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Abstract 

Categorization refers to the process of mapping continuous sensory inputs onto discrete 

concepts. Humans and other animals can readily learn arbitrary categories defined by low-level 

visual features such as hue and orientation, and behavioral studies indicate that such learning 

distorts perceptual sensitivity for category-defining features such that discrimination 

performance for physically similar exemplars from different categories is enhanced and 

discrimination performance for equally similar exemplars from the same category is reduced. 

These distortions could result from systematic biases in neural representations that begin at the 

earlies stages of visual processing We tested this hypothesis in two experiments where human 

observers learned to classify a set of oriented stimuli into two discrete groups. After behavioral 

training, we used an inverted encoding model to visualize and quantify population-level neural 

representations of stimulus orientation from noninvasive measurements of human brain activity 

(fMRI and EEG) in early visual cortical areas. Reconstructed representations in several of these 

areas (V1-V3) were systematically biased by category membership, as indicated by shifts in the 

representation away from the physical stimulus' orientation and towards the center of the 

appropriate category. These shifts were strongest for orientations near the category boundary 

where they would be most beneficial for behavioral performance, predicted participants’ overt 

category judgments, and emerged rapidly after stimulus onset. Collectively, these results indicate 

that category information can alter information processing at very early stages of the visual 

stream.  
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Categorization refers to the process of mapping continuous sensory inputs onto discrete 

and behaviorally relevant concepts. It is a cornerstone of flexible behavior that allows organisms 

to generalize existing knowledge to novel stimuli and to discriminate between physically similar 

yet conceptually different stimuli. Many real-world categories are defined by a combination of 

low-level visual properties such as hue, luminance, spatial frequency, and orientation. For 

example, a forager might be tasked with determining whether a food source is edible vs. inedible 

based on subtle variations in color, shape, size, and texture. Humans and other animals can 

readily learn arbitrary novel categories defined by low-level visual properties (1-2), and such 

learning “distorts” perceptual sensitivity for the category-relevant feature such that 

discrimination performance for physically similar yet categorically distinct exemplars is 

increased (i.e., acquired distinctiveness; 3-4) and discrimination performance for equally similar 

exemplars in the same category is reduced (i.e., acquired similarity; 5).  

Invasive electrophysiological studies have shown that single-unit responses in early 

visual areas index the physical properties of a stimulus but not its category membership, while 

single-unit responses in later areas index the category membership of a stimulus regardless of its 

physical properties (e.g., 6-8). These results have been taken as evidence that category-selective 

responses are a de novo property of higher-order visual areas. However, perceptual distortions 

following category learning could reflect changes in how information is represented by sensory 

neural populations (9-10). Here, we sought to test this possibility. We modeled noninvasive 

measurements of human brain activity (fMRI and EEG) to visualize and quantify population-

level representations of oriented stimuli in early visual cortical areas after participants had been 

trained to classify these stimuli into discrete groups. In Experiment 1, we show that 

representations of to-be-categorized orientations in visual areas V1-V3 are systematically biased 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/170845doi: bioRxiv preprint 

https://doi.org/10.1101/170845
http://creativecommons.org/licenses/by-nc-nd/4.0/


towards the center of the category to which they belong. These biases were correlated with trial-

by-trial variability in overt category judgments and were largest for orientations adjacent to the 

category boundary where they would be most beneficial for category discrimination 

performance. In Experiment 2, we used EEG to generate time-resolved representations of to-be-

categorized orientations and show that categorical biases manifest rapidly after stimulus onset. 

Collectively our results suggest that category knowledge can alter stimulus processing at very 

early stages of the visual system.  
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Results 

Experiment 1 - fMRI 

We trained eight human volunteers to categorize a set of orientations into two groups, Category 1 

and Category 2. The stimulus space comprised a set of 15 oriented stimuli, spanning 0-168° in 

12° increments (Fig. 1A-B). For each participant, we randomly designated one of these 15 

orientations as a category boundary such that the seven orientations anticlockwise to the 

boundary were assigned membership in Category 1 and the seven orientations clockwise to the 

boundary were assigned membership in Category 2. Each participant completed a one-hour 

training session prior to scanning. Each participant’s category boundary was kept constant across 

all behavioral training and scanning sessions. Many participants self-reported that they learned 

the rule delineating the categories in 1-2 5-minute blocks of trials. Consequently, task 

performance measured during scanning was extremely high, with errors and slow responses 

present only for exemplars immediately adjacent to the category boundary (Fig. 1C-D). During 

each scanning session, participants performed the category discrimination task and an orientation 

mapping task where they were required to report the identity of a target letter embedded within a 

rapid stream presented at fixation while a task-irrelevant grating flickered in the background. 

Data from this task were used to compute an unbiased estimate of orientation selectivity for each 

voxel in visual areas V1-hV4v/V3A (see below).  

To evaluate whether category learning alters representations of orientation, we used an 

inverted encoding model (11) to reconstruct a representation of stimulus orientation from 

activation patterns measured in early visual cortical areas during the category discrimination 

task. For each visual area (e.g., V1), we first modelled voxel-wise responses measured during the 

orientation mapping task as a weighted sum of idealized orientation channels, yielding a set of 
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weights that characterize the orientation selectivity of each voxel (Fig. 2A). Note that stimulus 

orientation was irrelevant during this task. We therefore reasoned that voxel-by-voxel responses 

evoked by each oriented stimulus would be largely uncontaminated by the category membership 

of each oriented stimulus. Indeed, the logic of our analytical approach rests on the assumption 

that orientation-selective responses are quantitatively different during the orientation mapping 

and category discrimination tasks. Conversely, if identical category biases are present in both 

tasks then the orientation weights computed using data from either task will capture that bias and 

reconstructed representations of orientation will not exhibit any category shift. In the second 

phase of the analysis, we reconstructed trial-by-trial representations of stimulus orientation by 

combining these weights with the observed pattern of activation across voxels measured during 

each trial of the category discrimination task, resulting in single-trial representations of 

orientation for each ROI (Fig 2B). Finally, we sorted trial-by-trial reconstructions of stimulus 

orientation according to category membership such that any bias would manifest as a clockwise 

(rightward) shift of the reconstructed representation towards the center of Category 2 and 

quantified biases towards this category using a curve-fitting analysis (Supplementary Materials).  

Reconstructed representations of orientation in visual areas V1, V2, and V3 exhibited 

reliable category biases of 22.13°, 26.65°, and 34.57°, respectively (Fig. 3; P < 0.05, bootstrap 

test, false-discovery-rate [FDR] corrected for multiple comparisons across regions; see Fig S1 

for separate reconstructions of Category 1 and Category 2 orientations and Fig S2 for participant-

by-participant reconstructions plotted by visual area). Similar, though less robust biases were 

also evident in hV4v and V3A (mean shifts of 9.73° and 6.45°, respectively; p > 0.19). A logistic 

regression analysis established that categorical biases in V1-V3 were strongly correlated with 

variability in overt category judgments (Fig S3). That is, trial-by-trial category judgments were 
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more strongly associated with the responses of orientation channels near the center of each 

category rather than those near the physical orientation of the stimulus. We considered the 

possibility that the categorical biases shown in Fig 3 reflect intrinsic biases in stimulus selectivity 

in early visual areas (e.g., due to oblique effects; 12). This possibility is unlikely, as the location 

of the boundary separating Categories 1 and 2 was randomly selected from the set of 15 possible 

orientations for each participant (Fig. 1C). That is, there was no consistent relationship between 

the category boundary and either the horizontal or vertical meridian across participants.  

The category biases shown in Fig 3 may be the result of an adaptive process that 

facilitates task performance by enhancing the discriminability of physically similar but 

categorically distinct stimuli. To illustrate, consider a hypothetical example where an observer is 

tasked with discriminating between two physically similar exemplars on opposite sides of a 

category boundary (Fig. S4A). Discriminating between these alternatives should be challenging 

as each exemplar evokes a similar and highly overlapping response pattern. However, 

discrimination performance could be improved if the responses associated with each exemplar 

are made more separable via acquired distinctiveness following training (or equivalently, an 

acquired similarity between exemplars adjacent to the category boundary and exemplars near the 

center of each category; Fig. S4B). Similar changes would be less helpful when an observer is 

tasked with discriminating between physically and categorically distinct exemplars, as each 

exemplar already evokes a dissimilar and non-overlapping response (Fig. S4C). From these 

examples, a simple prediction can be derived: categorical biases in reconstructed representations 

of orientation should be largest when participants are shown exemplars adjacent to the category 

boundary and progressively weaker when participants are shown exemplars further away from 

the category boundary.  
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We tested this possibility by sorting stimulus reconstructions according to the angular 

distance between stimulus orientation and the category boundary (Fig. 4). As predicted, 

reconstructed representations of orientations adjacent to the category boundary were strongly 

biased by category membership, with larger biases for exemplars nearest to the category 

boundary (µ = 42.62°, 24.16°, and 20.12° for exemplars located 12°, 24°, and 36° from the 

category boundary, respectively; FDR-corrected bootstrap p < 0.0015), while reconstructed 

representations of orientations at the center of each category exhibited no signs of bias (µ = -

3.98°, p = 0.79; the direct comparison of biases for exemplars adjacent to the category boundary 

and in the center of each category was also significant; p < 0.01). Moreover, the relationship 

between average category bias and distance from the category boundary was well-approximated 

by a linear trend (slope = -14.38°/step; r2 = 0.96). Thus, category biases in reconstructed 

representation are largest under conditions where they would facilitate behavioral performance 

and absent under conditions where they would not.  

 Category-selective signals have been identified in multiple brain areas, including portions 

of lateral occipital cortex, inferotemporal cortex, posterior parietal cortex, and lateral prefrontal 

cortex (6-10; 12-14). We identified category selective information in many of these same regions 

using a whole-brain searchlight-based decoding analysis where a classifier was trained to 

discriminate between exemplars from Category 1 and Category 2 (independently of stimulus 

orientation; Fig. 5 and Methods). Next, we used the same inverted encoding model described 

above to reconstruct representations of stimulus orientation from activation patterns measured in 

each area during the orientation mapping and category discrimination tasks (reconstructions were 

computed using a “leave-one-participant-out” cross-validation routine to ensure that 

reconstructions were independent of the decoding analysis used to define category-selective 
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ROIs). We were able to reconstruct representations of stimulus orientation in many of these 

regions during the category discrimination task, but not during the orientation mapping task 

(where stimulus orientation was task-irrelevant; Fig S5). This is perhaps unsurprising as 

representations in many mid-to-high order cortical areas are strongly task-dependent (e.g., 15).  

As our analytical approach requires an independent and unbiased estimate of each voxel’s 

orientation selectivity (e.g., during the orientation mapping task), this meant that we were unable 

to probe categorical biases in reconstructed representations in these regions.  

Experiment 2 - EEG 

 Due to the sluggish nature of the hemodynamic response, the category biases shown in 

Figs. 3 and 4 could reflect processes related to decision making or response selection rather than 

stimulus processing. In a second experiment, we evaluated the temporal dynamics of category 

biases using EEG. Specifically, we reasoned that if the biases shown in Figs. 3 and 4 reflect 

processes related to decision making, response selection, or motor planning, then these biases 

should manifest only during a period shortly before the participants’ response. Conversely, if the 

biases are due to changes in how sensory neural populations encode features, they should be 

evident during the early portion of each trial. To evaluate these alternatives, we recorded EEG 

while a new group of 27 volunteers performed variants of the orientation mapping and 

categorization tasks used in the fMRI experiment. On each trial, participants were shown a large 

annulus of iso-oriented bars that flickered at 30 Hz (i.e., 16.67 ms on, 16.67 ms off; Fig 6A). 

During the orientation mapping task, participants detected and reported the identity of a target 

letter (an X or a Y) that appeared in a rapid series of letters over the fixation point. Identical 

displays were used during the category discrimination task, with the caveat that participants were 

asked to report the category of the oriented stimulus while ignoring the letter stream.  
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The 30 Hz flicker of the oriented stimulus elicits a standing wave of frequency-specific 

sensory activity known as a steady-state visually-evoked potential (SSVEP, 16; Fig. 6B). The 

coarse spatial resolution of EEG precludes precise statements about the cortical source(s) of 

these signals (e.g., V1, V2, etc.). However, to focus on visual areas (rather than parietal or frontal 

areas) we deliberately entrained stimulus-locked activity at a relatively high frequency (30 Hz). 

Our approach was based on the logic that coupled oscillators can only be entrained at high 

frequencies within small local networks, while larger or more distributed networks can only be 

entrained at lower frequencies due to conduction delays (17). Indeed, a topographic analysis 

showed that evoked 30 Hz activity was strongest over a localized region of occipitoparietal 

electrode sites. (Fig. 6C). As in Experiment 1, participants learned to categorize stimuli with a 

high degree of accuracy, with errors and slow responses present only for exemplars adjacent to a 

category boundary (Fig. 6D-E) 

We computed the power and phase of the 30 Hz SSVEP response across each 3,000 ms 

trial and then used these values to reconstruct a time-resolved representation of stimulus 

orientation (18). Our method was similar to the modeling approach used in the neuroimaging 

experiment described above. In the first phase of the analysis, we rank-ordered scalp electrodes 

by 30 Hz power (based on a discrete Fourier transform spanning the 3000 ms trial epoch, 

averaged across all trials of both the orientation mapping and category discrimination tasks). 

Responses measured during the orientation mapping task were used to estimate a set of 

orientation weights for the 32 electrodes with the strongest SSVEP signals (i.e., those with the 

highest 30 Hz power; see Fig. 6C). In the second phase of the analysis, we used these weights 

and responses measured during each trial of the category discrimination task across all electrodes 

to compute a time-resolved representation of stimulus orientation (Fig. 7A-B).  
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We reasoned that if the categorical biases shown in Figs 3 and 4 reflect processes related 

to decision making or response selection, then they should emerge gradually over the course of 

each trial. Conversely, if the categorical biases reflect changes in sensory processing, then they 

should manifest shortly after stimulus onset. To test this possibility, we computed a temporally 

averaged stimulus reconstruction over an interval spanning 0 to 250 ms after stimulus onset (Fig. 

7B). A robust category bias was observed (M = 23.35°; p = 0.014; bootstrap test) suggesting that 

the intent to categorize a stimulus modulates how neural populations in early visual areas 

respond to incoming sensory signals. An analysis of pre-trial activity revealed no such bias (Fig. 

S6), suggesting that our findings cannot be explained by temporal smearing of pre-stimulus 

activity.  
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Discussion 

 Our findings suggest that category learning changes how sensory neural populations 

code stimulus-specific information at the earliest stages of the visual system.. The results of 

Experiment 1 showed that representations of a to-be-categorized stimulus encoded by 

population-level activity in early visual cortical areas are systematically biased by their category 

membership. These biases were correlated with overt category judgments and were largest for 

exemplars adjacent to the category boundary. The results of Experiment 2 are consistent with the 

hypothesis that category biases reflect changes in how sensory neural populations code category-

defining information by demonstrating that robust category biases are present almost 

immediately after stimulus onset.   

Several candidate mechanisms may be responsible for the category biases reported here. 

For example, one possibility is that category training recruits a gain mechanism that enhances the 

responses of neural populations that maximally discriminate between exemplars from each 

category (e.g., feature-similarity gain; 19).  A second possibility is that category training causes 

task-dependent shifts in the spectral preferences of sensory neural populations (e.g., 20-21). 

These alternatives are not mutually exclusive; nor is this an exhaustive list. Ultimately, targeted 

experiments will be needed to identify the mechanisms responsible for the category biases we 

have reported here. Nevertheless, to our knowledge these data represent the first demonstration 

of category biases in population-level representations of stimuli in “sensory” cortical areas.  

We have shown that activation patterns in early visual areas reliably signal the category 

of a to-be-classified orientation (Fig. 5) and that representations of orientation are biased by 

category membership (Fig. 3). Both observations appear to conflict with results from nonhuman 

primate research which suggests that sensory cortical areas do not encode categorical 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/170845doi: bioRxiv preprint 

https://doi.org/10.1101/170845
http://creativecommons.org/licenses/by-nc-nd/4.0/


information. There are at least two explanations for this disparity. First, there is growing 

recognition that the contribution(s) of sensory cortical areas to performance on a visual task are 

highly susceptible to recent history and training effects (22-26). In one example (22), extensive 

training was associated with a functional substitution of human visual area V3a for MT+ in 

discriminating noisy motion patches. Insofar as monkeys require tens or hundreds of thousands 

of trials to reach asymptotic performance on a given task, similar changes may explain why 

category selective signals are found in areas of prefrontal and posterior parietal cortex but not 

sensory cortex. Second, studies of categorization in non-human primates have typically 

employed variants of a delayed match to category task, where monkeys are shown a sequence of 

two exemplars separated by a blank delay interval and asked to report whether the category of 

the second exemplar matches the category of the first exemplar. The advantage of this task is that 

it allows experimenters to decouple category-selective signals from activity related to decision 

making, response preparation, and response execution: since the monkey has no way of 

predicting whether the category of the second exemplar will match that of the first, it must wait 

for the second exemplar appears before preparing and executing a response. However, this same 

advantage also precludes examinations of whether and/or how top-down category-selective 

signals interact with bottom-up stimulus-specific signals that may explain the biases reported 

here. We made no effort to decouple category-selective and decision-related signals in our study. 

That is, we maintained a consistent response mapping for Category 1 and Category 2 throughout 

the experiment. This can be viewed as an advantage or a handicap. On the one hand, our 

experimental approach allowed us to quantify category-selective responses in early visual cortex 

even though a physical stimulus was present for the duration of each trial. On the other hand, we 

cannot definitively exclude the possibility that the categorical biases reported here reflect 
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decision- or motor-related processes rather than mechanisms of categorization, although it seems 

unlikely that manual (non-oculomotor) response signals would be present in early visual areas 

based on existing data.  

Our findings are naturally accommodated by hierarchical predictive coding models of 

brain function (27-28). Fundamentally, these models propose that perception (and related 

functions such as decision making) are the result of a generative process where sensory signals 

are initially compared to an internal (generative) model of the environment. This comparison 

yields a measure of prediction error or surprise that is subsequently minimized to yield the most 

likely percept. As applied to the current study, bottom-up signals engendered by the stimulus on 

each trial are initially compared with canonical or template representations of the orientation 

typical of a given category encoded by upstream cortical areas (e.g., posterior parietal cortex 

and/or lateral prefrontal cortex), yielding a set of prediction errors (relative to each template 

representation). Based on this comparison, top-down feedback from these higher-order cortical 

areas are relayed to early sensory areas to refine the responses of neural populations in these 

areas. We emphasize that this account is speculative, and additional studies will be needed to 

evaluate specific predictions from this framework.    

 

Methods 

Full methodological details can be found in the supporting online materials. Below, we provide 

an overview of the inverted encoding model used to reconstruct and quantify category biases in 

orientation-selective responses measured using fMRI and EEG.  

Overview 
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A linear inverted encoding model (IEM) was used to recover a quantifiable representation of 

stimulus orientation from multivoxel activation patterns measured in early visual areas (10). The 

same general approach was used during Experiment 1 (fMRI) and Experiment 2 (EEG). 

Specifically, we modeled the responses of voxels (electrodes) measured during the orientation 

mapping task as a weighted sum of 15 orientation-selective channels, each with an idealized 

response function (half-wave-rectified sinusoid raised to the 14th power). The maximum 

response of each channel was set to unit amplitude; thus responses are quantified as BOLD z-

score units (power in μV2). Let B1 (m voxels or electrodes x n1 trials) be the response of each 

voxel (electrode) during each trial of the RSVP task, let C1 (k filters x n1 trials) be a matrix of 

hypothetical orientation filters, and let W (m voxels or electrodes x k filters) be a weight matrix 

describing the mapping between B1 and C1: 

�� � ��� 

In the first phase of the analysis, we computed the weight matrix W from the voxel-wise 

(electrode-wise) responses in B1 via ordinary least-squares: 

� �  �������������� 

 

Next, we defined a test data set B2 (m voxels or electrodes x n2 trials) using data from the 

category discrimination task. Given W and B2, a matrix of filter responses C2 (k filters x n trials) 

can be estimated via model inversion:  

�� � ����������� 
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C2 contains the predicted response of each orientation filter on each trial of the category 

discrimination task. Trial-by-trial reconstructions in C2 were sorted by category membership so 

that any category bias would manifest as a clockwise shift (i.e., towards the center of Category 

2).  

During Experiment 1, the inverted encoding model was applied to normalized (z-score) 

multivoxel activation patterns averaged over time (4-6 seconds after stimulus onset). During 

Experiment 2, the model was applied to instantaneous multi-electrode activity patterns at the 

stimulus’ flicker frequency of 30 Hz. To isolate stimulus-specific responses, the epoched EEG 

timeseries at each electrode was bandpass filtered from 29 to 31 Hz (zero-phase forward and 

reverse 3rd order Butterworth), and the analytic representation of the resulting time series was 

computed using a Hilbert transformation. To visualize and quantify orientation-selective signals 

from frequency-specific responses, we first constructed a complex-valued data set B1(t) (m 

electrodes x ntrain trials). We then estimated a complex-valued weight matrix W(t) (m channels x 

k filters) using B1(t) and a basis set of idealized orientation-selective filters C1. Finally, we 

estimated a complex-valued matrix of channel responses C2(t) (m channels x ntest trials) given 

W(t) and complex-valued test data set B2(t) (m electrodes x ntest trials) containing the complex 

Fourier coefficients measured during the category discrimination task. Trial-by-trial and sample-

by-sample response functions were shifted in the same manner described above so that category 

biases would manifest as a rightward (clockwise) shift towards the center of Category B. We 

estimated the evoked (i.e., phase-locked) power of the response at each filter by computing the 

squared absolute value of the average complex-valued coefficient for each filter after shifting.  
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Quantification of Bias in Reconstructed Representations. To quantify categorical biases in 

representations of orientation, reconstructions were fit with an exponentiated cosine function of 

the form: 

��	� �  
������	�
������ � � 

where, x is a vector of channel responses and α, β, k and µ correspond to the amplitude (i.e., 

signal over baseline), baseline, concentration (the inverse of bandwidth) and the center of the 

function, respectively. Fitting was performed using a multidimensional nonlinear minimization 

algorithm (Nelder-Mead).  

Category biases in the estimated center of each construction (µ) during the category 

discrimination task were quantified via permutation tests. For a given visual area (e.g., V1) we 

randomly selected (with replacement) stimulus reconstructions from eight of eight participants.  

Specifically, we computed a “mean” reconstruction by randomly selecting (with replacement) 

and averaging reconstructions from all participants. The mean reconstruction was fit with the 

cosine function described above, yielding point estimates of α, β, k, and µ . This procedure was 

repeated 1,000 times, yielding 1,000 element distributions of parameter estimates. We then 

computed the proportion of permutations where a µ value less than 0 was obtained to obtain an 

empirical p-value for categorical shifts in reconstructed representations.  The same analysis was 

used to quantify category biases in Experiment 2 (EEG). 
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Fig. 1. Behavioral Task. (A) Participants viewed displays containing a circular aperture of iso-
oriented bars. On each trial, the bars were assigned one of 15 unique orientations from 0-168°. 
(B) We randomly selected and designated one stimulus orientation as a category boundary (black 
dashed line), such that the seven orientations counterclockwise from this value were assigned to 
Category 1 (red lines) and the seven orientations clockwise from this value were assigned to 
Category 2 (blue lines). (C) After training, participants rarely miscategorized orientations. (D) 
Response latencies are significantly longer for oriented exemplars near the category boundary 
(RT = response time; shaded regions in C-D are ±1 within-participant S.E.M.). 
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Fig. 2. Inverted Encoding Model. (A) In the first phase of the analysis, we estimated an 
orientation selectivity profile for each voxel retinotopically organized V1-hV4/V3a using data 
from an independent orientation mapping task. Specifically, we modeled the response of each 
voxel as a set of 15 hypothetical orientation channels, each with an idealized response function. 
(B) In the second phase of the analysis, we computed the response of each orientation channel 
from the estimated orientation weights and the pattern of responses across voxels measured 
during each trial of the category discrimination task. 
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Fig. 3. Reconstructed representations of Orientation in Early Visual Cortex. The vertical bar 
at 0° indicates the actual stimulus orientation presented on each trial. Data from Category 1 and 
Category 2 trials have been arranged and averaged such that any categorical bias would manifest 
as a clockwise (rightward) shift towards the center of Category B (see Methods and Fig. S1). 
Shaded regions are ±1 within-participant S.E.M (see Methods). Note change in scale between 
visual areas V1-V3 and hV4-V3A. a.u., arbitrary units. 
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Fig. 4. Category Biases Scale Inversely with Distance from the Category Boundary. (A) The 
reconstructions shown in Fig. 3 by the absolute angular distance between each exemplar and the 
category boundary. In our case, the 15 orientations were bisected into two groups of 7, with the 
remaining orientation serving as the category boundary. Thus, the maximum absolute angular 
distance between each orientation category and the category boundary was 48°. Participant-level 
reconstructions were pooled and averaged across visual areas V1, V2, and V3 as no differences 
were observed across these regions. Shaded regions are ±1 within-participant S.E.M. (B) shows 
the amount of bias for exemplars located 1, 2, 3, or 4 steps from the category boundary 
(quantified via a curve-fitting analysis). Error bars are 95% confidence intervals. a.u., arbitrary 
units. 
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Fig. 5. Reconstructions of Stimulus Orientation in Cortical Areas Encoding Category 
Information. We trained a linear support vector machine to discriminate between activation 
patterns associated with Category A and Category B exemplars (independently of orientation; 
see Searchlight Classification Analysis; Methods).  
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Fig. 6. Summary of Experiment 2. (A) Participants viewed displays containing an aperture of 
iso-oriented bars flickering at 30 Hz. (B) The 30 Hz flicker entrained a frequency-specific 
response known as a steady-state visually-evoked potential (SSVEP). (C) Evoked 30 Hz power 
was largest over occipitoparietal electrode sites. We computed stimulus reconstructions (Fig. 7) 
using the 32 scalp electrodes with the highest power. The scale bar indicates the proportion of 
participants (out of 27) for which each electrode site was ranked in the top 32 of all 128 scalp 
electrodes. (D-E) Participants categorized stimuli with a high degree of accuracy; incorrect and 
slow responses were observed only for exemplars adjacent to a category boundary. Shaded 
regions are ±1 within-participant S.E.M.  
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Figure 7. Category Biases Emerge Shortly after Stimulus Onset. (A) Time-resolved 
reconstruction of stimulus orientation. Dashed vertical lines at time 0.0 and 3.0 seconds mark 
stimulus on- and offset, respectively. (B) Average channel response function during the first 250 
ms of each trial. The reconstructed representation exhibits a robust category bias (p < 0.01; 
bootstrap test). a.u., arbitrary units. 
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