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Abstract

The relationship between structure and function in the
human brain is well established, but not yet well charac-
terised. Large-scale biophysical models allow us to investi-
gate this relationship, by leveraging structural information
(e.g . derived from diffusion tractography) in order to couple
dynamical models of local neuronal activity into networks
of interacting regions distributed across the cortex. In prac-
tice however, these models are difficult to parametrise, and
their simulation is often delicate and computationally ex-
pensive. This undermines the experimental aspect of sci-
entific modelling, and stands in the way of comparing dif-
ferent parametrisations, network architectures, or models
in general, with confidence. Here, we advocate the use of
Bayesian optimisation for assessing the capabilities of bio-
physical network models, given a set of desired properties
(e.g . band-specific functional connectivity); and in turn the
use of this assessment as a principled basis for incremental
modelling and model comparison. We adapt an optimisa-
tion method designed to cope with costly, high-dimensional,
non-convex problems, and demonstrate its use and effective-
ness. We find that this method is able to converge to re-
gions of high functional similarity with real MEG data, with
very few samples given the number of parameters, without
getting stuck in local extrema, and while building and ex-
ploiting a map of uncertainty defined smoothly across the
parameter space. We compare the results obtained using
different methods of structural connectivity estimation from
diffusion tractography, and find that one method leads to
better simulations.

1. Introduction

Large-scale biophysical models (LSBMs) [40, 35, 4]
offer a plausible mechanistic relationship between brain
structure (anatomical properties) and function (dy-
namical properties). This relationship has previously
been established by correlating anatomical connec-
tivity (AC) with resting-state functional connectivity
(FC) [24, 27, 31], leading to the hypothesis that resting-
state activity is an emergent property of the brain, re-
sulting from structured interactions between spatially
distributed populations of neurons [16]. As such, it
would be one of the few measurable forms of structure-
function interaction at the macro-scale, and the ideal
activity to compare against large-scale biophysical sim-
ulations.

Although the nature of these interactions remains
to be characterised, this hypothesis is consistent with
more functionally-oriented views, in which the brain
is seen as a network of spatially segregated units, co-
operating transiently over time in order to carry out
the neural computations required for cognition [14, 19].
This view is generally accepted, but still poses many
challenges (e.g . cortical parcellation, connectome esti-
mation, multimodal integration), some of which affect
the large-scale models that we study here. This should
be kept in mind when discussing the results obtained
with particular models, but the modelling approach it-
self remains relevant and attractive for many reasons.

Briefly, these reasons pertain either to a method-
ological, theoretical or clinical perspective. Method-
ologically, LSBMs offer a unified framework in which
previously independent methods – such as diffusion
tractography, neuronal population modelling and func-
tional connectivity estimation – are allowed to interact.
The ability to connect multiple aspects of brain struc-
ture and function via their dedicated fields of study is
crucial if we are to build a coherent theory of brain ac-
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tivity. From a theoretical standpoint, these models are
designed to provide a mechanistic summary of brain
activity in terms of biologically interpretable parame-
ters. A particular model then effectively encodes our
understanding of some underlying process, at least to
the extent that the empirical data can support. Finally,
clinical considerations derive from the theoretical ones;
reliable estimates of biologically interpretable parame-
ters can be used to characterise different conditions, or
discriminate between them [42].

Here, we focus on the theoretical perspective; specif-
ically with regards to the inference of model parame-
ters from imaging data. Biophysical models typically
describe the observed data (e.g . fMRI BOLD contrast
or MEG) in terms of interpretable parameters (e.g . lo-
cal balance of excitation and inhibition or the hemo-
dynamic response). Because of this formulation, they
are generative in nature: for a given set of parameters,
one can easily generate synthetic data according to the
model, which can then be compared to imaging data.
However the reverse – estimating the parameters that
best fit a given observation, also called model inversion
– can be very difficult, depending on the number of pa-
rameters, the complexity of the model, and the amount
of information in the observed data. Unfortunately in
practice, empirical estimates of the model parameters
are rarely available, and therefore model inversion is re-
quired in order to gain insight into the observed data.
The main purpose of this paper is to frame inversion of
LSBMs as an optimisation problem, propose a powerful
method for solving this problem which can handle the
computational burden usually associated with simula-
tions, and demonstrate its effectiveness on a simple yet
challenging example given the current state-of-the-art.

We model MEG resting-state data using delay net-
works of oscillatory neuronal masses, with five param-
eters controlling key structural and functional proper-
ties (e.g . average delay between brain regions or lo-
cal frequency responses). This model is formulated
mathematically as a large system of non-linear coupled
delay-differential equations with over a hundred state-
variables, which is numerically delicate and computa-
tionally expensive to solve. To further add to the chal-
lenges, reliable estimations of functional connectivity
patterns (which are compared against empirical mea-
surements from MEG) require on the order of a minute
worth of data, and numerical integration methods re-
quire timesteps below the millisecond. Therefore, ex-
ploring the different ways in which our model behaves
as a function of the controlled parameters poses imme-
diate difficulties in terms of computational tractability.

These circumstances call quite naturally for

Bayesian optimisation methods [5]; these methods op-
erate under the assumption that the true objective
function is computationally expensive to estimate, and
instead proceed to learning it through iterative cycles
of careful exploratory sampling and information consol-
idation. Specifically, the method presented in this pa-
per is designed for high-dimensional (in practice up to
a dozen parameters with typical LSBMs), non-convex
and computationally costly problems [30]. It is able to
explore the parameter space simultaneously at multi-
ple scales, allowing local optima to compete for the best
solution, and using uncertainty estimates to prioritize
unexplored regions.

The remainder is organized as follows. First, we
present the optimisation method in §2.1 and illustrate
the algorithm on a toy-example in Fig. 2. Second, we
introduce the LSBM used in our experiments in §2.2,
and define the optimisation problem for model inver-
sion (parameters and objective function) in §2.3. The
data used in our experiments is described in §3.1, and
implementation details are given in §3.2. Finally the
results of our experiements are presented in §3.3 and
discussed in §3.4.

2. Methods

2.1. Gaussian-Process Surrogate Optimisation

The method proposed is adapted from [30], and be-
longs to the family of Bayesian optimisation methods.
These methods are designed to tackle computation-
ally expensive black-box global optimisation problems
– that is, optimisation problems for which a global so-
lution is sought, but where the objective function is ex-
pensive to evaluate, and analytics (e.g . the objective’s
gradient) are not available. It is worth noting that this
method is independent from the particular problem at
hand, and may be applied to any other context with
similar constraints.

In general, efficient optimisation methods exploit
the structural properties of the problem (e.g . convex-
ity) in order to devise a strategy which guarantees rapid
convergence to a solution. But in the case of black-
box functions, these properties cannot be theoretically
determined, and therefore an efficient strategy needs
to discover them empirically and adapt as the opti-
misation progresses. Moreover in the case of expen-
sive objective functions, the strategy needs to restrict
the exploration of the search space to a minimum, in
order to remain computationally tractable. This ex-
cludes in practice all strategies which rely on the gra-
dient or Hessian (because numerical estimates require
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many function evaluations), but also stochastic sam-
pling methods (e.g . MCMC, particle filters or genetic
algorithms) which typically rely on large numbers of
samples (either for diversity or statistical validity).

2.1.1 Optimism in the face of uncertainty

The problem of finding a suitable strategy given the
previous constraints is best formulated within the
framework of game theory, where computing-time is
seen as a limited resource. The goal is to find the right
balance between exploring the search space, in order
to discover new places of interest with respect to the
objective, and exploiting the knowledge accumulated
by previous iterations, in order to prioritize a more de-
tailed search in places of known interest. This is known
as the exploration-exploitation dilemma, the simplest
instance of which is the so-called multi-armed bandit
problem (MAB) [2].

In short, the MAB problem consists in picking iter-
atively from a finite set of possible choices, with rep-
etitions allowed, where the outcome of each choice is
random with unknown distribution. For any fixed num-
ber of picks, the goal is to maximise the cumulative
outcome, by taking the best-known choice as often as
possible (exploitation), while regularly trying out un-
known or uncertain choices (exploration). A posteriori,
the difference between the outcome achieved and the
best possible outcome is called the regret ; minimising
the regret or maximising the reward is equivalent.

In this context, a successful balance between explo-
ration and exploitation can be achieved by adopting
an optimistic strategy, whereby at each turn, the best
possible outcome for each choice is considered, given
an estimate of uncertainty from previous trials. We
then iteratively pick the choice with the best expected
outcome, and update our uncertainty according to the
result obtained. This strategy is known as the upper
confidence-bound method (UCB), and in the next para-
graphs we explain how it can be implemented in the
context of non-linear optimisation. More detailed ex-
planations about UCB can be found in [7].

2.1.2 Gaussian-Process surrogate

The previous paragraphs give an overview of the strat-
egy adopted, but do not provide a practical solution to
our problem. The first issue is that the MAB applies
to finite sets of choices, whereas we consider search
spaces in which each point is a candidate set of param-
eters for our models. In fact, adapting the UCB strat-

Figure 1: Algorithmic summary of Gaussian-Process
Surrogate Optimisation (GPSO). The search space is
initially rescaled to normalise the bounds in each di-
mension to (0, 1). The iterations of the algorithm can
be summarised in three main steps; i) exploration,
where selected leaves are partitioned, and children are
assessed using GP-UCB; ii) evaluation, where we eval-
uate leaves with maximal UCB at each scale, using the
objective function; iii) update, where we re-train the
GP including newly evaluated points.

egy to the latter goes even deeper than considering an
uncountable set of choices, it also introduces the no-
tion of a neighbourhood for each choice, which should
be exploited to enforce smoothness assumptions and
propagate knowledge about the objective.

The second issue concerns the representation of this
knowledge. Bayesian optimisation methods are only
able to tackle such difficult problems because they ef-
fectively learn the objective as the optimisation pro-
gresses, and adapt their search for a solution according
to the current state of belief at each iteration. This
learned representation is typically defined smoothly
across the search space, and much cheaper to eval-
uate than the true objective function. It can there-
fore be used as a surrogate for the true objective func-
tion during optimisation, allowing for computationally
tractable analysis and exploration planning. To achieve
this, a powerful mathematical tool is required; one not
only capable of regressing any sample of points from
the objective function (multivariate in general), but
also providing smooth estimates of confidence (or un-
certainty) across the search space.

Fortunately, this is exactly what Gaussian process
regression (GPR) does, and it has been used success-
fully in the past to solve this second issue [12]. More-
over, resorting to Gaussian processes (GP) also pro-
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vides intuition into the first issue; GPs can be thought
of as an extension of multivariate Gaussian distribu-
tions to the infinite case, where any finite subset of
points in the search space is itself Gaussian distributed,
and the dependence between any pair of points is spec-
ified by the covariance function, which usually encodes
the idea of neighbourhood (typically chosen as a de-
creasing function of the distance between two points).
More details about GPs can be found in [32].

Using GPs, we are able to regress any finite sam-
ple of points in order to represent arbitrary objective
functions, with an estimate of uncertainty, and with
the idea of neighbourhood encoded via the covariance
function. The only missing ingredient is a method to
overcome the fact that points in the search space can-
not be indexed like discrete choices (they are uncount-
able); without it, the present context of continuous op-
timisation cannot relate to the MAB problem, and the
UCB strategy cannot be applied.

This is achieved in [30] by the introduction of a par-
tition function, which splits the search space into dis-
tinct subregions that can be explored independently,
and can in turn be partitioned themselves to reach a
finer resolution – that is, the partition function is re-
cursive. Recursivity confers exponential convergence
towards regions of interest, and induces a hierarchi-
cal structure amongst subregions according to their
size (larger regions are non-overlapping unions of the
smaller regions contained within them), which can be
represented by a partition tree. Each node in this tree
corresponds to a cartesian region of the search space,
covering a unique combination of subintervals in each
dimension (i.e. a specific range of values for each pa-
rameter), and the size of this region decreases strictly
with the depth, meaning that we can reach arbitrarily
high resolutions. In other words, the partition function
allows us to identify regions in the search space with
arbitrary resolution, and since there are only a discrete
number of nodes at each level, the UCB strategy can
be applied in a multi-scale fashion.

2.1.3 Concrete implementation

The main challenge of global optimisation methods, as
opposed to local methods, is to deal with local extrema
in the objective function. This challenge can be effi-
ciently tackled by carrying out multiple local searches
in a sequential (e.g . simulated annealing, Metropolis-
Hastings) or parallel (e.g . particle filters, genetic al-
gorithms) manner. The method proposed here imple-
ments a special case of the parallel approach, which

organises candidate solutions hierarchically using the
partition tree introduced in the last paragraph.

Briefly, the algorithm proceeds iteratively (after ini-
tialisation) by: selecting at each level a leaf node with
maximal UCB; subdividing selected leaves further us-
ing the partition function; exploring children nodes to
assess their UCB; and retraining the GP surrogate with
new evaluations of the objective function. This is also
summarised as a diagram in Fig. 1. Because selected
nodes are leaves, we consider at each step a set of re-
gions located in different parts of the search space, and
because we select at most one leaf per level in the par-
tition tree, we explore the search space simultaneously
at multiple scales.

From there, there are three points to clarify in order
to get a concrete implementation:

1. For any point x in the search space, the upper-
confidence bound is defined as:

UCB(x) = µ(x) + ςσ(x) (1)

where µ(x) corresponds to the expected value of
the objective function f at point x given by GPR,
σ(x) is the associated standard deviation, and ς is
a positive factor controlling our optimism1.

2. Each leaf node in the partition tree is labelled as
being either: evaluated, meaning that the objec-
tive function was evaluated at its centre; or GP-
based, meaning that its associated score was esti-
mated by UCB. Specifically, the score associated
with a GP-based leaf corresponds to the best UCB
amongst N points randomly sampled within the
corresponding area in the search space. At each
iteration, selected GP-based leaves are evaluated
prior to being partitioned, and the score associ-
ated with any evaluated node is the value of the
objective function at its centre.

3. The partition function is a ternary split along
the largest dimension of the subregion considered
(in normalised coordinates). This is not a trivial
choice; it satisfies several desirable properties with
regards to the optimisation, although none of them
is required. First, it produces non-overlapping
subdivisions, which ensures that there is only one
path converging to any specific point in the search
space, avoiding redundant competition between
nodes. Second, the centre of the parent node is

1For a GP with Gaussian likelihood kernel, the upper bound
of a p% confidence interval on the expected value corresponds to
ς = erfc−1(p/100), where erfc is the complementary Gauss error
function.
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(a) Partition (top-row) and surrogate function (bottom-row) for 4 different iterations (columns). Ternary partition (black
lines) is shown overlaid on top of the objective function (coloured background). Surfaces show the expected value of the
GP surrogate, and colour indicates differences with the true objective: red means true objective > surrogate (conversely for
blue). Iteration 1. Initial sample and 2 points evaluated in the first iteration; the top and bottom initial points are near
a peak and a trough, hence the slope of the surrogate. Iteration 11. The algorithm initially finds a local maximum, and
converges rapidly to its peak by increasing the number of subdivisions in the area. Iteration 13. Exploration at coarse
scales hits the slope of the highest peak; surface shows the surrogate peak is misaligned (red patch between the two peaks),
but it is already higher than the previous one. Iteration 17. Discovery of a higher peak at larger scale froze the subdivision
near the first local maximum. The algorithm converged to the global optimum after 4 iterations. The surrogate peak is now
aligned with the truth (both peaks are green).

(b) Left. Ternary partition tree; nodes correspond to subintervals of the search space (see top-row in figure a), colours
correspond to the associated scores (upper-confidence bounds), and edges represent set inclusion (parent intervals are the
union of their children); in particular, deeper intervals are smaller. Bigger nodes indicate that the objective function was
evaluated at their centre, smaller nodes were assessed using GP only. Deeper orange branches at the centre correspond
to the local maximum found initially, and red branches on the left correspond to the highest peak. Right. Measure of
sampling density as a function of the score, showing exponential convergence empirically. For each evaluated point (black
dot), the average distance to the 5 nearest neighbours (y-axis, using normalised coordinates) is plotted against the value of
the objective function at this point (x-axis). The blue line and red area represent respectively the best fit of an exponential
function x 7→ aebx, and the associated observation bounds with 95% confidence.

Figure 2: Gaussian-Process Surrogate Optimisation (GPSO) on Matlab’s peaks function.
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also the centre of the middle child, which saves
us an evaluation of the objective function at each
split. And third, because of this conserved point,
we can guarantee that the children of a node do
not recede, meaning that the progression within a
branch is monotonic.

Finally, an improvement can be made on the se-
lection process; it is pointless to explore regions at a
smaller scale, if some region at a larger scale has a bet-
ter expected score. Therefore, the selection proceeds
sequentially from the root to the deeper branches, and
we discard levels at which the maximum UCB does
not improve upon the best expected score so far. In ef-
fect, this introduces competition between the different
scales, and prevents dwelling around local extrema.

2.2. Large-Scale Biophysical Model

In this paper, we use the Bayesian optimisation
approach introduced in the previous section in order
to optimise the parameters of whole-brain dynamical
models. Specifically, we consider networks of interact-
ing Wilson-Cowan oscillators with delays. This model
posits that the electrophysiological oscillations typi-
cally observed in MEG data result from cycles of exci-
tation and inhibition [41], and has been employed pre-
viously, notably in [13] to highlight the importance of
propagation delays and long-range couplings between
distant brain regions, with regards to synchronisation
properties in the dynamics produced.

2.2.1 Assumptions and definitions

The brain is modelled as a network of neuronal masses,
in which vertices correspond to spatially-contiguous
brain regions, and edges represent direct interactions
between these regions. Each neuronal mass may con-
tain several subpopulations of neurons, or several state
equations, and so to distinguish between these local en-
tities and the different brain regions in the network, we
call nodes the vertices corresponding to a subpopula-
tion or state equation, and units the groups of vertices
located in the same brain region.

We are interested in emergent oscillatory activity in
these networks, which is assumed to be driven by cycles
of excitation and inhibition in each region. Therefore,
two subpopulations of neurons are considered: an ex-
citatory subpopulation (E) driving towards increased
oscillatory activity, and an inhibitory subpopulation
(I) driving towards quiescence. The effects of self-
and long-range inhibition are neglected, meaning that

Symbol Description Value

τ Time-constant 10 ms

r Refractory-period 0 ms

µ Response threshold 3

σ Dynamic range µ/6

cee, cei Excitatory coupling 28, 7

cie, cii Inhibitory coupling −35, 0
Pi Inhibitory input −0.3

Table 1: Baseline parameters for the Wilson-Cowan
model (see Eq. 3,4). Where subscripts are omitted,
the description and value of the parameter apply to
both subpopulations. The excitatory input Pe is con-
trolled during our experiments. The response parame-
ters (µ, σ) were set such that small inputs (compared to
the dynamic range, see Fig. 3) would cause the system
to oscillate. Couplings were set according to a ratio
of 80% self-excitation (cee/(cee + cei) = 0.8), and no
self-inhibition (cii = 0).

there are no I-to-I edges, and only E-to-E edges be-
tween units. Finally, we do not consider noisy inputs
or synaptic plasticity in this paper: their effects has
been explored in separate work [1].

2.2.2 Local oscillations

The Wilson-Cowan model [41] describes the temporal
variations of the amount of neurons firing within an ex-
citatory and an inhibitory population of neurons, given
static local couplings between the two (related to the
distribution of synaptic connections), and an external
input controlling the excitability of the system.

It introduces so-called “subpopulation response
functions”, defined as the cumulative distribution of lo-
cal firing-thresholds within each subpopulation. These
distributions are generally assumed unimodal and sym-
metric, leading to sigmoidal cumulative functions. In
practical terms, the subpopulation response function
represents the expected response of an initially quies-
cent population of neurons to an external input, and is
modelled as a logistic sigmoid:

∀x ∈ R, S(x; µ, σ) =
1

1 + e−x̂
x̂ =

x− µ
σ

(2)

where µ represents the response threshold, and σ con-
trols the width of the dynamic input range.

Let E(t) denote the ratio of excitatory neurons firing
at time t within a brain region (resp. I(t) for inhibitory
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Figure 3: Illustrations of the Wilson-Cowan unit. Top-left: local two-population structure (excitatory and
inhibitory), without self-inhibition (cii = 0) and with long-range excitation only (blue dashed lines). Top-right:
example oscillatory timecourse showing inhibition (red dashed line) lagging behind excitation (blue plain line); the
lag is controlled by the time-constants τe,i, and here the excitatory input is set to 0.84. Bottom-row: evolution
of standard-deviation (surface height) and frequency mode (colormap) as a function of the excitatory input, and
varying parameters in three different ways. Black lines correspond to an increasing Pe with the baseline parameters
(see Tab. 1). The unit is always silent without excitatory input, and saturates for large inputs – the interval between
oscillatory and saturation thresholds is the dynamic range of the unit. Notice that the frequency of oscillations
depends on the input; this property allows remote brain regions to affect the local phase via their connection, which
is a potential mechanism for long-range synchronisation. Left: the frequency of oscillations can be controlled with
the time-constant τ without affecting the dynamics. Middle: an upscale of local couplings dilates proportionally
the dynamic range of the unit. Right: small scalings of the response parameters (µ, σ) linearly translate the
dynamic range, but also affect the range of oscillatory frequencies.

neurons). The Wilson-Cowan model states that:

τe∂tE = −E + (1− reE)Se
(
ceeE + cieI + Pe

)
(3)

τi∂tI = −I + (1− riI)Si
(
ceiE + ciiI + Pi

)
(4)

where ∂t• denotes the derivative with respect to time;
cxy ≡ cx→y is the directional coupling of x affecting
y; Se,i are the subpopulation response functions; and
Pe,i are external inputs. The remaining parameters are
given in Tab. 1. Notice that although the equations are
identical for both subpopulations, the inhibitory cou-
pling coefficients cie and cii must be non-positive (by
definition), while the excitatory coefficients cee and cei
must be positive, which breaks the apparent symmetry
between excitation and inhibition.

Applying our assumption about inhibitory self-
coupling, we set cii = 0. Furthermore, given that the
refractory periods are typically much smaller (∼ 10−3)
than the scale of variation of the state variables (in-
terval [0, 1]), their effect in practice is negligible at
such large scales and therefore we set re = ri = 0.
In summary, the oscillatory mechanism of this model
is simple: i) excitatory inputs lead to an increase in
excitatory activity; ii) excitatory activity causes an in-
hibitory response; iii) decreased excitation leads to a
decreased inhibition; iv) decreased inhibition leads to
a relative increase of excitatory inputs.

The architecture of this model, as well as the typical
dynamics produced, and the effect of key local param-
eters on these dynamics, are shown in Fig. 3.
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2.2.3 Network extension

Extending the previous local equations to a network
of interacting brain regions consists in adding coupling
terms from those remote regions inside the subpopu-
lation response functions. The general node equation
(whether excitatory or inhibitory) in a network of N
brain units is therefore:

τk∂tXk = −Xk + Sk

 2N∑
j=1

cj,kXj(t− λj,k) + Pk

 (5)

where 1 ≤ k ≤ 2N with the convention that odd in-
dices correspond to excitatory nodes (resp. even for
inhibitory nodes); Xk is the normalised firing-rate of
node k (corresponding to previous variables E and I
at the unit-level); and we introduced delay parame-
ters λj,k ≡ λj→k ∈ R+ to account for propagation
times between distant brain regions. These delays are
of the same order of magnitude as the characteristic
time-constants of local subpopulations, and therefore
interfere with their dynamics2.

2.3. Model Optimisation

The model presented in the previous section de-
scribes the activity of a network of N brain regions, us-
ing 2N state equations (see Eq. 5). In general, this net-
work will not be sparse, meaning that there are O(N)
non-zero coupling terms in most state equations, hence
the high computational costs associated with simula-
tions in practice (there are O(N2) interaction terms to
be computed at each time-step). As it stands, there
are also O(N2) parameters, because of the coupling
and delay matrices, respectively [ci,j ] and [λi,j ]. It is
therefore impractical to move on directly to the sim-
ulation of such systems, without a more parsimonious
parametrisation of the model.

In this section, we propose a simple parametrisation
controlling key structural and functional aspects of the
system with few parameters. These parameters can be
inferred from empirical MEG data, using the method
presented previously in §2.1, by framing model inver-
sion as an optimisation problem, for which we propose
an objective function below.

2Such delays are caused mainly by axonal conduction and
synaptic transmission, both highly dependent on temperature,
and range from hundreds of micro-seconds to tens of milli-
seconds at long-range [34].

2.3.1 Assumptions

For simplicity, we assume that all units in the network
are identical, and that excitatory and inhibitory sub-
population response functions and time-constants are
identical (see Tab. 1 for baseline parameters). Each
unit is normally defined by 9 parameters (τ, µ, σ for
each node, and cee, cei, cie), so these assumptions re-
duce the number of unit parameters from 9N to 6.

Since there are two nodes per unit (excitatory and
inhibitory subpopulations), the connectivity and delay
matrices have a 2-block structure. For instance, with
the coupling matrix, all on-diagonal blocks are identi-
cal (and contain the local couplings), and off-diagonal
blocks only have one non-zero entry (only E-E long-
range connections):(

cee cei
cie 0

)
︸ ︷︷ ︸
On-diagonal

(
ci,j 0
0 0

)
︸ ︷︷ ︸
Off-diagonal

With the delay matrix, we reason in pairs of units
instead of nodes (i.e. the delay between two regions is
the same regardless of which subpopulations we con-
sider in each). Therefore the 2-block between units i
and j is simply:

λi,j

(
1 1
1 1

)
and we neglect delays within units (λi,i = 0). Delays
are estimated from pairwise Euclidean distances, and
we assume a constant propagation velocity throughout
the brain to avoid introducing additional parameters.

Furthermore, we only consider cortico-cortical con-
nections in this work, and assume that the two hemi-
spheres correspond to subnetworks of equal size (N/2
units). The latter induces an additional N-block struc-
ture in the previous matrices, which is useful for two
reasons:

• to our knowledge, there is no evidence for one
hemisphere driving brain activity more than the
other, or for a lateral bias in the AC between hemi-
spheres, therefore requiring both to have the same
size ensures that the overall AC within and be-
tween hemispheres is structurally unbiased;

• from a purely practical perspective, the assump-
tion of hemispheric symmetry makes it easier to
manipulate connections within and between them,
as in Eq. 8 for instance.

Finally, note that despite these numerous assump-
tions the network is still heterogeneous due to the dif-
ferent coupling weights and delays assigned to the edges

8
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of the network; this is consistent with the overall ob-
jective of studying the effects of structural properties
on dynamical activity.

2.3.2 Parametrisation

Let D be the matrix of pairwise Euclidean distances
between brain regions, and A the associated matrix of
anatomical connectivity estimated from diffusion trac-
tography (both N × N). By convention, the diagonal
of A is set to zero, and we recall that excitatory and
inhibitory nodes are indexed between 1 and 2N , re-
spectively with even and odd numbers.

The coupling matrix C = [ci,j ] and delay matrix
Λ = [λi,j ] are parametrised respectively as follows:

C = γA⊗
(

1 0
0 0

)
︸ ︷︷ ︸

non-local

+ IN ⊗
(
cee cei
cie 0

)
︸ ︷︷ ︸

local

(6)

Λ =
λ

D
D ⊗

(
1 1
1 1

)
(7)

where ⊗ is the Kronecker product; I the identity ma-
trix; D the average pairwise distance; and we intro-
duced the following parameters:

• γ the global coupling strength, controlling the
overall amount of non-local coupling;

• and λ the average propagation delay, controlling
the speed of interactions.

Note that although matrix A might be symmetric,
C is not ; the element in row i column j corresponds to
the edge from node i to node j (not unit), and therefore
each column can be seen as a coupling vector for the
corresponding node.

Probabilistic tractography methods have an inher-
ent bias towards shorter connections; longer stream-
lines are less probable, and therefore connectivity be-
tween distant regions is generally lower [37] (see Fig. 4).
This reflects a biological reality [18], but beyond the is-
sue of assessing the accuracy of the estimated decrease,
there is the question of whether the same decrease rates
apply equally within or between hemispheres. In order
to correct for such potential bias, we introduce an addi-
tional parameter h to manually scale inter-hemispheric
connections, which correspond to the off-diagonal N-
blocks in matrix C. This scaling is affected to A di-
rectly, before substitution in Eq. 6:

A←[ A�
[
1N/2 ⊗

(
1 h
h 1

)]
(8)

Symbol Description Short-name Range

P̃e Relative input Input (0.6, 1)

γ̃ Relative coupling Coupling (1, 3)

λ Average delay (ms) Delay (1, 50)

h Inter-hem. scaling IH Scaling (0, 4)

τ Time-constant (ms) Tau (4, 16)

Table 2: Network parameters controlled during opti-
misation. The ranges correspond to the boundaries of
the search space (required by GPSO). The parameter
variants P̃e and γ̃ are defined in §2.3.3. Short names
are used in figures 6, 9 and 11.

where � is the Hadamard product (element-wise) and
1 is a full matrix of ones.

Finally, we consider two functional parameters af-
fecting the oscillatory dynamics of all units:

• the time-constant τ , assumed equal for all nodes,
which controls the frequency response of Wilson-
Cowan units (see Fig. 3);

• and the excitatory input Pe, assigned equally to all
excitatory nodes across the network, which con-
trols the excitability of individual units when they
are below oscillatory threshold.

Equations 6, 7 and 8 determine entirely the network
structure, and we consider five parameters to be op-
timised, in Tab. 2, which control key structural and
functional aspects of our model.

2.3.3 Relative variants

The previous parameters control key structural and
functional aspects of our LSBM, but their range of val-
ues can vary depending on the AC matrix considered
(and more generally, the oscillatory unit considered).
This means that a suitable domain for optimisation
needs to be determined ad hoc every time, which makes
it difficult to compare solutions found across models.

We know (see Fig. 3) that Wilson-Cowan units os-
cillate for excitatory inputs beyond a certain threshold
value P ∗e . Similarly at the network level, we know that
oscillations occur for coupling values beyond a certain
threshold value γ∗ (which is null if the units intrinsi-
cally oscillate on their own).

Normalising these parameters with respect to their
threshold value would help, not only to compare them

9
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Figure 4: Structural information used in the biophysical models. Row 1: AC matrices estimated from diffusion
tractography, using two different seeding methods (conn1, conn3), and two normalisation methods (mean, fractional
scaling), see §3.1.1 for details. Row 2: thresholded network (90th percentile) showing the strongest edges in
corresponding AC matrices. conn3 seeding favours homotopic connections, whereas conn1 favours anterior-posterior
connections, and mean normalisation shows stronger connectivity in the frontal lobe. Bottom-left: matrix of
pairwise distances showing hemispheric block structure. Lower distances around the diagonal are due to the
ordering of the different regions (chosen manually). Bottom-right: basic statistics on connectivity weights.
Connectivity decreases exponentially with the distance (left, GP regression showing predicted means and 95%
confidence intervals). Average degrees are higher in the frontal and occipital lobes (right, bars shown for each
method, and grouped by lobe); fractional scaling reduces frontal connectivity, while increasing temporal and and
parietal ones; and conn1 seeding yields noticeably higher connectivity in the temporal lobe, and lower in the
occipital lobe.

across different models, but also to easily control the
state of the network (oscillating or silent) and focus on
the oscillating regimes during optimisation. Hence, we
define the following relative variants instead:

P̃e = Pe/P
∗
e γ̃ = γ/γ∗ (9)

and use them throughout our experiments.

With these definitions, we know for example that
P̃e < 1 corresponds to brain units below oscillatory

threshold, and that networks are in oscillatory regime
only when γ̃ > 1. And we can enforce these conditions
during optimisation by choosing the parameter ranges
accordingly (see Tab. 2).

However, determining the threshold value γ∗ is not
trivial, because it depends on P ∗e (the unit oscillatory
threshold), as well as on other controlled parameters
such as the average delay and inter-hemispheric scal-
ing. While P ∗e can be determined numerically (e.g .

10
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with bifurcation analysis), to our knowledge there is
no simple method for estimating the oscillatory cou-
pling threshold γ∗ for any given delay-network.

In our experiments, for any candidate set of param-
eters (including normalised input and coupling), both
threshold values were estimated prior to simulation in
order to determine the corresponding values Pe and γ,
which are required in order to build the network (see
previous section). This was done by dichotomic search
with a precision of 3 significant digits. The overhead
introduced, in terms of runtime, was on the order of a
minute per candidate set of parameters (largely dom-
inated by the search for γ∗; the search for P ∗e always
took less than a second).

2.3.4 Objective function

The optimal parameters should maximise the similarity
between biophysical simulations and real MEG data,
and this similarity should be assessed using character-
istic features of resting-state dynamics. In this paper,
we take a simple objective function comparing FC ma-
trices across six overlapping frequency bands:

[4, 8] [6, 10] [8, 13] [10, 20] [13, 30] [20, 40] Hz

As excitatory pyramidal cells contribute most
strongly to EEG/MEG signals, we associate activity in
the excitatory populations of the model with signals in
experimental data [8]. Envelope correlations were com-
puted in each band, as is commonly done with resting-
state MEG (more details in §3.1.2). Importantly, the
simulated timeseries were orthogonalised prior to com-
puting Hilbert envelopes (using the Procrustes method
from [11]), in order to replicate the effects of leakage
correction on source-reconstructed MEG data.

Denoting M1..6 the corresponding FC matrices,
where subscripts identify the frequency-band, we de-
fine the vector of relative connectivity magnitudes as:

u =

[
µk

maxb |µb|

]
k=1..6

(10)

where µb is the average off-diagonal correlation coeffi-
cient in matrix Mb. By definition, the largest element
in this vector has magnitude 1 (e.g . in alpha band),
and the magnitude of each element gives the amount
of connectivity in one band compared to the principal
one (e.g . in theta compared to alpha).

This vector is computed for the simulated and refer-
ence data independently, in order to compare the rel-
ative amounts of connectivity across frequency bands.

Note that because we divide by the largest correlation
coefficient across bands, this comparison is insensitive
to any scaling of either set of matrices (reference or
simulated), which can vary as a function of the signal-
to-noise ratio for instance, or the amplitude of the os-
cillations.

Finally, the objective function used in our experi-
ments combines the similarity between relative connec-
tivity magnitudes, and the average within-band corre-
lation between simulated and reference FC matrices:[

1− RMS

(
uref − usim

2

)]
· 1

6

6∑
b=1

Corr
(
M sim

b ,M ref
b

)
where superscripts refer to the simulated or reference
data, and the first factor is a normalised measure of
similarity (in [0, 1]) based on a root-mean-square met-
ric, which is 1 when uref = usim, and decreases towards
0 as the distance between them increases.

3. Results & Discussion

3.1. Imaging data

3.1.1 Anatomical structure

The Desikan-Killiany cortical parcellation [17] was used
in all experiments to define brain regions (or “units”
in our network models). The AC between regions
was estimated using probabilistic diffusion tractogra-
phy [3, 28], and averaged across 10 diffusion MRI
datasets from the Human Connectome Project (HCP)
[39, 36]. Distortion corrected data [22] was used to esti-
mate fibre orientations [29, 26], and used subsequently
for probabilistic tractography in FSL. Delays between
regions were estimated using Euclidean distances be-
tween the region’s barycentres.

Two different seeding methods were used to com-
pute dense tractography connectomes: with the conn1
method, streamlines were seeded from the WM/GM
interface; whereas the conn3 method considered every
brain voxel as a seed. The number of streamlines reach-
ing locations on the WM/GM boundary (∼60k vertices
in standard MNI space, as given by the CIFTI format
[22]) were recorded.

Both connectomes were then parcellated and nor-
malised in order to estimate anatomical connectiv-
ity between each region. Two different normalisation
methods were used [18]:

• the mean method counts the number of streamlines
between pairs of vertices belonging to two regions,
and divides by the number of vertices in both;
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• whereas fractional scaling (fs) divides instead by
the sum of the source-region output count and
target-region input count.

Conceptually, the first normalisation accounts for
differences in size between different regions, while the
second method accounts for differences in connectiv-
ity between pairs of regions instead (which indirectly
accounts for differences in size as well).

Finally, each connectivity matrix was made sym-
metric by arithmetic average with its transpose, and
rescaled such that the average degree (sum of rows or
columns) be unitary. The corresponding AC matrices
are shown in Fig. 4.

3.1.2 MEG resting-state

The resting-state datasets of 28 healthy subjects from
[6, 33] was used in our experiments. Details about the
acquisition and pre-processing can be found in these
references. The data were beamformed into MNI 8mm
standard space between 4 and 40Hz, parcellated using
PCA, rescaled to set the largest standard-deviation to
1, and orthogonalised to correct for spatial leakage us-
ing the Procrustes method from [11].

Each dataset was then filtered in the following six
overlapping frequency bands:

[4, 8] [6, 10] [8, 13] [10, 20] [13, 30] [20, 40]Hz

and correlations between Hilbert envelopes were com-
puted in each band. The resulting band-specific FC
matrices were then averaged across 28 subjects, and
taken as reference data for our simulations to be com-
pared against. These reference FC matrices in theta,
alpha and beta bands are shown along with the best
simulated results in Fig. 8.

In addition, we performed a time-windowed anal-
ysis on real MEG data in order to assess the best
similarity scores to be expected as a function of the
simulation time-span in our experiments (see objec-
tive function in §2.3.4). Specifically, for a window of
a given time-length, we extracted segments of source-
reconstructed time-series from all 28 MEG datasets,
estimated the functional connectivity matrices for each
of these segments, and computed the associated simi-
larity scores as if those were simulated data. The dis-
tribution of scores obtained (see Fig. 5) was taken as
a gold-standard for our simulations; we should expect
our best simulations to hit the upper-end of this dis-
tribution, but significantly higher scores would indicate

Figure 5: Distribution of similarity score (see §2.3.4)
estimated on real MEG data across all 28 subjects, for
time-windows of varying length (15 to 150 sec, 50%
overlap). The black centreline is the median similar-
ity score as a function of the window-length, and the
orange patch shows the associated 95% confidence in-
terval. This distribution is used as a gold-standard to
assess the performance of our simulations; for a time-
length of 60 sec, the upper similarity bound with 95%
confidence is 0.41, and the best score obtained with our
simulations is 0.42 (see Fig. 10).

overfitting, and lower scores would indicate poor model
performance.

We also used this analysis in order to strike a rea-
sonable balance between higher expected scores and
longer simulation times. The computational costs as-
sociated with longer simulations were considerable, and
this analysis allowed us to assess the expected penalty
for choosing shorter simulation times. We opted for
simulations with an equivalent of 60 seconds worth of
data in our experiments (downsampled to 300 Hz be-
fore analysis); for this time-length, the corresponding
upper-bound for the expected similarity scores with
95% confidence is 0.41, and the best score obtained
in our experiments was 0.42 (see Fig. 10).

3.2. Software implementation

3.2.1 GP Surrogate Optimisation (GPSO)

We improved upon the implementation of IMGPO
[30], by addressing a number of issues and extend-
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Function Hyperparameter Value

UCB ς 1.98

Constant mean µ 0

Gaussian likelihood σ 0.001

Isotropic Matèrn
covariance (order 5)

Length 0.25

Magnitude 1

Table 3: GPSO hyperparameters and initial val-
ues used for all experiments. The optimism parame-
ter ς corresponds to confidence bounds of 99.5% (i.e.
erfc−1(0.005)), which was found to strike a good bal-
ance between exploration and exploitation.

ing the algorithm in several ways. Our implemen-
tation is a complete refactoring of the original algo-
rithm, and is made freely available under the terms
of license AGPLv33 at the following address4: https:
//gitlab.com/jhadida/gpso.

Our main contributions are listed below:

• to update upper-confidence bounds following the
optimisation of GP hyperparameters at each iter-
ation, in order to allow belief propagation across
the partition tree;

• to enable the exploration of candidate leaves using
uniformly random samples of points in the corre-
sponding subregion of the search-space (the origi-
nal implementation only explored a subset of the
dimensions in a deterministic manner);

• to implement serialisation, allowing for the opti-
misation to be resumed at any stage.

The various settings used during our experiments
are listed in Tab. 3.

3.2.2 Biophysical Simulations

The LSBM presented in §2.2 was implemented in C++,
and simulations were analysed with Matlab.

The system of non-linear coupled delay-differential
equations (see Eq. 5) was solved using an adaptive-step
Runge-Kutta method of order 8 adapted from the ref-
erence Fortran implementation Dopr853 in [25]. The
main computational bottleneck in the simulations is
due to the number of feedback terms to be computed

3The terms can be found at https://www.gnu.org/licenses/
agpl-3.0. Briefly, any use of the code is permitted, without
warranty, provided that copyrights are retained, and that any
modification is made freely available under the same terms.

4This link will be inactive until acceptance.

at each time-step; since network matrices (delay and
coupling) are not sparse, the complexity is quadratic in
the number of nodes in the network. At each timestep
of size h, the sum of delayed terms in each equation
were computed across multiple threads at time t and
t+h, and interpolated for each substep using an exact
formula (that is, the interpolation does not make any
approximation). These optimisations allowed for sim-
ulation times roughly two times slower than real-time
using four threads on modern CPUs.

The initialisation of delay-systems is delicate. In
contrast with initial value problems, which typically
require a single initial state, delay-systems require a
smooth function for initialisation. This function must
be defined over a time-interval [t0 − λ, t0], where t0 is
the initial time and λ is at least as large as the largest
delay. Additionally, it should itself be a solution of the
system, which makes the problem circular.

To our knowledge, there is no solution to this prob-
lem. In our experiments, for each simulation, we cal-
culated the fixed point (E, I) to which individual units
converged given the current excitatory input5, and set
the initial function to be constant and equal to these
values in each unit. It is equivalent to assume that
units are initially disconnected from the network for a
certain period of time.

3.3. Experiments

We present the results of two experiments which
demonstrate the benefits of GPSO in the context of
LSBMs. The first experiment is a proof of concept in
a restricted two-dimensional case, which allows results
to be visualised and compared with exhaustive search.
The second experiment considers the full model with
five parameters, for which we provide a detailed analy-
sis of the results and highlight the current limitations.

3.3.1 Two-dimensional example

In this experiment, the similarity between simulated
and reference MEG data was maximised according to
the objective function defined in §2.3.4, by optimising
just two parameters for now; the average delay λ, and
the relative network coupling γ̃. The remaining param-
eters (see Tab. 2) were set to: P̃e = 0.85, h = 1, τ =
10ms, and we used the conn1_mean AC matrix to con-
nect the network units.

5We know it is a fixed-point because we only choose inputs
below oscillatory threshold (see Tab. 2).
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Figure 6: Exhaustive grid-search with 525 simulations, compared against GPSO with 100 simulations, controlling
2 parameters (average delay and relative coupling). The remaining parameters (see Tab. 2) were set to: P̃e =
0.85, h = 1, τ = 10ms, and we used the conn1_mean AC matrix to connect the network units. Top-left: exhaustive
search (background image) and partition tree from the GPSO (black lines). Black asterisks indicate the samples
evaluated during optimisation (see §2.1.3 for details about GP-based samples). Each pixel corresponds to a 63 sec
simulation, analysed and compared with reference MEG data. The partition is refined in places where the objective
function is higher, and the optimisation converged rapidly to the global optimum. Bottom-row: surrogate function
(predicted mean) learned by GPSO, to be compared against the smoothed exhaustive search (ground-truth) on
the left. Top-right: surrogate uncertainty (predicted st-dev.), driving the compromise between exploration and
exploitation during optimisation.

The timespan of each simulation was 63 seconds, and
we discarded the first 3 seconds to get rid of transient
effects before analysis. The results are shown in Fig. 6.

The performance of GPSO was assessed by compar-
ison with an exhaustive grid search, which is compu-
tationally tractable with two dimensions and can be
easily visualised. The grid search required 525 simula-
tions, considering respectively 25 and 21 equally spaced
points across the value ranges of the delay and coupling

parameters. In comparison, GPSO was run with 100
simulations, with which it successfully converged to the
optimum, while learning a surrogate objective function
defined smoothly across the search space, along with a
map of uncertainty. These results demonstrate the ef-
ficiency of the method in a restricted two-dimensional
context of LSBM optimisation.
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conn1_mean conn1_fs conn3_mean conn3_fs

Obj 0.42 0.39 0.39 0.40

Cor 0.49 0.47 0.46 0.51

Figure 7: Comparison of best results obtained with
the four AC matrices shown in Fig. 4. The bar plot
shows the correlation between simulated and reference
FC matrices in theta, alpha and beta bands. The ta-
ble reports the average correlation in these bands, as
well as the similarity score calculated with the objective
function in §2.3.4. Without the penalty term included
in the objective function to control for the relative
strength of connectivity across frequency bands, the re-
sults obtained with conn3_fs connectivity were better
than those with conn1_mean connectivity, despite the
fact that the corresponding FC matrices (see bottom-
row in Fig. 8) are roughly identical across frequency
bands. This illustrates the importance of choosing a
suitable objective function.

3.3.2 Five-dimensional analysis

In this second experiment, we consider all five parame-
ters listed in Tab. 2, and all four connectivity matrices
shown in Fig. 4. For each connectivity, an optimisation
was run with 800 samples (i.e. evaluations of the ob-
jective functions), which took approximately 1.5 day
to run on a computing cluster with four threads. In
comparison, an exhaustive search run sequentially with
just 20 values per dimension would take over 18 years
to complete.

The five-dimensional results cannot be displayed as
in the previous two-dimensional case; instead we sum-
marise below key aspects of the analysis, illustrating
the type of information made available by this new
method.

A case for multi-criteria objective functions •
Defining the “goodness-of-fit” with resting-state elec-
trophysiological data is a difficult task, especially given
the time-constraints typically associated with LSBM
optimisation. Here, we discuss the benefits of includ-
ing a penalty factor in the objective function, to en-
sure that the relative amounts of FC across frequency
bands are similar in real and simulated data. It is best
to have the main points of §2.3.4 in mind when reading
this paragraph.

We illustrate our point in Fig. 7, where the best re-
sults obtained after optimisation with each of the four
AC matrices are summarised and compared. Without
the penalty term included in the objective function to
control for the relative strength of connectivity across
frequency bands, the results obtained with conn3_fs
connectivity were better than those with conn1_mean
connectivity, despite the fact that the corresponding
FC matrices (see bottom-row in Fig. 8) are almost iden-
tical across frequency bands, and only vary slightly in
terms of connectivity scale.

The FC matrices obtained with conn1_mean connec-
tivity also had a better structural correspondence with
the reference matrices (see top rows in Fig. 8), but this
was only by chance; the penalty term did not favour
this correspondence in any way. In fact, this is one
of the weaknesses of the correlation coefficient itself,
which does not take into account structural dependen-
cies between the elements of the FC matrices (i.e. the
connectivity patterns) when comparing them.

To summarise, these results demonstrate that the
inclusion of a penalty term controlling for relative
strengths of FC across frequency bands was beneficial
in our experiments, and suggest that multi-criteria ob-
jective function might in general be desirable in the
context of LSBMs. Furthermore, the use similarity
metrics which explicitly account for structural corre-
spondences between simulated and reference data may
also enhance the objective function.

Marginal parameter distributions reveal opti-
mal value-ranges • Looking at the distribution of
parameter values for the best samples tells us about
“preferred” values for each parameter, for which the
corresponding networks produce dynamical activity
most similar to MEG resting-state data. Fig. 9 shows a
comparison between the marginal parameter distribu-
tions computed independently for each of the four AC
matrices. These distributions correspond to the 90th

percentile of all evaluated samples (ranked according
to their similarity score). The narrower the distribu-
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Figure 8: Comparison between simulated and reference FC matrices in theta, alpha and beta bands. Reference
matrices are shown in the first row, followed by the best results obtained with connectivity conn1_mean (row 2), and
the second best results obtained with conn3_fs (row 3). The correlation between each simulated FC matrix and the
corresponding reference is indicated on top of the matrix. The FC patterns obtained with conn1_mean connectivity
are strikingly similar to the reference, except in the frontal lobe (lower-right block in each quadrant). Note that
although results obtained with conn3_fs achieved better correlations on average, they had a lower similarity score
than the results obtained with conn1_mean, because their variation across bands was poor (see Fig. 7).

tions, the stronger the preference for a specific parame-
ter value. And the more overlap between distributions,
the better the consensus across experiments with dif-
ferent connectivities.

For example, we find a good consensus with regards
to the first three parameters (input, coupling, delay),
and in particular for the average network delay around

10ms, but the comparisons for the inter-hemispheric
scaling h and characteristic time-constant τ are more
mitigated. This is not surprising; the connectivity
matrices control the interactions between the differ-
ent brain regions, and structurally different networks
should not be expected to agree on parameter values
in general.

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2017. ; https://doi.org/10.1101/170779doi: bioRxiv preprint 

https://doi.org/10.1101/170779


1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

DRAFT (July 31, 2017) — Hadida et al. “Bayesian Optimisation of Large-Scale Biophysical Networks”

Figure 9: Marginal parameter distributions corresponding to the 90th percentile of all evaluated samples (i.e.
using the objective function defined in §2.3.4), for each of the four AC matrices. Higher distribution values (y-
axes) indicate ranges of parameters (x-axes) which were consistently associated with the best scores for a given
AC matrix. Input: all but conn1_mean indicate that the excitatory input should be just below units’ oscillatory
threshold. Coupling: all but conn1_fs indicate that coupling scale should be just above network oscillatory
threshold. Delay: general consensus that average delay should be around 10ms. Scaling: no clear consensus,
but all except conn3_mean indicate an upscale by a factor of 2 or more. Tau: conn1_mean centred around 8ms, and
others above 10ms.

That being said, three out of the four AC matri-
ces (all except conn3_mean) indicate clearly that the
strength of inter-hemispheric connections should be
increased at least two-fold. This is consistent with
the known bias for shorter connections in probabilis-
tic tractography, but it is also remarkable that we can
estimate the amount of “missing” connectivity purely
from simulations.

Finally, the results for the temporal parameters (av-
erage delay and time-constant) are somewhat surpris-
ing. We would not expect network delays to be lower on
average than the characteristic time of variation within
each brain region, because these delays are caused by
axonal conduction over long distances, and local oscil-
lations (caused by cycles of local excitation and inhibi-
tion) are not subject to propagation issues. This partic-
ular result might change with a more accurate estima-

tion of the delays in our model (e.g . using tract-lengths
from tractography instead of Euclidean distances), and
may also be explained with further information about
myelination information. Both of these avenues will be
explored in future work.

Conditional distributions reveal the local topog-
raphy of the search space • Here we take a deeper
look at the best results obtained using conn1_mean con-
nectivity. The optimal parameters correspond to a sin-
gle point in the search space; to get an idea of the
topography of the objective function around the opti-
mum, we computed the conditional distributions of the
GP surrogate on orthogonal slices going through that
point. These slices are shown in Fig. 11.

A local maximum can be seen in the conditional
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Theta Alpha Beta Average

Temporal 0.37 0.73 0.50 0.53

Occipital 0.58 0.82 0.77 0.72

Parietal 0.29 0.44 0.52 0.42

Frontal 0.31 0.13 0.29 0.25

Figure 10: Region-wise correlation in each band,
calculated between matching rows of simulated and
reference FC matrices, for the best results obtained
with conn1_mean connectivity. The average correlations
within each lobe, for each band, are reported in the
table below the surface illustrations. The correspon-
dence between simulated and reference data is: very
good in the occipital lobe; good in the temporal lobe,
although driven mostly by the alpha band (>1.5 times
better than other bands); consistently worse in the
frontal lobe; and the average correspondence in the
frontal+parietal lobes is twice as low as in the tem-
poral+occipital lobes.

surrogate coupling vs input (row 2 column 1), which
indicates that the objective function is not unimodal.
Note that this is by no means a complete picture; for
example, it is impossible to know about local optima
located elsewhere in the search space based on this in-
formation only. Instead, the partition tree from GPSO
(not shown for brevity) can be used in combination
with these conditional distribution, to identify local ex-
trema and explore the topography of the search space
around them.

Additionally, the marginally weighted means and
standard-deviations of the similarity scores obtained
during optimisation are shown on the diagonal of
Fig. 11, computed within each dimension across all
samples in eleven bins covering the corresponding pa-
rameter range. These statistics are consistent with
the parameter distributions previously shown in Fig. 9,

although we previously only considered the 90th per-
centile of all samples.

Region-wise correlations reveal poor correspon-
dence in the frontal lobe • The correspon-
dence between the simulated and reference FC matrices
shown in Fig. 8 can be explored further, by correlat-
ing each row of these matrices independently, in order
to get a region-wise similarity score in each frequency-
band. This comparison is illustrated in Fig. 10, by as-
sociating these correlations with a colour in each brain
region and in each band. We find a very good corre-
spondence across frequency bands in the temporal and
occipital lobes, and systematically lower correlations in
the frontal lobe, especially in the orbito-frontal cortex
(OFC).

The signal-to-noise ratio in the OFC is known to be
rather poor in MEG [23], but the fact that the bad cor-
respondence extends throughout the entire frontal lobe
may relate to the work of [10], which introduced gradi-
ents of excitatory inputs in the frontal areas, in order
to account for higher dendritic spine counts compared
with primary sensory areas. Such lobe-specific treat-
ment can be easily introduced in our model (similarly
to the inter-hemispheric scaling) and will be explored
in future work.

Whether gradients of excitatory inputs improve the
correspondence with real data or not, however, it is re-
markable to be able to point to such specific modelling
aspects, with reasonable confidence that no other con-
figuration of the current system could yield a better re-
sult by tweaking the five parameters considered. These
results tell us that a change to the model is required,
and specifically one that will affect dynamics in the
frontal areas. This type of information is invaluable,
and demonstrates how GPSO can be used to inform
modelling choices incrementally.

3.4. Discussion

To our knowledge, no other work in the literature
attempted the systematic optimisation of LSBMs with
dozens of brain regions, in order to model fast-paced
electrophysiological dynamics, and controlling five (or
more) parameters. The computational and theoretical
complexity of these models (due to their non-linearity,
but also their size and the presence of delays), com-
bined with the richness of electrophysiological data
calling for detailed objective functions leveraging the
high temporal resolution, and the task of exploring pa-
rameter spaces as the number of dimensions increases
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(a.k.a. the curse of dimensionality), make the optimi-
sation of LSBMs a truly difficult problem.

Our approach is different from the DCM method
for network discovery [21], where the emphasis is put
on inferring the presence or absence of structural con-
nections, typically from fMRI data. For a given num-
ber of brain regions, this method considers all possible
networks connecting these regions (that is, all possi-
ble combinations of edges), and proceeds to finding the
network that is best supported by the observed data, as
measured by the Bayesian model evidence, using gener-
alised filtering [20]. Crucially, because it is impractical
to list all possible networks beyond a handful of brain
regions, let alone evaluate them, this method is made
computationally efficient by exploiting the idea that it
is sufficient to invert the fully-connected model in or-
der to estimate the model evidence of any subnetwork.
Furthermore, the method assumes that the posterior
distribution over the connection strengths is multivari-
ate Gaussian (the Laplace assumption); as such, it can-
not represent accurately complex cost functions (e.g .
with multiple modes, see Fig. 11), and in particular,
only considers a single extremum during optimisation,
which makes it prone to converging towards local ex-
trema depending on initialisation.

In our case, the network is taken as the AC matrix
estimated from diffusion tractography, and the empha-
sis is put on the Bayesian optimisation method pro-
posed, which can be used to infer model parameters
(up to a dozen in practice) with arbitrary objective
functions encoding the dynamical features of interest.
This method is capable of handling the computational
burden associated with LSBM simulations in practice,
and the presence of local extrema in the objective func-
tion. It does so by building a smooth surrogate of the
objective function using a Gaussian Process, which is
refined as the optimisation progresses, and exploited in
order to prioritise the exploration of areas in the pa-
rameter space that are either unknown, or promising
given the available evidence.

Nevertheless, there are a number of limitations cur-
rently associated with this method. First, it is not
currently possible to systematically evaluate the con-
vergence of the algorithm. This is mainly because at
every iteration, multiple areas of the search space are
being explored at multiple scales, which means that a
lack of improvement in the best score obtained (typi-
cally a criterion for convergence) over several iterations
is no guarantee that there will not be a substantial im-
provement at the next iteration. However, one can de-
fine several relevant termination criteria, such as: the
number of evaluations of the objective function (our

case), the number of iterations, the depth of the parti-
tion tree, etc. Second, it is worth noting that because
we only ever select those nodes with maximal UCB in
the partition tree (see Fig. 1), areas of the search space
with lower expected scores are the last to be evaluated
at each level of the tree, and therefore the resolution of
the surrogate is lower there. This is an intended con-
sequence of prioritising exploration in places of high
expected reward, but it also means that the surrogate
will in general not be reliable when the objective func-
tion is low; such is the price to pay for efficiency, this
is not primarily an exploration method. Third, it is
currently not possible to define priors over the param-
eter ranges in order to initially bias the search towards
regions of known interest. Note that this cannot be
done via the mean function of the GP, because hy-
perparameters are revised at each iteration, and that
making the prior insensitive to hyperparameters would
also make it insensitive to evidence accumulated by
simulations, effectively corrupting the objective func-
tion as a result. It could however be done by introduc-
ing a third type of point (currently either evaluated,
or GP-based, see §2.1.3), which would not be updated
following hyperparameter updates, but would need to
be evaluated before proceeding to exploration in an ar-
bitrary small neighbourhood. This would essentially
be equivalent to introducing “ghost nodes” arbitrarily
deep into the partition tree, waiting to be discovered
by subdivision. Finally, although this is purely a tech-
nical limitation, it is worth mentioning that the GP li-
brary we used (GPML [32]) is currently limited in the
number of samples it can handle for regression; in prac-
tice, the regression becomes prohibitively slow beyond
a few thousand samples, which means that we cannot
reasonably explore parameter spaces beyond 10 dimen-
sions. This can be solved indirectly, by selecting only
a limited number of evaluated samples for training the
GP; for instance, up to a certain depth in the partition
tree, and randomly beyond that depth, up to a certain
amount.

The two best results in our experiments, using
conn1_mean and conn3_fs connectivity, indicate that
inter-hemispheric scaling should be between two and
three times as strong (see Fig. 9). Although these es-
timates should not be taken for granted without fur-
ther validation (e.g . with different oscillatory models,
or using fMRI reference activity), we want to high-
light that they were obtained by optimising structure
(the AC matrix) from function (band-specific FC); this
is an exciting perspective offered by the method pre-
sented, with a different emphasis to previous work re-
lating structure and function through biophysical mod-
els [38, 15].
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To further elaborate on the validation of the re-
sults presented in §3.3: our experience suggests that
small changes to the objective function can alter the
results significantly (see Fig. 7); that different oscilla-
tory models can lead to qualitatively different search-
spaces (not shown); and the introduction of additional
parameters can enable qualitatively different dynam-
ics of the model. Furthermore, the frequency contents
of the simulations (not included here into the objec-
tive function, but an important aspect of resting-state
activity nonetheless) are affected by the heterogeneity
of unit parameters across the network [10], and also
most likely by the estimation of delays in the system;
for instance, using tract-lengths instead of Euclidean
distances, or including information about myelination.

Overall, the complexity of these systems makes it
difficult to affirm with confidence that a given LSBM
cannot produce dynamical activity with certain desired
properties. However we argue that, for a given set of
parameters, two models can be compared in terms of
their performance with respect to an objective func-
tion (which encodes the desired dynamical behaviour)
after optimisation. Provided that global convergence is
achieved for both (we recall that the method proposed
can handle local extrema), the comparison will still de-
pend on the objective specified and on the chosen set
of parameters, but will be valid under these conditions.

Previous related work in the literature such as [13, 9]
did not formally employ optimisation methods to ex-
plore the capabilities of LSBMs, although they did
study the effect of the connectivity strength and the
average delay between brain regions (repectively γ and
λ in our model) on the simulated dynamics, by exhaus-
tive grid search. We demonstrated that the method
proposed can not only help speed-up this process con-
siderably (see Fig. 6), but also allows to work in higher
dimensional spaces by considering more parameters.
This should enable more ambitious studies looking at
the joint effects of structural and functional parameters
on the simulated dynamics, and a principled compar-
ison between different LSBMs in terms of measurable
dynamical features (via the objective function), which
will hopefully contribute to the ongoing development
of a biophysical theory of brain activity.

4. Conclusion

We presented a Bayesian optimisation method capa-
ble of inferring the parameters of large-scale biophys-
ical models (LSBMs) from imaging data. Using this
method to optimise simultaneously five parameters, af-
fecting both structural and functional aspects in delay-
networks of 68 Wilson-Cowan oscillators, we were able
to achieve the highest levels of expected correspondence
with real resting-state MEG data across frequency
bands, given the simulation time-lengths (see figures 8
and 5). Our results also suggest that inter-hemispheric
anatomical connectivity, as estimated from diffusion
tractography, may be underestimated by a factor 2 to 3,
depending on the seeding and normalisation methods
used. Furthermore, looking at region-wise correspon-
dence in our best simulated results, we find systemati-
cally lower correlations in the frontal lobe, which indi-
cates that further modelling work is required particu-
larly in this area, perhaps in agreement with the work
presented in [10]. Altogether, these results suggest that
Gaussian-Process Surrogate Optimisation (GPSO) is
an efficient and effective method for exploring the ca-
pabilities of LSBMs. It enables the exploration of high-
dimensional parameter spaces (compared with the cur-
rent state-of-the-art), which offers unprecedented in-
sights into the relationship between structure and func-
tion in biophysical models of brain activity.
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Figure 11: Conditional surrogate distributions (off-diagonal) and marginally weighted means and st-dev. (on-
diagonal) around the best sample (black cross). These results correspond to the best experiment, using AC matrix
conn1_mean (see Fig. 7). Note that y-axes at the top-left and bottom-right indicate similarity scores, whereas
all other axes indicate parameter values. Lower-triangle: surrogate similarity (predicted mean) computed on
orthogonal slices of the search space, going through the best sample for each pair of dimensions. Upper-triangle:
associated surrogate uncertainty (predicted st-dev.) showing lowest uncertainty around the best sample, which is a
good indicator of convergence. Diagonal: weighted mean and st-dev. of evaluated scores, calculated within each
dimension across all samples. Higher bars indicate “preferred” values for the corresponding parameters (similar to
the distributions shown in Fig. 9, but considering all samples).
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