
Accuracy through Subsampling of Protein EvolutioN: Analyzing and

reconstructing protein divergence using an ensemble approach

Roman Sloutsky1,2, Kristen M. Naegle1,*

1 Biomedical Engineering Department and the Center for Biological Systems Engineering,

Washington University in St. Louis

2 Division of Biology and Biomedical Sciences, Washington University in St. Louis

* knaegle@wustl.edu

Abstract

Mapping the history of gene duplications which gave rise to a protein family encoded in a genome (a set of paralogs)
can be critical to understanding how those proteins function in their host cells today. However, since each member of
a family is recapitulated in the genomes of related species (a set of orthologs), selection of sequences to be included in
the history reconstruction is non-trivial. Reconstruction is extremely sensitive to the choice of sequences, which is
deeply problematic given no mechanism exists for assessing the accuracy of individual reconstructions. Here, we
capitalize on the variability of phylogenetic tree reconstruction to selected input sequences, by subsampling from the
available ortholog sequences of a protein family to create an ensemble of trees, which explores the space of plausible
tree topologies. We hypothesize that the most consistent topological features across an ensemble are more likely to be
true and propose a tree reconstruction algorithm (ASPEN) based on this hypothesis. We simulate 600 protein
families over known phylogenies, with varying branch lengths, and compare the accuracy of ASPEN reconstructions
to those of traditional phylogeny inference methods. We find that ASPEN trees are more accurate than trees
reconstructed traditionally. Additionally, we develop an observable metric calculated form subsampling,
reconstruction Precision, for assessing the likely accuracy of a traditional, single-alignment all-sequence reconstruction
of the divergence history for a set of paralogs. Together these findings suggest that an ensemble of imperfect
reconstructions can provide more accurate insight than any individual reconstruction.

Introduction 1

Protein families grow in size and diversity through duplication of genes encoding existing family members followed by 2

functional divergence of the duplicates [1, 2]. Immediately following a gene duplication event the affected genome 3

contains two identical copies of the duplicated gene. Because the genes are redundant, relaxed purifying selection 4

allows mutations to accumulate rapidly. Since the added energy cost of expressing identical products from redundant 5

loci confers a selective disadvantage, mutations resulting in loss of functionality by one of the copies are typically 6

favored by selection. However, the rapid accumulation of mutations can also result in partial or complete functional 7

divergence between the two copies. This may create a selective advantage due to increased functional repertoire 8

through neo-functionalization, greater efficiency and control through sub-functionalization, and possibly resistance to 9

deleterious mutations through vestigial functional overlap (functional moonlighting) [3–5], leading to retention of 10

both diverged copies (paralogs). After subsequent speciation events give rise to diverged genomes (species), each of 11

those genomes contains a gene descended through speciations from each paralog in the ancestral genome (Figure 1). 12

These genes are orthologs characterized by a “same gene, different genome” relationship. Ortholog sets are related to 13

each other as paralogs, since their respective Most Recent Common Ancestors (MRCAs) were the original paralogs in 14

the ancestral genome. The genome of each species encodes a paralog gene belonging to each ortholog set. 15

Reconstructing the divergence history (topology) of a protein or protein domain family is crucial to understanding 16

the proteins’ (protein domains’) function(s) and evolution. In addition to facilitating powerful in silico analyses [6–13], 17

reconstructions of paralog divergence guide experimental design and data interpretation [14–19]. Accordingly, 18
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Figure 1. A hypothetical protein divergence history. Two paralogs emerge after a duplication event and are
passed along through subsequent speciation events. If no additional duplication events occurred, paralogs A and B

existed at one time as Most Recent Common Ancestors (MRCAs) of two ortholog sets and exist today in the genomes
of species emerged through the series of speciations. Each ortholog set can be thought of as representing its MRCA’s
paralog.

divergence reconstructions for well-studied protein domain families [20–22] have been relied upon extensively by the 19

scientific community. Because such reconstructions are created from single sequence alignments, they ignore the great 20

deal of uncertainty in topology reconstruction under equally valid alignment representations of input sequence data. 21

Divergence topology reconstruction is extremely sensitive to the input alignment. For example, the same 22

sequences aligned by different algorithms [23–27] or using different guide trees [28] yield different topology 23

reconstructions. So does reversing input sequences prior to alignment [29,30], or removing less than 0.1% of columns 24

from an alignment containing over 600,000 columns [31]. For paralog divergence topologies, another source of 25

uncertainty likely to influence reconstruction is the set of orthologs selected to represent each paralog. Because 26

duplications usually predate numerous speciation events, they tend to correspond to deep internal nodes – nodes with 27

many descendant leaves – in full phylogenies of protein families. MRCAs of ortholgs descend from duplications 28

(Figure 1), meaning every ortholog descended from each MRCA is also descended from the duplication. Deep internal 29

nodes tend to be most sensitive to perturbations of the input alignment [32]. Unfortunately, since the true history of 30

protein divergence is hidden from us in time, we have no way of knowing which divergence topologies are more 31

accurate, given the equal validity of input alignments. 32

Although traditional tree reconstruction produces phylogenies – topologies parametrized with branch lengths 33

reflecting extent of divergence – we disregard the branch lengths here to focus on the topologies alone. In traditional 34

inference topologies and branch lengths are inferred jointly, alternating between topology modifications and branch 35

length optimization in the case of statistical (Maximum Likelihood and Bayesian) methods. Because the likelihood 36

function is evaluated many times for each proposed topology, and topology space is almost unfathomably large, 37

statistical methods can suffer extremely long run times on large sequence collections. However, if accurate candidate 38

topologies can be identified by other means, the computational cost of optimizing branch lengths for individual 39

topologies is nearly trivial, while optimization for multiple topologies is embarrassingly parallel. Our approach 40

permits separating topology reconstruction from branch length optimization. 41

Furthermore, we focus on reconstructing only the hardest topology nodes – the deep internal nodes corresponding 42

to protein or domain paralog divergence. We treat MRCAs of ortholog sets as leaves in our reconstructions and 43

disregard ortholog divergence, which overwhelmingly recapitulates the species tree. Species divergence is 44

reconstructed more accurately by other approaches [31, 32]. Instead, we capitalize on the variance in reconstructed 45

topologies under changes in ortholog representation of paralogs to separate topological features we believe to be 46

supported by phylogenetic signal from spurious ones we believe to result from noise. We hypothesize that features 47

observed more frequently under ortholog resampling are more likely to reflect signal and, therefore, be more accurate, 48

than less frequently observed ones. We explore the relationship between accuracy and variability in reconstructing 49

paralog divergence topologies and propose a metric for assessing the likely accuracy of a single-alignment 50

reconstruction for a given protein family. We then present ASPEN, a topology reconstruction algorithm that 51

integrates over the uncertainty of single alignment reconstructions to build and rank trees according to observations 52

across reconstructions from many equally valid alignments. ASPEN produces more accurate topologies than 53
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Figure 2. Analysis framework for comparing reconstruction Accuracy and Precision. (A) Sequence
evolution was simulated over synthetic phylogenies. Synthetic phylogenies were pruned to MRCAs of ortholog sets
and branch lengths were discarded to obtain true paralog divergence topologies. Simulated sequences were aligned,
phylogenies were inferred from those alignments, and “all-sequence” reconstructions of paralog divergence topologies
were extracted. (B) Sequences were repeatedly sampled from each ortholog set in a family and phylogeny inference
and topology extraction were done to produce a “subsampled topology”. Repeating this N times yields an ensemble
of topologies. (textbfC) We define Accuracy as the similarity between the all-sequence reconstruction and Precision
as the comparison between subsampled topologies and the all-sequence topology.

traditional reconstructions from single, all-sequence alignments. 54

Experimental framework for reconstruction analysis 55

We generated test sequence data by simulating evolution of protein families instead of using natural protein sequences 56

for two previously noted reasons [25]. First, simulating evolution over known phylogenies allowed us make a 57

quantitative assessment of reconstruction accuracy compared to the “true” divergence topology. Second, it allowed us 58

to explore a range of divergence conditions by systematically varying branch lengths of input phylogenies, while 59

controlling for other factors such as overall sequence length and the distribution of secondary structure elements and 60

disordered loops. Assembling a comparable biological data set would have been impossible. 61

We simulated families containing 15 paralogs, each represented by 66 orthologs. In order to make the assessment 62

statistically robust, we generated 600 families across a range of post-duplication branch lengths. An alignment of 63

human tyrosine kinase domains (median length 269 a.a.) was used as template for all simulations (see Methods for 64

simulation details). We then used all combinations of three multiple sequence alignment algorithms (MAFFT’s 65

L-INS-i protocol [33], ClustalOmega [34], and Muscle [35]) and two phylogeny inference algorithms (FastTree2 [36] 66

and RAxML [37]) to reconstruct phylogenies for the 600 simulated families. We compared the reconstructed paralog 67

divergence topologies, excluding speciation nodes by pruning orthologs’ MRCAs to leaves, to the true divergence 68

topology over which evolution was simulated (Figure 2A). We quantified topology differences with the 69

Robinson-Foulds symmetric distance metric [38], modified to account for the occasionally non-monophyletic 70

reconstruction of ortholog sets (RF

⇤, Methods). For convenience we define the accuracy of a reconstruction as 71

1�RF

⇤ distance between reconstructed and true paralog divergence topologies. Consistent with earlier 72

studies [24–27,39–41], choice of alignment algorithm substantially affected accuracy, with L-INS-i alignments 73
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producing most accurate reconstructions, while FastTree2 and RAxML performed very similarly across all alignments 74

(Figure S1 ). Based on these results, we selected the combination of L-INS-i and FastTree2 for all remaining analysis. 75

Subsampling reveals an observable measure of accuracy 76

Given the known sensitivity of reconstruction to input alignment, we explored reconstruction variance resulting from 77

differences in ortholog representation of paralogs using the framework outlined in Figure 2. We gathered the sets of 78

ortholog sequences representing each paralog in a simulated family (Fig. 2A) and performed a resampling experiment 79

(Fig. 2B): 50 times we randomly sampled 60 of 66 sequences (91%) from each ortholog set and performed traditional 80

reconstruction, using L-INS-i and FastTree2 with each collection of subsampled input sequences. We retained a large 81

fraction of sequences to minimize both the input variation and the loss of phylogenetic signal. To quantify 82

reconstruction uncertainty, we measured the similarity (1� the average of RF

⇤ ) between topologies reconstructed 83

from most of the sequences to the “all-sequence” topology (Fig. 2C). Since this quantity is a measure of how close 84

the estimates are to each other, we refer to it as Precision. 85

Figure 3. Precision vs Accuracy of reconstruction. Reconstruction Precision plotted vs 1�Accuracy of
all-sequence reconstruction for each simulated protein family. 1�Accuracy used on x-axis to make families with most
accurate reconstructions appear on the left and those with least accurate on the right. Families were binned by
1�Accuracy. Tick marks on x-axis indicate bin boundaries.

Figure 3 demonstrates the striking relationship between accuracy of the all-sequence reconstruction (Accuracy) 86

and Precision of reconstruction for families across a range of post-duplication branch lengths. Due to their strong 87

correlation we use Precision, an observable quantity for natural protein families, as a measure of a family’s 88

reconstruction Accuracy (unknowable for natural proteins) and, by proxy, the overall “complexity” of reconstruction 89

for that family. Importantly, this also suggests that our 600 synthetic protein families span a range of complexities, 90

allowing us to observe the performance of reconstruction as a function of complexity, via its proxy – Precision. 91

Using variability to distinguish phylogenetic signal from noise 92

Although we observed high reconstruction Precision for many families, only four of 600 families had identical paralog 93

divergence topologies reconstructed from every subsampled alignment (Precision=1). Even among families with the 94

highest Precision, and under dense subsampling, reconstruction variability was pervasive. On the other hand, 95

Salichos and Rokas [32] argued that pairwise RF distances smaller than 1 (the average RF distance among randomly 96

generated topologies) indicates consistent phylogenetic signal among the topologies being compared. Most of our 600 97

families had Precision (1�hRF

⇤i) significantly greater than 0, but less than 1. Thus we sought to go a step further 98

and test our central hypothesis: not only does intermediate Precision indicate consistent signal, but more frequently 99

recapitulated features are more likely to be accurate, and this fact can be used to reconstruct more accurate 100

topologies. In order to test this we first needed a way to extract frequently recapitulated features, and then a way to 101

identify topologies most consistent with those features. Next we describe our method, ASPEN, which accomplishes 102

both tasks. 103
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Reconstructing topologies from ensemble sampling 104

We created a method we call ASPEN, for Accuracy through Subsampling of Protein EvolutioN, to construct and 105

score topologies according to their consistency with topological features frequently represented in an ensemble of 106

subsampled reconstructions (Fig. 2B). It relies on two key innovations: 1) extraction of topological features from an 107

ensemble as frequencies of path lengths between leaves, and 2) an algorithm to construct and score topologies 108

according to their consistency with observed path length frequencies. 109

Transforming topology sets into path length distributions 110

ASPEN’s foundation is the equivalent representation of a topology (an acyclic, bifurcating graph) as a matrix of path 111

lengths between leaves in terms of the number of internal nodes encountered along a path. First we demonstrate 112

equivalence of graph and matrix representations by presenting a simple algorithm for interconverting between the two 113

(Figure 4). Then we discuss how ensembles of topologies are transformed into path length frequency distributions. 114

Transforming a topology graph into a path length matrix 115

A topology can be equivalently represented as a matrix of leaf-to-leaf path lengths 116

in terms of internal nodes encountered along the path. Transformation of a topology into its path lengths matrix 117

representation is trivially accomplished by counting internal nodes along each path between pairs of leaves 118

(Figure 4A). 119

Transforming a path length matrix into a topology graph 120

The reverse transformation can be accomplished using a simple bottom-up construction procedure (Figure 4B). 121

Internal nodes are constructed by joining pairs of leaves and/or previously constructed internal nodes to recapitulate 122

observed leaf-to-leaf path lengths. This bottom-up construction (“outside-in” for unrooted topologies) continues until 123

all leaf nodes are connected by a single graph. Note that it is possible to encounter path lengths during list traversal 124

which, at that state of construction, cannot be accommodated by constructing an internal node. For example, if the 125

order of paths (A $ E, 3) and (A $ F, 3) in the list in Figure 4B were reversed and path (A $ F, 3) was 126

encountered first, it could not be accommodated because internal node {{A,B}, {{C,D}, E}} would not yet be 127

available to join to leaf F. Such path lengths are skipped and then revisited on the subsequent traversal of the list. 128

Traversal is repeated as necessary until construction is completed. Because all path lengths are derived from a single 129

topology, they are guaranteed to be consistent, making the construction unambiguous. 130

Generating path length frequency distributions 131

We take advantage of the alternate matrix representation to capture the individual variation of each leaf-to-leaf path 132

length across an ensemble of topologies. Each topology is transformed into a path lengths matrix. Then path lengths 133

for each pair of leaves are aggregated into a path length distribution for that pair (Figure 4C). Although ortholog sets 134

overwhelmingly group into monophyletic subtrees across ensemble topologies (their MRCAs have no descendant leaves 135

besides themselves), occasionally reconstructions do yield non-monophyletic ortholog sets. Because this violates an 136

underlying assumption of the reconstruction, as well as the true topology of each synthetic protein family, we preclude 137

paths compromised by this incorrect reconstruction from contributing to path length distributions: the length of any 138

leaf-to-leaf path that contains a compromised internal node is not included in the distribution for that leaf pair. 139

Path length frequencies guide topology reconstruction 140

A score reflecting consistency with extracted features 141

ASPEN uses a quantitative metric for measuring the consistency of a proposed topology with observations from an
ensemble of topologies. The score assigned to a topology is expressed in terms of log frequencies of leaf-to-leaf path
lengths, log(fL

pair

) where L is the length of path between leaves in pair, incorporated into the topology:

score =
X

leaf

pairs

log(fL

pair

)
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D

Figure 4. Aggregating topological features across an ensemble of topologies using the path lengths

matrix representation (A) Decomposition of a topology into a matrix of leaf-to-leaf path lengths. Sample paths
(A$B,1), blue, (D$E,2), green, (E$F,3), violet, and (B$C,4), orange, are highlighted. Dots indicate internal nodes
along path. (B) Construction of a topology from a matrix of path lengths. First, the matrix is transformed into
a sorted list of path lengths. Construction of internal nodes is triggered by path lengths encountered traversing
the list: 1) Node {A,B} joins leaves A and B and completes path (A $ B, 1), blue. 2) Node {C,D} joins leaves
C and D and completes path (C $ D, 1), pink. 3) Node {{C,D}, E} joins leaf E to internal node {C,D} and
completes path (C $ E, 2), green. Path (D $ E, 2), grey, is completed by the same node and can be skipped
during list traversal. 4) Node {{A,B}, {{C,D}, E}} joins internal nodes {A,B} and {{C,D}, E} and completes path
(A $ E, 3), orange. Four paths of length 4 which appear further down the in the list are also completed by this node.
Finally, 5) node {{{A,B}, {{C,D}, E}}, F} joins leaf F to internal node {{A,B}, {{C,D}, E}} and completes path
(A $ F, 3), dashed line. This completes the reconstruction, since all leaves are connected by the resulting topology.
Path (B $ F, 3) and all subsequent paths are already completed and can be ignored. (C) Each topology in the
ensemble is decomposed into a matrix of leaf-to-leaf path lengths. Observed path lengths for each pair of leaves are
aggregated into distributions. (D) Each distribution is then converted into a set of constraints on the length of the
path between that pair of leaves. In the expanded section of the path lengths matrix, distributions of lengths for
paths (A $ B) and (A $ C) are turned into constraints on the lengths of these paths by inserting each observed
distance for each path, together with the frequency with which that distance was observed, into a list of path lengths.
Vertical ellipses represent other paths of lengths 1, 2, 3, 4, etc. coming from elsewhere in the matrix.
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(A↔C)=3,	f=0.5	
	

Topology:	

Score: 				 	 	 							0.5	

C
D

Constraints:	
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Constraints:	
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(C↔D)=1,	f=0.5	
(B↔C)=1,	f=0.4	
(A↔C)=2,	f=0.1	
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Figure 5. Branching construction of topologies by incorporating path lengths observed in an ensemble.

Construction begins with the empty topology assembly on the left. Every possible extension is constructed in a copy
of the initial assembly: Node {A,B} completes path (A $ B, 1), node {C,D} completes path (C $ D, 1), and node
{B,C} completes path (B $ C, 1), branching the initial assembly into three new assemblies. Path lengths completed
by the introduced node and path lengths incompatible with it are marked and not revisited. Nodes {A,B} and
{C,D} preclude path (B $ C, 1), while node {B,C} precludes paths (A $ B, 1) and (C $ D, 1). Completed paths
are shown in blue, precluded paths are greyed out in the corresponding assemblies. Intermediate topology scores are
calculated according to the scoring function. On the next iteration construction paths for assemblies {A,B} and
{C,D} collide, indicated in red. A single copy of the resulting assembly, {A,B}, {C,D}, is retained. Assembly {A,B}
is separately extended with node {{A,B}, C}. Additional construction paths, indicated by ellipses, are not shown.

This scoring function rewards incorporation of frequently observed path lengths and penalizes rarely observed path 142

lengths. 143

A branch-and-bound topology construction algorithm 144

Using the bottom-up procedure for constructing a topology graph from its path lengths matrix representation 145

(Figure 4B), we developed an algorithm that uses a branch-and-bound strategy to construct the requested number of 146

highest-scoring topologies according to the scoring function above. We describe the branching and bounding 147

procedures in the next two sections. 148

Branching By analogy with the single-topology procedure in Figure 4B, construction of internal nodes is triggered 149

by path length entries encountered during list traversal. However, this list contains every observed path length for 150

every leaf pair, together with its frequency (Figure 4D). Unlike the single-topology case, list entries cannot be 151

assumed to be consistent with each other. In fact, many combinations of path lengths on the list cannot be 152

incorporated into one topology. For example, for hypothetical leaves A, B, and C, path lengths (A $ B, 1) and 153

(B $ C, 1) are mutually exclusive because in a bifurcating topology B can be one internal node removed from either 154
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A or C, but not both. In single topology reconstruction, if a path length could be completed by the introduction of 155

an internal node, that node could be safely constructed because it was guaranteed to satisfy every other list entry. 156

Since that guarantee no longer holds, multiple topologies are constructed simultaneously by allowing the construction 157

path to branch (Figure 5). 158

“Assemblies” are used to track simultaneous reconstruction of multiple topologies. Each assembly holds a copy of 159

the path length frequencies list, a partially constructed topology, and the current topology score according to the 160

scoring function (discussed below in the section on bounding). Reconstruction proceeds in iterations, starting with a 161

single empty assembly (Figure 5, left). On the first iteration, the entire list is traversed and every possible extension 162

by introduction of a new node is created simultaneously in a copy of the original assembly (Figure 5, middle). In each 163

new assembly, all path lengths completed by the new node and all path lengths incompatible with it are marked and 164

not re-examined on subsequent iterations. Remaining path lengths are not completed by the new node, but remain 165

compatible with it. On subsequent iterations the same procedure is repeated for all tracked assemblies. 166

In principle, branching and iteration alone yield every topology consistent with path lengths observed in the 167

ensemble. In practice, this results in a combinatorial explosion which must be carefully managed to allow 168

construction to proceed to completion. First, Figure 5 (right) demonstrates how branching to satisfy non-conflicting 169

path lengths can lead to collisions between diverged construction paths on later iterations. This occurs because many 170

topologies can be constructed by introducing internal nodes in multiple orders. Each branched path represents a 171

particular order of internal node introduction. In a practical implementation collisions must be managed in order to 172

prevent multiple reconstructions of the same topology by multiple paths – an enormous replication of effort. 173

Second, even if each distinct topology is constructed once, in most cases reconstructing every topology consistent 174

with observations from the ensemble, no matter how infrequent, is neither practical nor useful. Bounding, described 175

in the next section, guarantees reconstruction of only the requested number of top scoring topologies. 176

Bounding The score is used to rank completed topologies, where ranking is updated every time a new topology is
finished. The number of top scoring topologies to reconstruct, X, is requested at the beginning of a reconstruction
run (10,000 was used in ASPEN evaluation). Once the initial X topologies are constructed, the Xth topology score
constitutes the bound. Partially constructed topologies are abandoned if no complete topology that can be derived
from that construction state will score above the bound. We determine this by calculating the score for
already-incorporated path lengths and projecting the best possible score for a complete topology by assuming the
most frequent remaining path length will be incorporated for every unconnected leaf pair:

projected =
X

incorporated

paths

log(fL

path

) +
X

remaining

paths

max(log(fL

path

))

As more high-scoring topologies are constructed, the bounding criterion becomes more strict allowing both more and 177

earlier abandonment of unproductive construction paths. The branch-and-bound strategy guarantees that the X 178

topologies remaining on the list at the end of a run are the X highest scoring topologies according to the scoring 179

function. 180

Evaluation and Discussion of ASPEN reconstructions 181

To test our algorithm, for each protein family we generated ensembles of 1000 subsampled topologies with each 182

ortholog set represented by 30 of 66 orthologs (⇡45%). Then we used ASPEN to reconstruct 10,000 top scoring 183

topologies for two-thirds of the families. Because accuracies of all reconstructions vary substantially across the range 184

of reconstruction Precision, as does the relative accuracy of ASPEN-reconstructed topologies, the families were 185

binned by their Precision for the purposes of this analysis. Next we examine the relationship between reconstruction 186

Precision and the discriminatory power of the log-frequency function with respect to accuracy, and then compare 187

ASPEN reconstructions with all-sequence reconstructions and discuss the implications of our observations. 188

Log-frequency score is correlated with accuracy 189

To understand the relationship between the log-frequency score and the accuracy of reconstructed topologies, we 190

plotted the ASPEN topology rank vs the bin-average accuracy of topologies (Figure 6B-G). Among higher-Precision 191

8/15



families (Figure 6B-D), top-ranked log-frequency scores are strongly correlated with accuracy, particularly for 192

topologies ranked in the top ⇠50, which indicates the independent scoring function based on observed frequencies 193

across the ensemble are indicative of accuracy. The strength of correlation decreases as difficulty of reconstruction 194

increases (lower Precision bins, Figure 6E-G), indicating less discriminatory power with respect to accuracy. 195

Nevertheless, ASPEN’s top-ranked topology is, on average, also its most accurate across all Precision bins. 196

Top ASPEN topology beats all-sequence reconstructions 197

Next, we compared ASPEN’s best topology to all-sequence single-alignment reconstructions (Figure 6A). Like all 198

other methods, ASPEN’s accuracy is a function of Precision, or difficulty of the reconstruction task. As discussed 199

earlier, MAFFT L-INS-i alignments yielded the most accurate all-sequence reconstructions across all Precision bins, 200

while FastTree2 and RAxML performed very similarly on all alignments. Both top-ranked ASPEN topologies and 201

L-INS-i all-sequence reconstructions have nearly perfect accuracy on families in the highest-Precision bin – not 202

particularly surprising, since subsampled topology ensembles for ASPEN reconstruction were generated using the 203

combination of L-INS-i and FastTree2 (Methods). Much more intriguing is the fact that top-ranked ASPEN 204

topologies are consistently more accurate than any all-sequence reconstruction across the remaining Precision bins. 205

Moreover, although the accuracy of all reconstructions degrades with difficulty of the reconstruction task (lower 206

Precision), ASPEN’s accuracy degrades much more slowly. ASPEN’s top topology provides the greatest accuracy 207

improvement over single-topology reconstructions when reconstruction is the most difficult. 208

ASPEN produces many accurate topologies at low Precision 209

To compare more ASPEN topologies with the most accurate all-sequence reconstructions, bin-average accuracies of 210

L-INS-i / FastTree2 topologies are plotted alongside bin-average accuracies of top-300 ranked topologies 211

(Figure 6B-G). Although the log-frequency score provides less discrimination with respect to accuracy, more of 212

ASPEN’s topologies outperform single-alignment reconstructions as Precision decreases and reconstruction becomes 213

harder. In the two lowest-Precision bins (Figure 6E-G), all top-300 ASPEN topologies are more accurate than the 214

best all-sequence reconstruction. Taken together, these observations suggest that ASPEN results should be 215

considered differently for families with high and low reconstruction Precision. 216

How to use ASPEN in different Precision conditions 217

The top few topologies are best for high-Precision families 218

For families with high Precision, where one may reasonably expect to reconstruct an accurate topology, ASPEN’s top, 219

or top few topologies are likely more accurate than any single-alignment reconstruction. One or a few of these 220

topologies can be confidently used for downstream applications. This result is far from trivial, given that ASPEN’s 221

subsampling approach scales far better with the overall number of input sequences than traditional statistical 222

reconstruction methods. With the advent of affordable genome sequencing and the resulting explosion in the number 223

of sequenced and annotated species’ genomes [42, 43], all-sequence reconstruction of paralog divergence by statistical 224

methods has become infeasible for many families with large numbers of orthologs. Therefore, subsampling large 225

samples of orthologs to yield a Precision score can now be used to identify how likely the full sequence topology is to 226

be accurate, determining if one is working in a high or low Precision/Accuracy regime. 227

Diverse representation is critical at lower Precision 228

Accuracy of all reconstructions suffers for families with lower reconstruction Precision (greater difficulty for 229

reconstruction). Even top-ranked ASPEN topologies cannot be expected to be completely accurate. In this Precision 230

regime all of the top 300 ASPEN topologies, or more, can be considered comparably plausible models, given the 231

sequence data. Since all of these topologies are very likely to be more accurate than any individual single-alignment 232

reconstruction, under these conditions ASPEN topology reconstruction should be treated as a mechanism for 233

sampling a large number of imperfect, but quite accurate topologies. As the true topology cannot be distinguished 234

from other, fairly accurate topologies on the basis of such sequence data, any downstream analysis relying on a 235

divergence topology should aim to integrate over this topological uncertainty. 236
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Figure 6. Accuracy of topologies reconstructed by ASPEN. (A) Accuracy, as a function of 1�Precision of a
family’s reconstruction, of the top-ranked ASPEN topology and all-sequence reconstructions. Families were binned
according 1�Precision. Ticks on x-axis correspond to bin edges. Average accuracy of each type of reconstruction
across families in the bin is plotted. For all-sequence reconstructions with MAFFT L-INS-i and FastTree2 (orange,
solid line) a unique marker shape is used in each Precision bin. (B)-(G) For each Precision bin in (A), accuracy of
ASPEN topologies ranked 1 through 300, averaged for each rank across all families in the bin, plotted as a function of
rank. Average accuracy of the L-INS-i / FastTree2 all-sequence reconstruction is plotted for comparison on the left of
each panel.
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Conclusion 237

Subsampling in the process of reconstruction proved to be extremely powerful – it identified two measures (Precision 238

and Score based on observed frequencies) of something unknowable (Accuracy) and guided a reconstruction method 239

that identifies much more accurate topologies than traditional approaches. That ASPEN reconstructions were more 240

accurate than single-alignment reconstructions, is evidence that the central hypothesis of this work is supported – 241

relationships found consistently amongst the variance produced by subsampling are more likely to be reflective of true 242

protein divergence histories. We anticipate that, as a meta analysis approach to tree evaluation and reconstruction, 243

ASPEN is likely to continue to boost the accuracy of individual approaches. 244

We also conclude from this study that it is worth revisiting the reconstruction accuracy of real protein families, 245

particularly for those widely relied-upon reconstructions [20–22]. The reconstruction of proteins from a single 246

alignment of small numbers of orthologs may suffer from the same or worse accuracy issues we saw in single 247

alignment approaches of our synthetic family. They may be worse in accuracy than what we observed in this study, 248

since such reconstructions are derived from much smaller subsamples of ortholog sequences than we used in our 249

subsample presented here and we found for small subsamples even for relatively high-Precision families individual 250

reconstructions are extremely unreliable. 251

Materials and Methods 252

Preparation of synthetic sequence data 253

All sequence simulation materials and simulated sequence alignments are available via Figshare 254

(10.6084/m9.figshare.5263885). 255

Construction of phylogenies representing protein family divergence 256

Random 15-leaf phylogenies representing paralog divergence were generated at www.trex.uqam.ca [44] using the 257

procedure of Kuhner and Felsenstein [45]. 100 phylogenies were generated with each average branch length of 0.5, 0.6, 258

0.7, 0.8, 0.9, and 1.0, 600 in all. The Ensembl Compara species tree topology [46] containing 66 metazoan species was 259

used for the divergence of each ortholog set. The topology was parametrized with branch lengths corresponding to 260

species divergence times at http://www.timetree.org [47, 48]. For each of 15 leaves in each random phylogeny, a copy 261

of the parametrized species tree was randomly scaled in overall height and had each individual branch randomly 262

perturbed around its true length to maintain a realistic scale of divergence. The roots of these randomized trees 263

(representing the MRCAs of an ortholog sets) were grafted at the leaves of the paralog phylogenies, resulting in 264

990-leaf synthetic protein family phylogenies. 265

Preparation of sequence template and sequence simulation 266

Human tyrosine kinase domains were aligned using MAFFT L-INS-i with default parameters. This alignment was 267

used as the template for sequence simulations as follows. The alignment was divided into 24 segments on the basis of 268

local sequence similarity and analysis of solved tyrosine kinase structures. Each segment was assigned a substitution 269

rate scaling factor and an insertion/deletion model to match degree of conservation and solvent exposure in solved 270

structures. Simulation was carried out over synthetic phylogenies using indel-seq-gen [49–51] under the JTT 271

substitution model. 272

Phylogeny reconstruction 273

All-sequence phylogenies were inferred using all combinations of MAFFT L-INS-i, ClustalOmega, and Muscle for 274

sequence alignment and of FastTree2 and RAxML for phylogeny inference. Subsampled phylogenies for Precision 275

calculations (60 of 66 orthologs sampled from each ortholog set, 50 phylogenies reconstructed per protein family) were 276

inferred with FastTree2 only, due to run time considerations. Subsampled phylogenies for ensembles (30 of 66 277

orthologs sampled, 1000 phylogenies per protein family) were reconstructed using L-INS-i and FastTree2 only. 278

Alignment algorithms were used with their default settings. FastTree2 was used with default settings and the 279

WAG substitution model. RAxML was used with default settings and the PROTGAMMAWAGF variant of the WAG 280

substitution model. The WAG substitution model was deliberately used for topology inference, instead of the JTT 281
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substitution model used for simulating protein families, in order to emulate the more realistic scenario where models 282

used for reconstruction of phylogenies for natural families do not precisely match the substitution patterns in those 283

families. 284

Accuracy and Precision of reconstruction for a protein family are defined in terms of the L-INS-i / FastTree2 285

all-sequence and subsampled topology reconstructions. 286

Modified Robinson-Foulds topology comparison metric 287

The Robinson-Foulds (RF ) metric is defined in terms of leaf partitions at internal topology nodes for two topologies 288

with identical sets of leaves. For a tree with N leaves there are N � 3 informative splits. The normalized form of the 289

Robinson-Foulds comparison metric for two topologies, A and B, is: 290

RF =
x+ y

2N � 6
(1)

Where x is the number of leaf partitions in A but not in B, y is the number of leaf partitions in B but not in A, N is 291

the number of leaves in each topology, and 2N � 6 = 2⇥ (N � 3) is the number of informative splits in the two 292

topologies. 293

In order to compare reconstructed paralog divergence topologies we had to modify the RF metric to 294

accommodate cases when the MRCA of an ortholog set has as descendants one or more MRCAs of other ortholog 295

sets. Such topologies are poorly formed because they require inference of additional unobservable events – loss of 296

paralogs in some lineages – in order to be reconciled with a duplication/speciation divergence history. Because the 297

offending ortholog set cannot be pruned to a leaf MRCA, the resulting topology cannot be compared to properly 298

formed topologies (e.g. the true topology) using the standard RF metric. In effect, when ortholog leaves and 299

speciation internal nodes of the offending ortholog set are pruned, the resulting topology is missing a MRCA leaf, 300

because that MRCA maps to an internal node, making that node ambiguous in its duplication vs speciation status. 301

This is problematic for RF because it affects the denominator. Nevertheless, their internal nodes representing 302

pre-duplication common ancestors of the offending ortholog set/paralog and other paralogs can match, in terms of 303

induced partition of paralogs, equivalent nodes in other topologies. 304

In the modified RF

⇤, N represents the number of paralogs (ortholog sets) in each compared topology, not the 305

number of leaves. In addition to x and y we define z as the number of MRCA leaves missing from A but not from B 306

and z

0 as the number of MRCA leaves missing from B but not from A. The modified metric is then calculated as: 307

RF

⇤ =
x+ y + z + z

0

2N � 6
(2)

ASPEN 308

ASPEN is implemented in python 2.7. The ASPEN development repository is publicly available at 309

https://github.com/NaegleLab/ASPEN. 310
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