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Significance Statement: Category learning alters perceptual sensitivity by enhancing the 
discriminability of similar exemplars from different categories. These distortions could in part 
reflect changes in how sensory neural populations selective for category-defining features 
encode information. To test this possibility, we used multivariate analytical techniques to 
reconstruct and quantify representations of oriented stimuli after observers had learned to 
classify them into two discrete groups. Representations of orientation encoded by several early 
visual areas were systematically biased according to their category membership, with larger 
biases for orientations adjacent to the boundary that defined each category. This result suggests 
that categorizing a stimulus alters how that stimulus is represented at the earliest stages of the 
visual processing hierarchy. 
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Abstract 

Categorization refers to the process of mapping sensory inputs onto discrete concepts. 

Humans and other animals can readily learn arbitrary categories defined by low-level visual 

features such as hue, and behavioral studies indicate that such learning distorts perceptual 

sensitivity for the category-defining feature such that discrimination performance for physically 

similar exemplars from different categories is enhanced and discrimination performance for 

equally similar exemplars from the same category is reduced. These distortions could result from 

changes in how sensory neural populations selective for category-defining features encode 

information. Here, we tested this possibility by using noninvasive measurements of human brain 

activity (fMRI and EEG) to visualize and quantify population-level representations of oriented 

stimuli encoded by early visual cortical areas after participants had learned to classify these 

stimuli into discrete groups. Representations of orientation encoded by visual areas V1-V3 were 

systematically biased by category membership, as indicated by shifts in the representation away 

from the physical stimulus' orientation and towards the center of the appropriate category. These 

shifts were strongest for orientations near the category boundary where they would be most 

beneficial for behavioral performance, predicted participants’ overt category judgments, and 

emerged within a few hundred milliseconds of stimulus onset. Collectively, these results suggest 

that categorizing a stimulus alters how that stimulus is represented at the earliest stages of the 

visual processing hierarchy, and may provide a physiological basis for distortions in perceptual 

sensitivity following category learning.  
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Categorization refers to the process of mapping continuous sensory inputs onto discrete 

and behaviorally relevant concepts. It is a cornerstone of flexible behavior that allows organisms 

to generalize existing knowledge to novel stimuli and to discriminate between physically similar 

yet conceptually different stimuli. Many real-world categories are defined by a combination of 

low-level visual properties such as hue, luminance, spatial frequency, and orientation. For 

example, a forager might be tasked with determining whether a food source is edible based on 

subtle differences in color, shape, size, and texture (Fig. 1A). Humans and other animals can 

readily learn arbitrary novel categories defined by low-level visual properties (1-2), and such 

learning “distorts” perceptual sensitivity for the category-relevant feature such that 

discrimination performance for physically similar yet categorically distinct exemplars is 

increased (i.e., acquired distinctiveness; 3-4) and discrimination performance for equally similar 

exemplars in the same category is reduced (i.e., acquired similarity; 5).  

In principle, perceptual distortions following category learning could reflect changes in 

how information is represented by sensory neural populations (6-7). Here, we tested this 

possibility by using noninvasive measurements of human brain activity (fMRI and EEG) to 

visualize and quantify population-level representations of oriented stimuli in early visual cortical 

areas after participants had learned to classify these stimuli into discrete groups. In Experiment 1, 

we show that representations of to-be-categorized orientations in visual areas V1-V3 are 

systematically biased towards the center of the category to which they belong. These biases were 

correlated with trial-by-trial variability in overt category judgments and were largest for 

orientations adjacent to the category boundary where they would be most beneficial for task 

performance. In Experiment 2, we used EEG to generate time-resolved representations of to-be-

categorized orientations and show that categorical biases manifest as early as 125 ms after 
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stimulus onset, suggesting that the intent to categorize a stimulus modulates how neural 

populations in early visual areas represent sensory information. 
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Results 

Experiment 1 - fMRI 

Inspired by earlier work in non-human primates (8-9), we trained eight human volunteers to 

categorize a set of orientations into two groups, A and B. The stimulus space comprised a set of 

15 oriented stimuli, spanning 0-168° in 12° increments (Fig 1B). For each participant, we 

randomly selected one of these 15 orientations as a category boundary such that the seven 

orientations anticlockwise to the boundary were assigned membership in Category A and the 

seven orientations clockwise to the boundary were assigned membership in Category B (Fig 1B-

1C). After a one-hour training session, participants could categorize the stimuli with near-perfect 

accuracy (Fig. 1D). Each participant then completed two separate two-hour fMRI scanning 

sessions. During each session, participants performed the category discrimination task and an 

orientation mapping task where they were required to report the identity of a target letter 

embedded within a rapid stream presented at fixation while a task-irrelevant grating flickered in 

the background (Fig S1A). Data from this task were used to compute an unbiased estimate of 

orientation selectivity for each voxel in visual areas V1-hV4v/V3a (see below). Each 

participant’s category boundary was kept constant across all testing sessions (behavioral training 

and scanning).  

To evaluate whether category learning alters representations of orientation, we used an 

inverted encoding model approach (10-11) to reconstruct a representation of the stimulus’ 

orientation during each trial of the category discrimination task from visual cortical fMRI 

activation patterns. For each visual area (e.g., V1), we first modelled voxel-wise responses 

measured during the orientation mapping task as a weighted sum of idealized orientation 

channels, yielding a set of weights that characterize the orientation selectivity of each voxel (Fig. 
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2A). Note that stimulus orientation was irrelevant in the orientation mapping task, so the 

orientation weights estimated using data from this task should be largely unaffected by 

extraneous factors such as stimulus category membership and/or mechanisms of selective 

attention. In the second phase of the analysis, we reconstructed trial-by-trial representations of 

stimulus orientation by combining information about these weights and the observed pattern of 

activation across voxels measured during each trial of the category discrimination task, resulting 

in single-trial representations of visual orientation for each ROI, with peaks closely tracking the 

presented orientation (Fig 2B). Finally, we sorted trial-by-trial reconstructions of stimulus 

orientation according to category membership such that any bias would manifest as a clockwise 

(rightward) shift of the representation towards the center of Category B (Fig. 2C) and quantified 

biases using a curve-fitting analysis (see Methods).  

Reconstructed representations of orientation in visual areas V1, V2, and V3 exhibited 

reliable category biases of 22.33°, 26.81°, and 34.86°, respectively (Fig. 3; P < 0.05, bootstrap 

test, false-discovery-rate [FDR] corrected for multiple comparisons across regions; see Fig S1 

for separate reconstructions of Category A and Category B trials). Similar, though less robust 

categorical biases were also evident in hV4v and V3a (mean shifts of 11.54° and 8.37°, 

respectively; p > 0.19). A logistic regression analysis established that categorical biases in V1-

V3 were strongly correlated with variability in overt category judgments (Fig. 3, insets). That is, 

trial-by-trial variability in participants’ reports were more strongly determined by orientation 

channels near the center of each category rather than those near the physical orientation of the 

stimulus.  

Before continuing, we considered the trivial possibility that the categorical biases shown 

in Fig 3 reflect intrinsic biases in stimulus selectivity in early visual areas (e.g., due to oblique 
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effects). This possibility is unlikely for two reasons. First, the location of the boundary 

separating Categories A and B was randomly selected from the set of 15 possible orientations for 

each participant (Fig. 1C). Thus, the rule defining Categories A and B varied across participants 

independently of stimulus orientation. Second, no biases were observed in reconstructions of 

stimulus orientation computed from the orientation mapping task, as might be expected if these 

biases are an intrinsic property of the visual system or an artifact of our analytical approach (Fig 

S2).  

We propose that the biases shown in Fig. 3 reflect context-dependent changes in how 

visual areas process or represent sensory information during the orientation mapping and 

category discrimination tasks. We sought additional evidence for this alternative by reversing the 

IEM analysis shown in Fig 2. Specifically, we used data from the category discrimination task to 

estimate a set of orientation weights for each MRI voxel, then used these weights to reconstruct a 

representation of stimulus orientation on each trial of the orientation mapping task. We reasoned 

that if the categorical biases shown in Fig. 2 are caused by context-dependent changes in 

representations of sensory information during the orientation mapping and category 

discrimination tasks, then reconstructions of stimulus orientation during the orientation mapping 

task computed from weights estimated using data from the category discrimination task should 

exhibit a bias towards the incorrect category (Category A). This is precisely what we observed 

(Fig S3): reconstructions of stimulus orientation during the orientation mapping task in V1, V2, 

and V3 exhibited strong biases towards the center of Category A (average shifts of -55.09°, -

46.56°, and -25.10° for V1-V3, respectively; all FDR-corrected p-values ≤ 0.05). 

The biases shown in Fig 3 may be the result of an adaptive process that facilitates task 

performance by enhancing the discriminability of physically similar but categorically distinct 
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stimuli. To illustrate, consider a hypothetical example where an observer is tasked with 

discriminating between two physically similar exemplars on opposite sides of a category 

boundary (Fig. 4A). Discriminating between these alternatives should be challenging as each 

exemplar evokes a similar and highly overlapping response pattern. However, discrimination 

performance could be improved if the responses associated with each exemplar are made more 

separable via acquired distinctiveness (or equivalently, an acquired similarity between exemplars 

adjacent to the category boundary and exemplars near the center of each category) following 

training (Fig. 4B). Similar changes would be less helpful when an observer is tasked with 

discriminating between physically and categorically distinct exemplars, as each exemplar already 

evokes a dissimilar and non-overlapping response (Fig. 4C). From these examples, a simple 

prediction can be derived: categorical biases in reconstructed representations of orientation 

should be largest when participants are shown exemplars adjacent to the category boundary and 

progressively weaker when participants are shown exemplars further away from the category 

boundary.  

We tested this possibility by sorting stimulus reconstructions according to the angular 

distance between stimulus orientation and the category boundary (Fig. 4D). As expected, 

reconstructed representations of orientations adjacent to the category boundary were strongly 

biased by category membership (µ = 43°, p < 0.05, FDR-corrected for multiple-comparisons 

across exemplar-boundary distances), while reconstructed representations of orientations at the 

center of each category exhibited no signs of bias (µ = -4°, p > 0.56). Reconstructed 

representations of orientations located between these extremes exhibited modest but reliable 

category biases (22° and 19° for exemplars two and three steps from the boundary, respectively; 

both p < 0.05), and reconstructed representations for orientations located one, two, or three steps 
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from the category boundary all exhibited larger categorical biases relative to orientations located 

four steps from the category boundary (all FDR-corrected p-values < 0.005; see inset of Fig 4D). 

Biases were also larger for orientations located adjacent to the category boundary than those 

located two or three steps away from the category boundary (both FDR-corrected p-values < 

0.02). Thus, categorical biases in reconstructed representation are largest under conditions where 

they would facilitate behavioral performance and absent under conditions where they would not.  

 Category-selective signals have been identified in multiple brain areas, including portions 

of lateral occipital cortex (6-7, 12-13), inferotemporal cortex (14), posterior parietal cortex (8-9), 

and lateral prefrontal cortex (15). We identified category selective information in many of these 

same regions using a whole-brain searchlight-based decoding analysis where a classifier was 

trained to discriminate between exemplars from Category A and Category B (independently of 

stimulus orientation; Fig. 5 and Methods). We successfully reconstructed representations of 

stimulus orientation in many of these regions during the category discrimination task, but not 

during the orientation mapping task (where stimulus orientation was task-irrelevant; Fig S4). 

This is perhaps unsurprising as representations in many mid-to-high order cortical areas are 

strongly task-dependent (e.g., 16).  As our analytical approach requires an independent and 

unbiased estimate of each voxel’s orientation selectivity (e.g., during the orientation mapping 

task), this meant that we were unable to probe categorical biases in reconstructed representations 

in these regions.  

Experiment 2 - EEG 

 Due to the sluggish nature of the hemodynamic response, the categorical biases shown in 

Figs. 3 and 4 could reflect processes related to decision making or response selection rather than 

stimulus processing. In a second experiment, we tested this idea by examining categorical biases 
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over the first few hundred milliseconds of each category discrimination trial using EEG. We 

reasoned that if the biases shown in Figs. 3 and 4 reflect processes related to decision making, 

response selection, or motor planning, then these biases should manifest only during a period 

shortly before the participants’ response. Conversely, if the biases are due to changes in how 

sensory neural populations encode features, they should be evident throughout each trial. To 

discriminate between these alternatives, we recorded EEG while a new group of 10 volunteers 

performed variants of the orientation mapping and categorization tasks used in the fMRI 

experiment (Fig. 6A). On each trial, participants were shown a large annulus of iso-oriented bars 

that flickered at 30 Hz (i.e., 16.67 ms on, 16.67 ms off; Fig 6A). During the orientation mapping 

task, participants detected and reported the identity of a target letter (an X or a Y) that appeared 

in a rapid series of letters over the fixation point. Identical displays were used during the 

category discrimination task, with the caveat that participants were asked to report the category 

of the oriented stimulus while ignoring the letter stream.  

The 30 Hz flicker of the oriented stimulus elicits a standing wave of frequency-specific 

sensory activity known as a steady-state visually-evoked potential (SSVEP, 17). The coarse 

spatial resolution of EEG precludes precise statements about the cortical source(s) of these 

signals (e.g., V1, V2, etc.). However, to focus on visual areas (rather than parietal or frontal 

areas) we deliberately entrained stimulus-locked activity at a relatively high frequency (30 Hz). 

Our approach was based on the logic that coupled oscillators can only be entrained at high 

frequencies within small local networks, while larger or more distributed networks can only be 

entrained at lower frequencies due to conduction delays and longer transmission times along 

axonal fibers (18). Thus, by using a relatively high flicker rate of 30Hz, most of the SSVEP is 
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likely generated locally in posterior regions of occipitoparietal cortex. An analysis of the spatial 

distribution of 30Hz power across scalp electrode sites supports this assumption (Fig. S5).  

We computed the power and phase of the 30Hz SSVEP response across each 3,000 msec 

trial (Fig. 6B; Methods) and then used these values to reconstruct a time-resolved representation 

of stimulus orientation (19). Our method was similar to the modeling approach used in the 

neuroimaging experiment described above. In the first phase of the analysis, we rank-ordered 

scalp electrodes by 30 Hz power (based on a discrete Fourier transform spanning the 3000 ms 

trial epoch, averaged across all trials of both the orientation mapping and category discrimination 

tasks). Responses measured during the orientation mapping task were used to estimate a set of 

orientation weights for the 32 electrodes with the strongest SSVEP signals (those with the 

highest power at 30 Hz; see Fig S5). In the second phase of the analysis, we used these weights 

and responses measured during each trial of the category discrimination task across all electrodes 

to compute a time-resolved representation of stimulus orientation (Fig. 6C). We reasoned that if 

the categorical biases shown in Figs 3 and 4 reflect processes related to decision making or 

response selection, then they should emerge gradually over the course of each trial. Conversely, 

if the categorical biases reflect changes in sensory processing, then they should manifest shortly 

after stimulus onset. To test this possibility, we computed a set of temporally averaged 

reconstructions from 0 to 250 ms after stimulus onset in 125 ms increments (Figure 6D) and 

estimated the center of each reconstruction using a curve fitting analysis. Categorical biases were 

observed across the first 250 ms of each trial, including a temporal interval spanning 0-125 ms, 

suggesting that the intent to categorize a stimulus modulates how neural populations in early 

visual areas respond to incoming sensory signals. 
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Discussion 

Learning to categorize a set of stimuli based on a low-level feature property such as 

luminance or hue distorts perceptual representations of that property by increasing the 

discriminability of physically similar yet categorically distinct stimuli (20) and minimizing the 

discriminability of equally similar stimuli from within the same category (6-7). Critically, these 

distortions could reflect changes in how sensory neural populations selective for the task-relevant 

feature encode this information, changes in how information is “read out” from these 

populations, or some mixture of both. Collectively, the findings reported here provide strong 

support for the first of these alternatives. Using feature reconstruction techniques, we show that 

representations of a to-be-categorized stimulus encoded by population-level activity in early 

visual cortical areas are systematically biased by their category membership. These biases are 

correlated with overt category judgments and are adaptive insofar as they are largest for highly 

confusable exemplars adjacent to a category boundary and smaller for less confusable exemplars 

further from the boundary.  

The categorical biases observed in V1-V3 (Fig. 3) could result from stimulus-invariant 

changes in the spectral preferences and/or response gain of sensory neural populations 

responsible for encoding to-be-categorized orientations (e.g., 21-24). However, both alternatives 

are difficult to reconcile with our observation that the magnitudes of category selective biases are 

in part determined by the similarity between an exemplar and the boundary delineating the two 

categories (Fig. 4C). Alternatively, recent studies have identified time- and stimulus-dependent 

categorical biases in macaque inferotemporal cortex that are well-described by a recurrent 

dynamical model with discrete attractors (25-26). However, the recurrent nature of this model 

predicts that categorical biases should emerge gradually over time (on the order of several 
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hundred milliseconds), which is difficult to reconcile with the results of Experiment 2 where 

robust categorical biases were observed within 125 ms of stimulus onset.  

We have shown that activation patterns in early visual areas reliably signal the category 

of a to-be-classified orientation (Fig. 5) and that representations of orientation are biased by 

category membership (Fig. 3). Both observations appear to conflict with results from nonhuman 

primate research which suggests that sensory cortical areas do not encode categorical 

information. There are at least two explanations for this disparity. First, there is growing 

recognition that the contribution(s) of sensory cortical areas to performance on a visual task are 

highly susceptible to recent history and training effects (27-29). In one example (27), extensive 

training was associated with a functional substitution of human visual area V3a for MT+ in 

discriminating noisy motion patches. Insofar as monkeys require tens or hundreds of thousands 

of trials to reach asymptotic performance on a given task, similar changes may explain why 

category selective signals are found in areas of prefrontal and posterior parietal cortex but not 

sensory cortex. Second, studies of categorization in non-human primates have typically 

employed variants of the so-called delayed match to category task, where monkeys are shown a 

sequence of two exemplars separated by a blank delay interval and asked to report whether the 

category of the second exemplar matches the category of the first exemplar. The advantage of 

this task is that it allows experimenters to decouple category-selective signals from activity 

related to decision making, response preparation, and response execution: since the monkey has 

no way of predicting whether the category of the second exemplar will match that of the first, it 

must wait for the second exemplar appears before preparing and executing a response. However, 

this same advantage also precludes examinations of whether and/or how top-down category-

selective signals interact with bottom-up stimulus-specific signals that may explain the biases 
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reported here. We made no effort to decouple category-selective and decision-related signals in 

our study. That is, we maintained a consistent response mapping for Category A and Category B 

throughout the experiment. Depending on one’s perspective, this can be viewed as an advantage 

or a handicap. On the one hand, our experimental approach allowed us to quantify category-

selective responses in early visual cortex even though a physical stimulus was present for the 

duration of each trial. On the other hand, we cannot definitively exclude the possibility that the 

categorical biases reported here reflect decision- or motor-related processes rather than 

mechanisms of categorization, although it seems unlikely that strong motor signals would be 

present in early visual areas based on existing data. Nevertheless, to our knowledge this is the 

first demonstration that mechanisms of categorization modulate feature-selective representations 

at the earliest stages of the visual system. 

Invasive electrophysiological studies in non-human primates have identified responses 

that discriminate between exemplars from different categories in prefrontal and posterior parietal 

cortex (e.g., 9, 16, 20), but it is always unclear what effects (if any) these signals have on 

representations of to-be-categorized stimuli. Our results suggest that category learning is 

associated with context-dependent changes in how the brain represents sensory information, and 

that these effects reach as far back as the earliest stages of the visual cortical processing stream 

in humans. Second, our observation of categorical biases in visual areas V1-V3 is inconsistent 

with empirical findings and models indicating that category-selective signals manifest only at 

intermediate-to-late stages of the visual processing hierarchy (20). More broadly, our findings 

add to a growing set of observations suggesting that information processing in early visual 

cortical areas is incredibly flexible and can be adapted to maximize performance on an 

observer’s task. 
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Fig. 1. Behavioral Task. (A) An example of physically similar yet categorically distinct stimuli. 

The edible and poisonous mushrooms are best distinguished by variations in low-level visual 

properties such as hue, and texture. (B) In the category discrimination task, participants viewed 

displays containing a circular aperture of iso-oriented bars. On each trial, the bars were assigned 

one of 15 unique orientations from 0-168°. (C) We randomly selected and designated one 

stimulus orientation as a category boundary (black dashed line), such that the seven orientations 

counterclockwise from this value were assigned to Category A (red lines) and the seven 

orientations clockwise from this value were assigned to Category B (blue lines). (D) After 

training, participants rarely miscategorized orientations (shaded region ±1 within-participant 

S.E.M.). 
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Fig. 2. Schematic Overview of the Inverted Encoding Analysis. (A) In the first phase of the 

analysis, we estimated an orientation selectivity profile for each voxel in each retinotopically 

organized visual and parietal region we examined. Participants performed a “rapid serial visual 

presentation” (RSVP) task where they were instructed to detect and reported the identity of target 

letters (“X” or “Y”) that appeared in a rapid sequence in the center of the display. On each trial, a 

task-irrelevant, square, wave, phase-reversing grating with one of 15 orientations (0-168° in 12° 

increments) was presented in the periphery. We modeled the responses of each voxel to each 

orientation as a set of 15 hypothetical orientation channels, yielding a weight matrix that 

describes the orientation selectivity of each voxel. Note that stimulus orientation was irrelevant 

to the participants’ task. This was done to minimize the influence of factors such as category 

learning and selective attention on multivoxel activation patterns measured during this task. (B) 

Using the weights estimated in (A), we inverted the analysis and computed the response of each 

orientation channel from multivoxel activation patterns measured during each trial of the 
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category discrimination task. (C) We hypothesized that representations of stimulus orientation 

would be shifted according to their category membership. To evaluate this possibility, we 

circularly-shifted trial-by-trial reconstructions of stimulus orientation to a common center (0°), 

then aligned these centered reconstructions with the participant’s category boundary such that 

Category A exemplars were located anticlockwise of 0° and Category B exemplars were located 

clockwise of 0°.  
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Fig. 3. Reconstructed representations of Orientation in Early Visual Cortex. We used an 

inverted encoding model to estimate a representation of stimulus orientation in visual areas V1-

hV4v/V3a. Within each plot, the vertical dashed bar at 0° indicates the actual stimulus 

orientation presented on each trial. Data from Category A and Category B trials have been 

arranged and averaged such that any categorical bias would manifest as a clockwise (rightward) 

shift towards the center of Category B (see Methods and Fig. S2). Asterisks next to each region-

of-interest label indicate a shift towards the center of Category B (quantified via a curve-fitting 

analysis, p < 0.05, false-discovery-rate-corrected across regions). The inset of each plot shows a 

logistic regression of each orientation channel’s response onto trial-by-trial variability in 

category judgments. A positive coefficient indicates a positive relationship between an 

orientation channel’s response and the correct category judgment, while a negative coefficient 

indicates a positive relationship between an orientation channel’s response and the correct 

category judgment. For all plots, shaded regions are ±1 within-participant S.E.M.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2017. ; https://doi.org/10.1101/170845doi: bioRxiv preprint 

https://doi.org/10.1101/170845
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 4. Category Biases Scale Inversely with Distance from the Category Boundary. (A) 

Hypothetical example (synthetic data) depicting a scenario where an observer is shown an 

oriented exemplar from Category A (red dots and vertical dashed red line) or Category B (blue 

dots and vertical dashed blue line) that is adjacent to a category boundary (vertical black line). 

Each exemplar evokes a noisy response that is highly confusable with the other. Thus, the 

differential response evoked by each exemplar is relatively weak (inset). (B) The discriminability 

of the two signals could be enhanced by shifting or biasing the representation of each exemplar 

away from the category boundary. This would improve category discrimination performance by 
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increasing the differential response evoked by the two exemplars (inset). Thus, categorical biases 

should be particularly strong in these instances. (C) Categorical biases would be less helpful 

when participants are tasked with discriminating between two physically dissimilar exemplars, as 

the differential response across exemplars is already quite large. Thus, categorical biases should 

be small or absent in these instances. (D) To test this possibility, w sorted the reconstructions 

shown in Fig. 2 by the absolute angular distance between each exemplar and the category 

boundary. In our case, the 15 orientations were bisected into two groups of 7, with the remaining 

orientation serving as the category boundary. Thus, the maximum absolute angular distance 

between each orientation category and the category boundary was 48°. Data have been pooled 

and averaged across visual areas V1-V3 as no differences were observed across these regions. 

Shaded regions are ±1 within-participant S.E.M. The inset shows the amount of bias for 

exemplars located 1, 2, 3, or 4 steps from the category boundary (quantified via a curve-fitting 

analysis). Error bars are 95% confidence intervals.  
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Fig. 5. Reconstructions of Stimulus Orientation in Cortical Areas Encoding Category 

Information. (A) We trained a linear support vector machine (LIB-SVM Implementation; 27) to 

discriminate between activation patterns associated with Category A and Category B exemplars 

(independently of orientation; see Searchlight Classification Analysis; Methods). The trained 

classifier revealed robust category-specific information in multiple visual, parietal, temporal, and 

prefrontal cortical areas, including many regions previously associated with categorization (e.g., 

posterior parietal cortex and lateral prefrontal cortex). 
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Fig. 6. Category Biases Emerge Shortly After Stimulus Onset. (A) On each trial participants 

viewed displays containing a large aperture of iso-oriented bars that flickered at 30 Hz while a 

rapid series of letters was presented at fixation. In separate blocks, participants detected the 

presence of a target in the letter stream while ignoring the oriented stimulus (orientation mapping 

task), or reported the category of the oriented stimulus (category discrimination task) while 

ignoring the letter stream. (B) The oriented stimulus drove a large frequency-specific response 

that was largest over posterior electrode sites (see Fig. S3). Dashed vertical lines at 0.0 and 3.0 

sec mark stimulus onset and offset, respectively. (C) We used the power and phase of this 

frequency-specific response to generate a time-resolved representation of stimulus orientation. 

Dashed vertical lines at 0.0 and 3.0 sec mark stimulus onset and offset, respectively. (D) We 

examined the time course of category biases by averaging reconstructions from the first 250 ms 
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of each trial in 125 ms increments. Reliable category biases were present within 0-125 ms of 

stimulus onset (asterisks p < 0.05, FDR-corrected across temporal epochs; shaded regions ±1 

within-participant S.E.M.) 
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