defaults.

We applied several practical ways to accelerate the training of gkm-SVM. For gkm-SVM R

package, we first calculated the full kernel matrix and then used the cross-validation mode. This

step greatly reduces the repetitive computation of a kernel matrix. In addition, the gkm-SVM

tasks were also parallelized using R language. For LS-GKM, we used all the four cores (four

threads) and 10G cache memory, which makes full use of our machine.

2.6 Performance assessment

We adopted multiple standard measures to comprehensively evaluate gkm-DNN and gkm-

SVM. The receiver operating curves (ROC) and precision-recall curves (PRC) are two typical

graphical plots that illustrate the classification ability of a binary classifier system as its

discrimination threshold is varied (Davis and Goadrich, 2006; Fawcett, 2004). We used the area

under the ROC and PRC curves (AUC and AUPRC). However, many studies have illustrated

the drawbacks of ROC and AUC (Drummond and Holte, 2004; Lobo et al., 2008). The areas

under the curves essentially only assess the ability of ranking samples. One rarely uses AUC in

a practical classifier because only a couple of points on the curves are useful (Lobo et al., 2008).

For a typical prediction task such TFBS prediction, it is very important to give a solid binary

prediction (Bhardwaj et al., 2005). Thus, we also adopted four widely used performance

measures including

 TP TN
Accuracy =

TP TN FN FP



  
, (4)

 TP
Precision =

TP FP
, (5)

 TP
Recall =

TP FN
, (6)

 2 Precision Recall
F1- score =

Precision Recall

 


, (7)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

https://doi.org/10.1101/170761

where TP, FP, TN and FN represent true positives, false positives, true negatives and false

negatives, respectively. In addition, we used the standard 5-fold cross-validation procedure to

get the mean of above measurements.

2.7 Training DNN with different size of samples

We also trained gkm-DNN models with different size of training samples using the 69 high-

quality datasets. For each dataset and each cross-validation fold, given the same 4000 validating

samples, we used training samples of equal size (1X), twice (2X), four times (4X) and seven

times (7X) to train the gkm-DNN models and calculated the AUCs and accuracies on the test

sets. To strictly control the quality of data, 1X samples are contained in 2X samples, 2X samples

are contained in the 4X samples and so on. Note that using 7X samples is the same as using all

training samples as above. The maximum training epochs were set as 210, 105, 53 and 30 for

1X, 2X, 4X and 7X training samples. All other hyper-parameters were set as the same one.

2.8 Implementation

We used R language to calculate the gkm-fvs of DNA sequences and DL4J (deep learning for

Java) framework to train neural networks. All the source codes are available at

http://page.amss.ac.cn/shihua.zhang/.

3 Result

3.1 Evaluation of different gkm-fvs

The first problem for running gkm-DNN is to select proper l and k to determine gkm-fvs. Here,

we used six high-quality datasets with different putative motif lengths according to JASPAR

core (Sandelin et al., 2004) to evaluate the effects of gkm-fvs in terms of l and k with dimensions

less than 20000 due to computing burden (Supplementary Table S1).

Generally, different gkm-fvs in terms of l and k significantly influence the performance of

gkm-DNN. Given l, the larger the k is, the better the performance is (Fig. 2). When k = 4 or 5,

the performances are significantly better than that of k = 2 or 3 (Fig. 2). Thus, very small k

cannot resolve enough information from DNA sequences. On the other hand, given k, the longer

the l is, the higher the AUC is (Fig. 2). The results in terms of accuracy and F1-score show

similar performance (Supplementary Fig. S3). Thus, we note that large l and proper k may

resolve more information from raw DNA sequences directly. We can see that the results of l =

7, k = 5 (10752 features) and that of l = 9, l = 4 (16176 features) are comparable. Due to the

computational efficiency, we recommend l = 7, k = 5 to run gkm-DNN as the defaults.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

http://page.amss.ac.cn/shihua.zhang/
https://doi.org/10.1101/170761

Fig. 2. Performance of different gkm-fvs on six representative datasets in terms of AUC (y -

coordinate) with respect to different word length l (x-coordinate) and matched position k. Each

point represents the AUC of a type of gkm-fvs. Lengths of putative motifs are shown in the

parentheses. Gkm-fvs with dimensions larger than 20000 are ignored due to computing burden.

3.2 Performance on human ENCODE ChIP-seq datasets

Here we applied gkm-DNN onto the 467 human ENCODE ChIP-seq datasets and compared it

with gkm-SVM 2.0. Combination of gkm-fvs and DNN demonstrate strong potentials. At first,

we used the same gkm-fvs (l = 7, k = 5) for both methods (Fig. 3A). The two methods show

very competitive performances in terms of AUCs and AUPRCs (Fig. 3A and Supplementary

Fig. S4A). Surprisingly, gkm-DNN outperforms gkm-SVM on almost all datasets (466/467) in

terms of accuracy and F1-score (Fig. 3A). Besides, gkm-DNN always has higher recalls and

lower precisions on all the datasets (Supplementary Fig. S4A), suggesting that gkm-DNN

prefers to classify samples as positive ones compared to gkm-SVM. Taken precisions and

recalls together, gkm-DNN has higher F1-scores on all datasets, implying that the results of

gkm-DNN are more balanced. We note that gkm-DNN essentially uses less training samples

due to the internal validation.

We also compared gkm-DNN (l = 7, k = 5) with gkm-SVM using its default parameters (l =

10, k = 6). Currently, it is hard for gkm-DNN to use large amount of features due to computing

burden (>20000). gkm-SVM indeed outperform gkm-DNN in terms of AUCs and AUPRCs in

many cases (Fig. 3B and Supplementary Fig. S3). However, gkm-DNN still outperforms gkm-

SVM on almost all the datasets in terms of accuracy and F1-score (Fig. 3B).

In general, gkm-DNN is more robust than gkm-SVM. On 386 datasets, gkm-DNN has lower

AUCs, but higher accuracies and F1-scores than gkm-SVM. Thus, although the default cutoff

0 is the theoretically optimum value for gkm-SVM, it is not the optimal one for practical

applications. The reason is that the best separation hyperplane trained from SVM also includes

an intercept term. We can also observe this phenomenon for gkm-SVM with different gkm-fvs

(Supplementary Fig. S4C).

Fig. 3. Performance comparison between gkm-DNN and gkm-SVM on 467 small ChIP-seq

datasets in terms of AUC, accuracy and F1-score. Each point represents the prediction results

of gkm-DNN (y-coordinate) and gkm-SVM (x-coordinate) of a dataset. Points above and below

the line 𝑦 = 𝑥 are in purple and blue respectively. (A) Comparison using the same gkm-fvs (l

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

https://doi.org/10.1101/170761

= 7, k = 5 for both gkm-DNN and gkm-SVM). (B) Comparison using the default gkm-fvs

respectively (l = 7, k = 5 for gkm-DNN and l = 10, k = 6 for gkm-SVM).

3.3 Performance on high-quality datasets of larger size

Here we applied gkm-DNN onto 69 high-quality datasets with relative large sizes (40000

samples per dataset) and compared it with gkm-SVM. The results on these big datasets of gkm-

DNN and gkm-SVM show very similar performance to those on the small datasets. When using

the same features (l = 7, k = 5), the two methods are comparable in terms of AUCs and AUPRCs;

while gkm-DNN are superior to gkm-SVM in terms of accuracy and F1-score (Fig. 4A). When

gkm-SVM uses longer gapped k-mers (l = 10, k = 6), it can achieve higher AUCs and AUPRCs

than gkm-DNN in many cases. However, gkm-DNN still gets higher accuracies and F1-scores

in the most cases (Fig. 4B). In addition, gkm-DNN always has higher recalls and lower

precisions than gkm-SVM.

Thus, gkm-DNN is more discriminative compared to gkm-SVM for a classification task. We

recommend gkm-DNN if one needs an explicit classification, which is a fundamental goal of

many prediction tasks. If the task is only care about ranking or further analysis does not relate

to decision cutoff value, then gkm-SVM with longer gapped k-mers may be a better choice.

Fig. 4. Performance comparison between gkm-DNN and gkm-SVM on 69 high-quality datasets

of larger sample sizes in terms of AUC, accuracy and F1-score. Each point represents the

prediction results of gkm-DNN (y-coordinate) and gkm-SVM (x-coordinate) of a dataset. Points

above and below the line 𝑦 = 𝑥 are in purple and blue respectively. (A) Comparison using the

same gkm-fvs (l = 7, k = 5 for both gkm-DNN and gkm-SVM). (B) Comparison using the

default gkm-fvs respectively (l = 7, k = 5 for gkm-DNN and l = 10, k = 6 for gkm-SVM).

3.4 Computational efficiency

Besides prediction accuracy, we aimed to develop a fast method which can handle large-scale

datasets. We tested the average runtime of gkm-DNN and gkm-SVM under default parameters

using our desktop computer (Supplementary Table S4). On small datasets (sample size 10000),

gkm-DNN is twice faster than gkm-SVM 2.0 and ten times faster than LS-GKM (Fig. 5A). The

reason is that LS-GKM does not pre-save the kernel matrix and does many repetitive

computation. On big datasets (sample size 40000), the gkm-SVM 2.0 package cannot handle

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

https://doi.org/10.1101/170761

this case because it needs too much memory. Moreover, gkm-DNN is also ten times faster than

LS-GKM (Fig. 5A).

More importantly, the runtime of gkm-DNN is proportional to the sample size. We explored

the runtime of its three components, namely calculating gkm-fvs, saving gkm-fvs into binary

format and training DNN (Fig. 5B). All the three parts can be naturally paralleled at the sample

level. Thus, the runtime of each part should be proportional to sample size. We confirmed this

by comparing the average runtime of gkm-DNN on small and big datasets (Fig. 5B). On big

datasets, the training of DNN part is faster than expected because it can automatically take up

more loading of GPU (37% on small datasets and 65% on big datasets). Once the loading is

fixed, the runtime of this part is also proportional to sample sizes.

The efficient training of gkm-DNN is affected by several aspects. First, we implemented a

quick method to calculate the gkm-fvs. Second, as to the training of DNN, once hyper-

parameters are given, the training complexity is proportional to O E N G   , where E is the

training epoch, N is the number of training samples and 𝐺 is the length of gkm-fvs

(30, 10752)E N  . Therefore, the training time of gkm-DNN is approximately proportional to the

sample size, which is supported by our test (Fig. 5B). Third, we built the DNN blocks using

DL4J, which has effective backend supporting CUDA 8.0. Fourth, we used a GPU (GTX 1080)

to do most of the calculation, which is about 10 times faster than using our CPU (Intel Xeon e5

1603 v3). In the future, we believe that gkm-DNN will further benefit from the rapid

development of both software (e.g., CUDA and MKL) and professional computing devices (e.g.

NVIDIA GPU and Intel Xeon phi).

Fig. 5. Computational efficiency of gkm-DNN. (A) Comparison of computing time between

gkm-DNN and gkm-SVM. The average runtime of both methods for one dataset using a

desktop computer was presented. (B) Average runtime of key components of training gkm-

DNN including calculating gkm-fvs (count), saving gkm-fvs (save) into binary format and

training DNN (train) on small and big datasets respectively.

3.5 gkm-DNN has great superiority with more data

We observed that the performance on big datasets are greatly better than that on small datasets

using either gkm-DNN or gkm-SVM (e.g., the average AUCs are 0.952 and 0.893 for gkm-

DNN respectively) (Fig. 3 and 4). Therefore, we believe that larger sample size is also important

in real applications. In this situation, gkm-DNN have great superiority because it can quickly

make full use of large amount of data as shown above.

We trained gkm-DNN based on the 69 high-quality datasets using different number of

training samples (Materials and Methods). We first observed that models trained from more

data have overall higher AUCs and accuracy than models trained from less data (Fig. 6).

Furthermore, for each dataset, the results of gkm-DNN are always better when using more data

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

https://doi.org/10.1101/170761

(Supplementary Fig. S6). In short, gkm-DNN can achieve an improvement using more training

samples. With rapid development of biological technology, more DNA sequence data will

emerge and gkm-DNN will definitely benefit from these large-scale data.

3.6 Interpretation of gkm-DNN

We have demonstrated that gkm-DNN runs faster and makes very competitive prediction

performance compared to gkm-SVM using on 536 datasets. Here, we attempted to elucidate

the learned neural networks and figure out how gkm-DNN works using the 69 high quality

datasets. For inputs, we can view the gkm-fvs as a type of auto-encoder of lmer-fvs

(Supplementary Fig. S7). In practice, gkm-SVM uses gkm-fvs or estimated lmer-fvs based on

gkm-fvs as input (Supplementary Fig. S7). We can view the input of gkm-DNN as a denoising

version of lmer-fvs, which makes the classifier easy to learn.

Moreover, using hidden layers can overcome the drawbacks of high dimensionality,

colinearity and sparsity of gkm-fvs. Compared to 10752 raw features, the hidden layers only

have 700 nodes (Supplementary Fig. S8A), which forces the models to learn the most

representative features. Furthermore, the learned activation values of hidden nodes are not

redundant. Given a trained model and all training samples, we calculated the condition numbers

of the activation values of the last hidden layer. The condition numbers are all very small

(Supplementary Fig. S8B), indicating that the features extracted by hidden layers are not

collinear at all. In addition, the activation values of the last hidden layer are denser than the

gkm-fvs. Although these values contain zeros due to the RELU activation function, the ratio of

zeros is distinctly lower than that of gkm-fvs (Supplementary Fig. S8C).

The hidden layers learn useful patterns for the classification task. Here we took one learned

model as an example. For the last hidden layer, we clustered both the 700 hidden nodes and the

32000 training samples using the activation values (Supplementary Fig. S8D). There are clear

clusters in the heatmap, which distinguish a fraction of training samples from others

(Supplementary Fig. S8D). We also employed t-distributed stochastic neighbor embedding (t-

SNE) to transform the 700 features into two representative directions (dimensions). The two

directions can separate many positive samples from negative samples distinctly (Supplementary

Fig. S8E). Moreover, the distribution of negative samples are more disperse than that of positive

ones. The negative samples are randomly selected from the whole genome, implying that they

may contain no much strong signals. In contrast, the positive samples may contain some

underlying patterns (e.g., motifs). Thus, gkm-DNN distinguishes positive samples using the

combination of some weak patterns from the negative ones.

Fig. 6. Performance comparison of gkm-DNN trained using different sample sizes in terms of

AUC. For each dataset and each cross-validation fold, given the same validation set, training

sets of equal size (1X), twice (2X), four times (4X) and seven times (7X) were used to train

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

https://doi.org/10.1101/170761

gkm-DNN. For each dataset, average AUCs (A) and accuracies (B) were calculated on the test

sets for five-fold cross-validation.

4 Discussion

In this paper, we presented a flexible and scalable method gkm-DNN to achieve a sequence-

based prediction task. We first implemented a quick method to calculate the gkm-fvs, and then

used them as input to train a DNN model. We took the widely studied TFBS prediction problem

as an illustrative example. We evaluated gkm-DNN and compared it with the state-of-the-art

gkm-SVM using 467 small and 69 big datasets. We showed that gkm-DNN can not only

overcome the high dimensionality, colinearity and sparsity of gkm-fvs, but also make

competitive performance compared to gkm-SVM in much shorter time.

It is a fundamental problem to give a solid and deterministic prediction whether the

transcription factor binds to a given sequence or not. For traditional PWM based methods, it is

very hard to determine a proper cutoff value (Stormo, 2000). Although gkm-DNN and gkm-

SVM have the abilities to automatically give good cutoff values, they behave quite differently.

To figure out the reasons, we calculated the best cutoff values to optimize accuracies on the test

sets (note that you will never know these values in real applications). Default cutoff values of

both methods are both approximated but not optimal in the most cases. However, default value

0 of gkm-SVM is higher than the best ones in more than half of the cases, while default value

0.5 of gkm-DNN is lower than the best ones in more than half of the cases (Supplementary Fig.

S9A). This explains why gkm-DNN always has higher recalls but lower precisions than gkm-

SVM. The higher F1-scores implies that the results of gkm-DNN are more balanced.

Furthermore, gkm-DNN is more robust with the default cutoff value. We observed that the

prediction values of gkm-DNN were almost concentrated at 0 and 1 while the prediction values

of gkm-SVM were more disperse (Supplementary Fig. S9B). Hence, for gkm-DNN, the

samples with a prediction value near 0.5 are very few, meaning that a small perturbation of

cutoff value 0.5 will not influence most of the predictions. As to the higher AUC but lower

accuracy phenomenon of gkm-SVM, we guess the simplified calculation of kernel matrix may

result in the loss of information (Ghandi et al., 2014a).

gkm-SVM and gkm-DNN are complementary to each other. gkm-SVM can use relative

longer gapped k-mers by kernel tricks while it cannot handle large amount of samples. Although

LS-GKM improves this (Lee, 2016), the running is still not efficient enough. On the other hand,

gkm-DNN can deal with large amount of data using relatively shorter gapped k-mers. How to

combine the advantages of both methods may be a valuable direction in the future. For gkm-

SVM, it needs fast methods to calculate the inner product of two gkm-fvs. For gkm-DNN, it

needs some practical skills to make full use of longer gapped k-mers.

One possible difficulty to use gkm-DNN is that one need to choose many hyper-parameters

to train a model. The biggest factor affecting the performance is l and k for gkm-fvs. We

recommend l = 7, k = 5 for typical cases. The hyper-parameters of training neural networks

have diverse effects on different datasets (Supplementary Fig. S10A). However, if we only use

the defaults rather than nine sets of hyper-parameters, the reductions of performance are very

limited (Supplementary Figs. S10B and S10C). In conclusion, it is acceptable to use the well-

chosen default hyper-parameters for gkm-DNN.

Validation sets are very useful for gkm-DNN. It is hard to determine whether the model is

trained properly without under- nor over-fitting if the training epoch is given manually.

Validation set are used to determine the best hyper-parameters and the real training epoch

according to cross entropy. However, this step is at the cost of using less data during training.

Several practical ways can improve this drawback. For example, using bagging method to

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

https://doi.org/10.1101/170761

combine the models, which can use out-of-bag samples as validation set (Breiman, 1996). There

may be no test sets for real applications, and we strongly recommend to use validation sets.

It is easy to extend gkm-DNN due to its high flexibility and scalability. First, one can uses

large amount of data without waiting too long. Second, gkm-DNN can also add other data

sources as inputs using a computational graph, which is a directed acyclic graph representing

the information flow (Supplementary Fig. S11). The hidden layers automatically extract the

high-level features and allocate different weights for different data sources. Third, gkm-DNN

can deal with a variety of outputs such as multi-label classification and regression

(Supplementary Fig. S11). The only change is to use a proper activation function for the output

layer and a proper loss function for training. Therefore, we can easily adapt gkm-DNN to many

other prediction tasks such as transcription factor binding affinity prediction, RNA binding

protein prediction, enhancer recognition and gene expression prediction (Liu et al., 2016;

Pelossof et al., 2015).

References

Alexander, R.P., et al. (2010) Annotating non-coding regions of the genome. Nat. Rev. Genet., 11(8),

559-571.

Alipanahi, B., et al. (2015) Predicting the sequence specificities of DNA- and RNA-binding proteins by

deep learning. Nat. Biotechnol., 33(8), 831-838.

Bernstein, B.E., et al. (2010) The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol.,

28(10), 1045-1048.

Bhardwaj, N., et al. (2005) Kernel-based machine learning protocol for predicting DNA-binding proteins.

Nucleic Acids Res., 33(20), 6486-6493.

Breiman, L. (1996) Bagging predictors. Mach. Learn., 24(2), 123-140.

Chen, Y., et al. (2016) Gene expression inference with deep learning. Bioinformatics, 32(12), 1832-1839.

Ciregan, D., et al. (2012) Multi-column deep neural networks for image classification. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3642-3649.

Coates, A., et al. (2013) Deep learning with COTS HPC systems. In Proceedings of the 30th

International Conference on Machine Learning, pp. 1337-1345.

Dunham,I. et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature,

489, 57–74.

Davis, J. and Goadrich, M. (2006) The relationship between Precision-Recall and ROC curves. In

Proceedings of the 23rd International Conference on Machine Learning, pp. 233-240.

Drummond, C. and Holte, R.C. (2004) What ROC Curves Can't Do (and Cost Curves Can). In ROCAI,

pp. 19-26.

Fawcett, T. (2004) ROC graphs: Notes and practical considerations for researchers. Mach. Learn., 31(1),

1-38.

Ghandi, M., et al. (2014a) Enhanced regulatory sequence prediction using gapped k-mer features. PLoS

Comput. Biol., 10(7), e1003711.

Ghandi, M., et al. (2014b) Robust k-mer frequency estimation using gapped k-mers. J. Math. Biol., 69(2),

469-500.

Ghandi, M., et al. (2016) gkmSVM: an R package for gapped-kmer SVM. Bioinformatics, 32(14), 2205-

2207.

Hinton, G., et al. (2012) Deep neural networks for acoustic modeling in speech recognition: The shared

views of four research groups. IEEE Signal Proc. Mag., 29(6), 82-97.

Hinton, G.E., et al. (2012) Improving neural networks by preventing co-adaptation of feature detectors.

arXiv Preprint arXiv:1207.0580.

Ioffe, S. and Szegedy, C. (2015) Batch normalization: Accelerating deep network training by reducing

internal covariate shift. arXiv Preprint arXiv:1502.03167.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

https://doi.org/10.1101/170761

Kasowski, M., et al. (2010) Variation in transcription factor binding among humans. Science, 328(5975),

232-235.

Kelley, D.R., et al. (2016) Basset: learning the regulatory code of the accessible genome with deep

convolutional neural networks. Genome Res., 26(7), 990-999.

Krizhevsky, A., et al. (2012) Imagenet classification with deep convolutional neural networks. In

Advances in neural information processing systems, pp. 1097-1105.

Lee, D. (2016) LS-GKM: a new gkm-SVM for large-scale datasets. Bioinformatics, 32(14), 2196-2198.

Liu, F., et al. (2016) PEDLA: predicting enhancers with a deep learning-based algorithmic framework.

Sci. Rep., 6, 28517.

Lobo, J.M., et al. (2008) AUC: a misleading measure of the performance of predictive distribution

models. Global Ecol. and Biogeogr., 17(2), 145-151.

Mercer, T.R., et al. (2009) Long non-coding RNAs: insights into functions. Nat. Rev. Genet., 10(3), 155-

159.

Park, P.J. (2009) ChIP–seq: advantages and challenges of a maturing technology. Nat. Rev. Genet.,

10(10), 669-680.

Pelossof, R., et al. (2015) Affinity regression predicts the recognition code of nucleic acid-binding

proteins. Nat. Biotechnol., 33(12), 1242-1249.

Qin, Q. and Feng, J. (2017) Imputation for transcription factor binding predictions based on deep learning.

PLoS Comput. Biol., 13(2), e1005403.

Sandelin, A., et al. (2004) JASPAR: an open-access database for eukaryotic transcription factor binding

profiles. Nucleic Acids Res., 32, D91-94.

Smyth, D.J., et al. (2008) Shared and distinct genetic variants in type 1 diabetes and celiac disease. New.

Engl. J. Med., 359(26), 2767-2777.

Stormo, G.D. (2000) DNA binding sites: representation and discovery. Bioinformatics, 16(1), 16-23.

Wang, J., et al. (2012) Sequence features and chromatin structure around the genomic regions bound by

119 human transcription factors. Genome Res., 22(9), 1798-1812.

Zhou, J. and Troyanskaya, O.G. (2015) Predicting effects of noncoding variants with deep learning-based

sequence model. Nat. Methods, 12(10), 931-934.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/170761doi: bioRxiv preprint

https://doi.org/10.1101/170761

