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Figure 8: Comparison between simulated and reference FC matrices in theta, alpha and beta bands. Reference
matrices are shown in the first row, followed by the best results obtained with connectivity conn1_mean (row 2), and
the second best results obtained with conn3_fs (row 3). The correlation between each simulated FC matrix and the
corresponding reference is indicated on top of the matrix. The FC patterns obtained with conn1_mean connectivity
are strikingly similar to the reference, except in the frontal lobe (lower-right block in each quadrant). Note that
although results obtained with conn3_fs achieved better correlations on average, they had a lower similarity score
than the results obtained with conn1_mean, because their variation across bands was poor (see Fig. 7).

tions, the stronger the preference for a specific parame-
ter value. And the more overlap between distributions,
the better the consensus across experiments with dif-
ferent connectivities.

For example, we find a good consensus with regards
to the first three parameters (input, coupling, delay),
and in particular for the average network delay around

10ms, but the comparisons for the inter-hemispheric
scaling h and characteristic time-constant τ are more
mitigated. This is not surprising; the connectivity
matrices control the interactions between the differ-
ent brain regions, and structurally different networks
should not be expected to agree on parameter values
in general.
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Figure 9: Marginal parameter distributions corresponding to the 90th percentile of all evaluated samples (i.e.
using the objective function defined in §2.3.4), for each of the four AC matrices. Higher distribution values (y-
axes) indicate ranges of parameters (x-axes) which were consistently associated with the best scores for a given
AC matrix. Input: all but conn1_mean indicate that the excitatory input should be just below units’ oscillatory
threshold. Coupling: all but conn1_fs indicate that coupling scale should be just above network oscillatory
threshold. Delay: general consensus that average delay should be around 10ms. Scaling: no clear consensus,
but all except conn3_mean indicate an upscale by a factor of 2 or more. Tau: conn1_mean centred around 8ms, and
others above 10ms.

That being said, three out of the four AC matri-
ces (all except conn3_mean) indicate clearly that the
strength of inter-hemispheric connections should be
increased at least two-fold. This is consistent with
the known bias for shorter connections in probabilis-
tic tractography, but it is also remarkable that we can
estimate the amount of “missing” connectivity purely
from simulations.

Finally, the results for the temporal parameters (av-
erage delay and time-constant) are somewhat surpris-
ing. We would not expect network delays to be lower on
average than the characteristic time of variation within
each brain region, because these delays are caused by
axonal conduction over long distances, and local oscil-
lations (caused by cycles of local excitation and inhibi-
tion) are not subject to propagation issues. This partic-
ular result might change with a more accurate estima-

tion of the delays in our model (e.g . using tract-lengths
from tractography instead of Euclidean distances), and
may also be explained with further information about
myelination information. Both of these avenues will be
explored in future work.

Conditional distributions reveal the local topog-
raphy of the search space • Here we take a deeper
look at the best results obtained using conn1_mean con-
nectivity. The optimal parameters correspond to a sin-
gle point in the search space; to get an idea of the
topography of the objective function around the opti-
mum, we computed the conditional distributions of the
GP surrogate on orthogonal slices going through that
point. These slices are shown in Fig. 11.

A local maximum can be seen in the conditional
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Theta Alpha Beta Average

Temporal 0.37 0.73 0.50 0.53

Occipital 0.58 0.82 0.77 0.72

Parietal 0.29 0.44 0.52 0.42

Frontal 0.31 0.13 0.29 0.25

Figure 10: Region-wise correlation in each band,
calculated between matching rows of simulated and
reference FC matrices, for the best results obtained
with conn1_mean connectivity. The average correlations
within each lobe, for each band, are reported in the
table below the surface illustrations. The correspon-
dence between simulated and reference data is: very
good in the occipital lobe; good in the temporal lobe,
although driven mostly by the alpha band (>1.5 times
better than other bands); consistently worse in the
frontal lobe; and the average correspondence in the
frontal+parietal lobes is twice as low as in the tem-
poral+occipital lobes.

surrogate coupling vs input (row 2 column 1), which
indicates that the objective function is not unimodal.
Note that this is by no means a complete picture; for
example, it is impossible to know about local optima
located elsewhere in the search space based on this in-
formation only. Instead, the partition tree from GPSO
(not shown for brevity) can be used in combination
with these conditional distribution, to identify local ex-
trema and explore the topography of the search space
around them.

Additionally, the marginally weighted means and
standard-deviations of the similarity scores obtained
during optimisation are shown on the diagonal of
Fig. 11, computed within each dimension across all
samples in eleven bins covering the corresponding pa-
rameter range. These statistics are consistent with
the parameter distributions previously shown in Fig. 9,

although we previously only considered the 90th per-
centile of all samples.

Region-wise correlations reveal poor correspon-
dence in the frontal lobe • The correspon-
dence between the simulated and reference FC matrices
shown in Fig. 8 can be explored further, by correlat-
ing each row of these matrices independently, in order
to get a region-wise similarity score in each frequency-
band. This comparison is illustrated in Fig. 10, by as-
sociating these correlations with a colour in each brain
region and in each band. We find a very good corre-
spondence across frequency bands in the temporal and
occipital lobes, and systematically lower correlations in
the frontal lobe, especially in the orbito-frontal cortex
(OFC).

The signal-to-noise ratio in the OFC is known to be
rather poor in MEG [23], but the fact that the bad cor-
respondence extends throughout the entire frontal lobe
may relate to the work of [10], which introduced gradi-
ents of excitatory inputs in the frontal areas, in order
to account for higher dendritic spine counts compared
with primary sensory areas. Such lobe-specific treat-
ment can be easily introduced in our model (similarly
to the inter-hemispheric scaling) and will be explored
in future work.

Whether gradients of excitatory inputs improve the
correspondence with real data or not, however, it is re-
markable to be able to point to such specific modelling
aspects, with reasonable confidence that no other con-
figuration of the current system could yield a better re-
sult by tweaking the five parameters considered. These
results tell us that a change to the model is required,
and specifically one that will affect dynamics in the
frontal areas. This type of information is invaluable,
and demonstrates how GPSO can be used to inform
modelling choices incrementally.

3.4. Discussion

To our knowledge, no other work in the literature
attempted the systematic optimisation of LSBMs with
dozens of brain regions, in order to model fast-paced
electrophysiological dynamics, and controlling five (or
more) parameters. The computational and theoretical
complexity of these models (due to their non-linearity,
but also their size and the presence of delays), com-
bined with the richness of electrophysiological data
calling for detailed objective functions leveraging the
high temporal resolution, and the task of exploring pa-
rameter spaces as the number of dimensions increases
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(a.k.a. the curse of dimensionality), make the optimi-
sation of LSBMs a truly difficult problem.

Our approach is different from the DCM method
for network discovery [21], where the emphasis is put
on inferring the presence or absence of structural con-
nections, typically from fMRI data. For a given num-
ber of brain regions, this method considers all possible
networks connecting these regions (that is, all possi-
ble combinations of edges), and proceeds to finding the
network that is best supported by the observed data, as
measured by the Bayesian model evidence, using gener-
alised filtering [20]. Crucially, because it is impractical
to list all possible networks beyond a handful of brain
regions, let alone evaluate them, this method is made
computationally efficient by exploiting the idea that it
is sufficient to invert the fully-connected model in or-
der to estimate the model evidence of any subnetwork.
Furthermore, the method assumes that the posterior
distribution over the connection strengths is multivari-
ate Gaussian (the Laplace assumption); as such, it can-
not represent accurately complex cost functions (e.g .
with multiple modes, see Fig. 11), and in particular,
only considers a single extremum during optimisation,
which makes it prone to converging towards local ex-
trema depending on initialisation.

In our case, the network is taken as the AC matrix
estimated from diffusion tractography, and the empha-
sis is put on the Bayesian optimisation method pro-
posed, which can be used to infer model parameters
(up to a dozen in practice) with arbitrary objective
functions encoding the dynamical features of interest.
This method is capable of handling the computational
burden associated with LSBM simulations in practice,
and the presence of local extrema in the objective func-
tion. It does so by building a smooth surrogate of the
objective function using a Gaussian Process, which is
refined as the optimisation progresses, and exploited in
order to prioritise the exploration of areas in the pa-
rameter space that are either unknown, or promising
given the available evidence.

Nevertheless, there are a number of limitations cur-
rently associated with this method. First, it is not
currently possible to systematically evaluate the con-
vergence of the algorithm. This is mainly because at
every iteration, multiple areas of the search space are
being explored at multiple scales, which means that a
lack of improvement in the best score obtained (typi-
cally a criterion for convergence) over several iterations
is no guarantee that there will not be a substantial im-
provement at the next iteration. However, one can de-
fine several relevant termination criteria, such as: the
number of evaluations of the objective function (our

case), the number of iterations, the depth of the parti-
tion tree, etc. Second, it is worth noting that because
we only ever select those nodes with maximal UCB in
the partition tree (see Fig. 1), areas of the search space
with lower expected scores are the last to be evaluated
at each level of the tree, and therefore the resolution of
the surrogate is lower there. This is an intended con-
sequence of prioritising exploration in places of high
expected reward, but it also means that the surrogate
will in general not be reliable when the objective func-
tion is low; such is the price to pay for efficiency, this
is not primarily an exploration method. Third, it is
currently not possible to define priors over the param-
eter ranges in order to initially bias the search towards
regions of known interest. Note that this cannot be
done via the mean function of the GP, because hy-
perparameters are revised at each iteration, and that
making the prior insensitive to hyperparameters would
also make it insensitive to evidence accumulated by
simulations, effectively corrupting the objective func-
tion as a result. It could however be done by introduc-
ing a third type of point (currently either evaluated,
or GP-based, see §2.1.3), which would not be updated
following hyperparameter updates, but would need to
be evaluated before proceeding to exploration in an ar-
bitrary small neighbourhood. This would essentially
be equivalent to introducing “ghost nodes” arbitrarily
deep into the partition tree, waiting to be discovered
by subdivision. Finally, although this is purely a tech-
nical limitation, it is worth mentioning that the GP li-
brary we used (GPML [32]) is currently limited in the
number of samples it can handle for regression; in prac-
tice, the regression becomes prohibitively slow beyond
a few thousand samples, which means that we cannot
reasonably explore parameter spaces beyond 10 dimen-
sions. This can be solved indirectly, by selecting only
a limited number of evaluated samples for training the
GP; for instance, up to a certain depth in the partition
tree, and randomly beyond that depth, up to a certain
amount.

The two best results in our experiments, using
conn1_mean and conn3_fs connectivity, indicate that
inter-hemispheric scaling should be between two and
three times as strong (see Fig. 9). Although these es-
timates should not be taken for granted without fur-
ther validation (e.g . with different oscillatory models,
or using fMRI reference activity), we want to high-
light that they were obtained by optimising structure
(the AC matrix) from function (band-specific FC); this
is an exciting perspective offered by the method pre-
sented, with a different emphasis to previous work re-
lating structure and function through biophysical mod-
els [38, 15].
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To further elaborate on the validation of the re-
sults presented in §3.3: our experience suggests that
small changes to the objective function can alter the
results significantly (see Fig. 7); that different oscilla-
tory models can lead to qualitatively different search-
spaces (not shown); and the introduction of additional
parameters can enable qualitatively different dynam-
ics of the model. Furthermore, the frequency contents
of the simulations (not included here into the objec-
tive function, but an important aspect of resting-state
activity nonetheless) are affected by the heterogeneity
of unit parameters across the network [10], and also
most likely by the estimation of delays in the system;
for instance, using tract-lengths instead of Euclidean
distances, or including information about myelination.

Overall, the complexity of these systems makes it
difficult to affirm with confidence that a given LSBM
cannot produce dynamical activity with certain desired
properties. However we argue that, for a given set of
parameters, two models can be compared in terms of
their performance with respect to an objective func-
tion (which encodes the desired dynamical behaviour)
after optimisation. Provided that global convergence is
achieved for both (we recall that the method proposed
can handle local extrema), the comparison will still de-
pend on the objective specified and on the chosen set
of parameters, but will be valid under these conditions.

Previous related work in the literature such as [13, 9]
did not formally employ optimisation methods to ex-
plore the capabilities of LSBMs, although they did
study the effect of the connectivity strength and the
average delay between brain regions (repectively γ and
λ in our model) on the simulated dynamics, by exhaus-
tive grid search. We demonstrated that the method
proposed can not only help speed-up this process con-
siderably (see Fig. 6), but also allows to work in higher
dimensional spaces by considering more parameters.
This should enable more ambitious studies looking at
the joint effects of structural and functional parameters
on the simulated dynamics, and a principled compar-
ison between different LSBMs in terms of measurable
dynamical features (via the objective function), which
will hopefully contribute to the ongoing development
of a biophysical theory of brain activity.

4. Conclusion

We presented a Bayesian optimisation method capa-
ble of inferring the parameters of large-scale biophys-
ical models (LSBMs) from imaging data. Using this
method to optimise simultaneously five parameters, af-
fecting both structural and functional aspects in delay-
networks of 68 Wilson-Cowan oscillators, we were able
to achieve the highest levels of expected correspondence
with real resting-state MEG data across frequency
bands, given the simulation time-lengths (see figures 8
and 5). Our results also suggest that inter-hemispheric
anatomical connectivity, as estimated from diffusion
tractography, may be underestimated by a factor 2 to 3,
depending on the seeding and normalisation methods
used. Furthermore, looking at region-wise correspon-
dence in our best simulated results, we find systemati-
cally lower correlations in the frontal lobe, which indi-
cates that further modelling work is required particu-
larly in this area, perhaps in agreement with the work
presented in [10]. Altogether, these results suggest that
Gaussian-Process Surrogate Optimisation (GPSO) is
an efficient and effective method for exploring the ca-
pabilities of LSBMs. It enables the exploration of high-
dimensional parameter spaces (compared with the cur-
rent state-of-the-art), which offers unprecedented in-
sights into the relationship between structure and func-
tion in biophysical models of brain activity.
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Figure 11: Conditional surrogate distributions (off-diagonal) and marginally weighted means and st-dev. (on-
diagonal) around the best sample (black cross). These results correspond to the best experiment, using AC matrix
conn1_mean (see Fig. 7). Note that y-axes at the top-left and bottom-right indicate similarity scores, whereas
all other axes indicate parameter values. Lower-triangle: surrogate similarity (predicted mean) computed on
orthogonal slices of the search space, going through the best sample for each pair of dimensions. Upper-triangle:
associated surrogate uncertainty (predicted st-dev.) showing lowest uncertainty around the best sample, which is a
good indicator of convergence. Diagonal: weighted mean and st-dev. of evaluated scores, calculated within each
dimension across all samples. Higher bars indicate “preferred” values for the corresponding parameters (similar to
the distributions shown in Fig. 9, but considering all samples).
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