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Abstract 

Categorization refers to the process of mapping continuous sensory inputs onto discrete 

concepts. Humans, nonhuman primates, and rodents can readily learn arbitrary categories 

defined by low-level visual features such as hue and orientation, and behavioral studies indicate 

that such learning distorts perceptual sensitivity for category-defining features such that 

discrimination performance for physically similar exemplars from different categories is 

enhanced while discrimination performance for equally similar exemplars from the same 

category is reduced. These distortions may result from systematic biases in neural 

representations of discriminanda that begin at the earliest stages of visual processing. We tested 

this hypothesis in two experiments where human observers learned to classify a set of oriented 

stimuli into two discrete groups. After behavioral training, we used multivoxel pattern analysis 

and an inverted encoding model to visualize and quantify population-level neural representations 

of stimulus orientation from noninvasive measurements of human brain activity (fMRI and EEG) 

in early retinotopic visual cortical areas. These analyses revealed that during category 

discrimination neural representations of oriented stimuli in early visual areas were systematically 

biased towards the center of the appropriate category. These shifts were strongest for orientations 

near the category boundary, predicted participants’ overt category judgments, and emerged 

rapidly after stimulus onset. Collectively, these results suggest that category information can bias 

processing at very early stages of the visual processing hierarchy.  
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Categorization refers to the process of mapping continuous sensory inputs onto discrete 

and behaviorally relevant concepts. It is a cornerstone of flexible behavior that allows organisms 

to generalize existing knowledge to novel stimuli and to discriminate between physically similar 

yet conceptually different stimuli. Many real-world categories are defined by a combination of 

low-level visual properties such as hue, luminance, spatial frequency, and orientation. For 

example, a forager might be tasked with determining whether a food source is edible vs. inedible 

based on subtle variations in color, shape, size, and texture. Humans and other animals can 

readily learn arbitrary novel categories defined by low-level visual properties (1-2), and such 

learning “distorts” perceptual sensitivity for the category-relevant feature such that 

discrimination performance for physically similar yet categorically distinct exemplars is 

increased (i.e., acquired distinctiveness; 3-4) and discrimination performance for equally similar 

exemplars in the same category is reduced (i.e., acquired similarity; 5).  

Invasive electrophysiological studies have shown that single-unit responses in early 

visual areas index the physical properties of a stimulus but not its category membership, while 

single-unit responses in later areas index the category membership of a stimulus regardless of its 

physical properties (e.g., 6-8). These results have been taken as evidence that category-selective 

responses are a de novo property of higher-order visual areas. However, perceptual distortions 

following category learning could also reflect changes in how information is represented by 

sensory neural populations (9-10). Here, we sought to test this possibility. We applied 

multivariate analyses to noninvasive measurements of human brain activity (fMRI and EEG) to 

visualize and quantify population-level representations of oriented stimuli in early visual cortical 

areas after participants had learned to classify these stimuli into discrete groups. We show that 

representations of to-be-categorized orientations in visual areas V1-V3 are systematically biased 
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towards the center of the category to which they belong. These biases were correlated with trial-

by-trial variability in overt category judgments and were largest for orientations adjacent to the 

category boundary where they would be most beneficial for discrimination performance. In a 

second experiment, we used EEG to generate time-resolved representations of to-be-categorized 

orientations and show that categorical biases manifest rapidly after stimulus onset. Collectively, 

our results suggest that category knowledge can alter stimulus processing at very early stages of 

the visual system.  
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Results 

Experiment 1 - fMRI 

We trained eight human volunteers to categorize a set of orientations into two groups, Category 1 

and Category 2. The stimulus space comprised a set of 15 oriented stimuli, spanning 0-168° in 

12° increments (Figure 1A-B). For each participant, we randomly designated one of these 15 

orientations as a category boundary such that the seven orientations anticlockwise to the 

boundary were assigned membership in Category 1 and the seven orientations clockwise to the 

boundary were assigned membership in Category 2. Each participant completed a one-hour 

training session prior to scanning. Each participant’s category boundary was kept constant across 

all behavioral training and scanning sessions. Many participants self-reported that they learned 

the rule delineating the categories in one or two 5-minute blocks of trials. Consequently, task 

performance measured during scanning was extremely high, with errors and slow responses 

present only for exemplars immediately adjacent to the category boundary (Figure 1C-D). 

During each scanning session, participants performed the category discrimination task and an 

orientation model estimation task where they were required to report the identity of a target letter 

embedded within a rapid stream presented at fixation while a task-irrelevant grating flickered in 

the background. Data from this task were used to compute an unbiased estimate of orientation 

selectivity for each voxel in visual areas V1-hV4v/V3A (see below).  

 We first examined whether category training increased the similarity of activation 

patterns evoked by exemplars from the same category (i.e., acquired similarity). We tested this 

by training a linear decoder (support vector machine) to discriminate between activation patterns 

associated with exemplars at the center of each category (48° from the boundary), then used the 

trained classifier to predict the category membership of exemplars immediately adjacent to the 
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category boundary (±12°; Figure 2A). This analysis was performed separately for the orientation 

mapping and category discrimination tasks. We reasoned that if category training homogenizes 

activation patterns evoked by members of the same category, then decoding performance should 

be superior during the category discrimination task relative to the orientation mapping task. This 

is precisely what we observed (Figure 2B). For example, near-boundary decoding performance 

in V1 was reliably above chance during the category discrimination task (p < 0.0001, FDR-

corrected bootstrap test), but not during the orientation mapping task  when the category 

boundary was irrelevant and the oriented stimulus was unattended (p = 0.38). Importantly, the 

absence of robust decoding performance during the orientation mapping task cannot be attributed 

to poor signal, as a decoder trained and tested on activation patterns associated with exemplars at 

the center of each category (Figure 2C) yielded above-chance decoding during both behavioral 

tasks (Figure 2D; M = 0.58 and 0.69 for the mapping and discrimination tasks, respectively; p < 

0.01). Collectively, these results suggest that category training can alter population-level 

responses at very early stages of the visual processing hierarchy. 

To better understand how category training influences orientation-selective activation 

patterns in early visual cortical areas, we used an inverted encoding model (11) to generate 

model-based reconstructed representations of stimulus orientation from these patterns. For each 

visual area (e.g., V1), we first modelled voxel-wise responses measured during the orientation 

mapping task as a weighted sum of idealized orientation channels, yielding a set of weights that 

characterize the orientation selectivity of each voxel (Figure 3A). In the second phase of the 

analysis, we reconstructed trial-by-trial representations of stimulus orientation by combining 

these weights with the observed pattern of activation across voxels measured during each trial of 

the category discrimination task, resulting in single-trial reconstructed channel response function 
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that contains a representations of stimulus orientation for each ROI on each trial (Figure 3B). 

Finally, we sorted trial-by-trial reconstructions according to category membership such that any 

bias would manifest as a clockwise (rightward) shift of the orientation representation towards the 

center of Category 2 and quantified biases towards this category using a curve-fitting analysis 

(Methods).  

Note that stimulus orientation was irrelevant during the orientation mapping task used for 

model weight estimation. We therefore reasoned that voxel-by-voxel responses evoked by each 

oriented stimulus would be largely uncontaminated by its category membership. Indeed, the 

logic of our analytical approach rests on the assumption that orientation-selective responses are 

quantitatively different during the orientation mapping and category discrimination tasks: if 

identical category biases are present in both tasks then the orientation weights computed using 

data from either task will capture that bias and reconstructed representations of orientation will 

not exhibit any category shift. This is precisely what we observed when we used a cross-

validation approach to reconstruct stimulus representations separately for the orientation 

mapping and category discrimination tasks (Supplementary Figure 1). 

As shown in Figure 4, reconstructed representations of orientation in visual areas V1, V2, 

and V3 were systematically biased away from physical stimulus orientation and towards the 

center of the appropriate category (shifts of 22.13°, 26.65°, and 34.57°, respectively; P < 0.05, 

bootstrap test, false-discovery-rate [FDR] corrected for multiple comparisons across regions; see 

Supplementary Figure 2 for separate reconstructions of Category 1 and Category 2 orientations 

and Supplementary Figure 3 for participant-by-participant reconstructions plotted by visual 

area). Similar, though less robust biases were also evident in hV4v and V3A (mean shifts of 

9.73° and 6.45°, respectively; p > 0.19). A logistic regression analysis established that 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/170845doi: bioRxiv preprint 

https://doi.org/10.1101/170845
http://creativecommons.org/licenses/by-nc-nd/4.0/


categorical biases in V1-V3 were strongly correlated with variability in overt category judgments 

(Supplementary Figure 4). That is, trial-by-trial category judgments were more strongly 

associated with the responses of orientation channels near the center of each category rather than 

those near the physical orientation of the stimulus. Importantly, because the location of the 

boundary separating categories 1 and 2 was randomly selected for each participant, it is unlikely 

that categorical biases shown in Figure 4 reflect intrinsic biases in stimulus selectivity in early 

visual areas (e.g., due to oblique effects; 12).  

The category biases shown in Figure 4 may be the result of an adaptive process that 

facilitates task performance by enhancing the discriminability of physically similar but 

categorically distinct stimuli. To illustrate, consider a hypothetical example where an observer is 

tasked with discriminating between two physically similar exemplars on opposite sides of a 

category boundary (Supplementary Figure 5). Discriminating between these alternatives should 

be challenging as each exemplar evokes a similar and highly overlapping response pattern. 

However, discrimination performance could be improved if the responses associated with each 

exemplar are made more separable via acquired distinctiveness following training (or 

equivalently, an acquired similarity between exemplars adjacent to the category boundary and 

exemplars near the center of each category). Similar changes would be less helpful when an 

observer is tasked with discriminating between physically and categorically distinct exemplars, 

as each exemplar already evokes a dissimilar and non-overlapping response. From these 

examples, a simple prediction can be derived: categorical biases in reconstructed representations 

of orientation should be largest when participants are shown exemplars adjacent to the category 

boundary and progressively weaker when participants are shown exemplars further away from 

the category boundary.  
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We tested this possibility by sorting stimulus reconstructions according to the angular 

distance between stimulus orientation and the category boundary (Figure 5). As predicted, 

reconstructed representations of orientations adjacent to the category boundary were strongly 

biased by category membership, with larger biases for exemplars nearest to the category 

boundary (µ = 42.62°, 24.16°, and 20.12° for exemplars located 12°, 24°, and 36° from the 

category boundary, respectively; FDR-corrected bootstrap p < 0.0015), while reconstructed 

representations of orientations at the center of each category exhibited no signs of bias (µ = -

3.98°, p = 0.79; the direct comparison of biases for exemplars adjacent to the category boundary 

and in the center of each category was also significant; p < 0.01). Moreover, the relationship 

between average category bias and distance from the category boundary was well-approximated 

by a linear trend (slope = -14.38°/step; r2 = 0.96). Thus, category biases in reconstructed 

representation are largest under conditions where they would facilitate behavioral performance 

and absent under conditions where they would not.  

 Category-selective signals have been identified in multiple brain areas, including portions 

of lateral occipital cortex, inferotemporal cortex, posterior parietal cortex, and lateral prefrontal 

cortex (6-10; 13-14). We identified category selective information in many of these same regions 

using a whole-brain searchlight-based decoding analysis where a classifier was trained to 

discriminate between exemplars from Category 1 and Category 2 (independently of stimulus 

orientation; Figure 6 and Methods). Next, we used the same inverted encoding model described 

above to reconstruct representations of stimulus orientation from activation patterns measured in 

each area during each of the orientation mapping and category discrimination tasks 

(reconstructions were computed using a “leave-one-participant-out” cross-validation routine to 

ensure that reconstructions were independent of the decoding analysis used to define category-
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selective ROIs). We were able to reconstruct representations of stimulus orientation in many of 

these regions during the category discrimination task, but not during the orientation mapping task 

(where stimulus orientation was task-irrelevant; Supplementary Figure 6). This is perhaps 

unsurprising as representations in many mid-to-high order cortical areas are strongly task-

dependent (e.g., 15).  As our analytical approach requires an independent and unbiased estimate 

of each voxel’s orientation selectivity (e.g., during the orientation mapping task), this meant that 

we were unable to probe categorical biases in reconstructed representations in these regions.  

Experiment 2 - EEG 

 Due to the sluggish nature of the hemodynamic response, the category biases shown in 

Figures 4 and 5 could reflect processes related to decision making or response selection rather 

than stimulus processing. In a second experiment, we evaluated the temporal dynamics of 

category biases using EEG. Specifically, we reasoned that if the biases shown in Figures 4 and 5 

reflect processes related to decision making, response selection, or motor planning, then these 

biases should manifest only during a period shortly before the participants’ response. 

Conversely, if the biases are due to changes in how sensory neural populations encode features, 

they should be evident during the early portion of each trial. To evaluate these alternatives, we 

recorded EEG while a new group of 27 volunteers performed variants of the orientation mapping 

and categorization tasks used in the fMRI experiment. On each trial, participants were shown a 

large annulus of iso-oriented bars that flickered at 30 Hz (i.e., 16.67 ms on, 16.67 ms off; Figure 

7A). During the orientation mapping task, participants detected and reported the identity of a 

target letter (an X or a Y) that appeared in a rapid series of letters over the fixation point. 

Identical displays were used during the category discrimination task, with the caveat that 
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participants were asked to report the category of the oriented stimulus while ignoring the letter 

stream.  

The 30 Hz flicker of the oriented stimulus elicits a standing wave of frequency-specific 

sensory activity known as a steady-state visually-evoked potential (SSVEP, 16; Figure 7B). The 

coarse spatial resolution of EEG precludes precise statements about the cortical source(s) of 

these signals (e.g., V1, V2, etc.). However, to focus on visual areas (rather than parietal or frontal 

areas) we deliberately entrained stimulus-locked activity at a relatively high frequency (30 Hz). 

Our approach was based on the logic that coupled oscillators can only be entrained at high 

frequencies within small local networks, while larger or more distributed networks can only be 

entrained at lower frequencies due to conduction delays (17). Indeed, a topographic analysis 

showed that evoked 30 Hz activity was strongest over a localized region of occipitoparietal 

electrode sites. (Figure 7C). As in Experiment 1, participants learned to categorize stimuli with a 

high degree of accuracy, with errors and slow responses present only for exemplars adjacent to a 

category boundary (Figure 7D-E) 

We computed the power and phase of the 30 Hz SSVEP response across each 3,000 ms 

trial and then used these values to reconstruct a time-resolved representation of stimulus 

orientation (18). Our analysis procedure followed that used in Experiment 1: In the first phase of 

the analysis, we rank-ordered scalp electrodes by 30 Hz power (based on a discrete Fourier 

transform spanning the 3000 ms trial epoch, averaged across all trials of both the orientation 

mapping and category discrimination tasks). Responses measured during the orientation mapping 

task were used to estimate a set of orientation weights for the 32 electrodes with the strongest 

SSVEP signals (i.e., those with the highest 30 Hz power; see Figure 6C) at each timepoint. In the 

second phase of the analysis, we used these timepoint-specific weights and corresponding 
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responses measured during each trial of the category discrimination task across all electrodes to 

compute a time-resolved representation of stimulus orientation (Figure 7A-B).  

Importantly, the bandpass filter used to isolate 30 Hz activity will distort temporal 

characteristics of the raw EEG signal by some extent. We estimated the extent of this distortion 

by generating a 3 second, 30 Hz sinusoid with unit amplitude (plus 1 second of pre-and post-

signal zero padding) and running it through the same filters used in our analysis path. We then 

computed the time at which the filtered signal reach 25% of maximum. For an instantaneous 

filter, this should occur at exactly 1 second (due to the pre- and post-signal zero-padding). We 

estimated a signal onset of ~877 ms, or 123 ms prior to the start of the signal. Therefore, if 

reconstruction amplitude is greater than zero at time t, then we can conclude that the pattern of 

scalp activity used to generate the stimulus reconstruction contained reliable orientation 

information at time t ± 125 ms. The same logic applies to estimates of reconstruction bias as the 

reconstructions are based on data filtered using the same parameters. Importantly, we also 

verified that there was no categorical bias in stimulus reconstructions prior to stimulus onset (see 

Supplementary Figure 7), nor were categorical biases present when we reconstructed stimulus 

representations using data from the orientation mapping and category discrimination tasks 

separately (Supplementary Figure S8) 

We reasoned that if the categorical biases shown in Figures 4 and 5 reflect processes 

related to decision making or response selection, then they should emerge gradually over the 

course of each trial. Conversely, if the categorical biases reflect changes in sensory processing, 

then they should manifest shortly after stimulus onset. To test this possibility, we computed a 

temporally averaged stimulus reconstruction over an interval spanning 0 to 250 ms after stimulus 

onset (Figure 8B). A robust category bias was observed (M = 23.35°; p = 0.014; bootstrap test) 
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suggesting that the intent to categorize a stimulus modulates how neural populations in early 

visual areas respond to incoming sensory signals. An analysis of pre-trial activity revealed no 

such bias (Supplementary Figure 7), suggesting that our findings cannot be explained by 

temporal smearing of pre-stimulus activity.  
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Discussion 

 Our findings suggest that category learning changes how sensory neural populations 

code stimulus-specific information at the earliest stages of the visual system. The results of 

Experiment 1 showed that representations of a to-be-categorized stimulus encoded by 

population-level activity in early visual cortical areas are systematically biased by their category 

membership. These biases were correlated with overt category judgments and were largest for 

exemplars adjacent to the category boundary. The results of Experiment 2 are consistent with the 

hypothesis that category biases reflect changes in how sensory neural populations code category-

defining information by demonstrating that robust category biases are present almost 

immediately after stimulus onset.   

Several candidate mechanisms may be responsible for the category biases reported here. 

For example, one possibility is that category training recruits a gain mechanism that enhances the 

responses of neural populations that maximally discriminate between exemplars from each 

category (e.g., feature-similarity gain; 19).  A second possibility is that category training causes 

task-dependent shifts in the spectral preferences of sensory neural populations (e.g., 20-21). 

These alternatives are not mutually exclusive; nor is this an exhaustive list. Our data cannot 

resolve these possibilities. For example, several different patterns of single-unit gain changes 

and/or tuning shifts can produce identical responses in a single fMRI voxel, and different 

patterns of single-voxel modulation could produce categorical biases in multivariate stimulus 

reconstructions (see, e.g., 22 for a detailed discussion of this issue). Ultimately, targeted 

experiments that combine non-invasive measurements of brain activity with careful 

psychophysical measurements and detailed model simulations will be needed to conclusively 

identify the mechanisms responsible for the category biases we have reported here. However, 
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this does not diminish the novelty or importance of our findings: our data suggest that category 

learning can influence reconstructed representations of stimuli at the earliest stages of the 

cortical visual processing hierarchy and challenge the widely-held view that sensory cortical 

areas signal the physical properties of stimuli irrespective of context.  

Our findings appear to conflict with results from nonhuman primate research which 

suggests that sensory cortical areas do not encode categorical information. However, there is 

reason to suspect that mechanisms of category learning might be qualitatively different in human 

and non-human primates. For example, our participants learned to categorize stimuli based on 

performance feedback after approximately 10 minutes of training. In contrast, macaque monkeys 

typically require six months or more of training using a similar feedback scheme to reach a 

similar level of performance, and this extensive amount of training may influence how neural 

circuits code information (e.g., 23-24). Moreover, there is growing recognition that the 

contribution(s) of sensory cortical areas to performance on a visual task are highly susceptible to 

recent history and training effects (23, 25-27). In one example (26), extensive training was 

associated with a functional substitution of human visual area V3a for MT+ in discriminating 

noisy motion patches. Thus, training effects may help explain why previous electrophysiological 

experiments have found category-selective responses in association but not sensory cortical 

areas.  

Studies of categorization in non-human primates have typically employed variants of a 

delayed match to category task, where monkeys are shown a sequence of two exemplars 

separated by a blank delay interval and asked to report whether the category of the second 

exemplar matches the category of the first exemplar. The advantage of this task is that it allows 

experimenters to decouple category-selective signals from activity related to decision making, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/170845doi: bioRxiv preprint 

https://doi.org/10.1101/170845
http://creativecommons.org/licenses/by-nc-nd/4.0/


response preparation, and response execution: since the monkey has no way of predicting 

whether the category of the second exemplar will match that of the first, it must wait for the 

second exemplar appears before preparing and executing a response. However, this same 

advantage also precludes examinations of whether and/or how top-down category-selective 

signals interact with bottom-up stimulus-specific signals that may explain the biases reported 

here. We made no effort to decouple category-selective and decision-related signals in our study. 

That is, we maintained a consistent response mapping for Category 1 and Category 2 throughout 

the experiment. This can be viewed as an advantage or a handicap. On the one hand, our 

experimental approach allowed us to quantify category-selective responses in early visual cortex 

even though a physical stimulus was present for the duration of each trial. On the other hand, we 

cannot definitively exclude the possibility that the categorical biases reported here reflect 

decision- or motor-related processes rather than mechanisms of categorization, although it seems 

unlikely that manual (non-oculomotor) response signals would be present in early visual areas 

based on existing data.  

Our findings are naturally accommodated by hierarchical predictive coding models of 

brain function (27-28). Fundamentally, these models propose that perception (and related 

functions such as decision making) are the result of a generative process where sensory signals 

are initially compared to an internal (generative) model of the environment. This comparison 

yields a measure of prediction error or surprise that is subsequently minimized to yield the most 

likely percept. As applied to the current study, bottom-up signals engendered by the stimulus on 

each trial are initially compared with canonical or template representations of the orientation 

typical of a given category encoded by upstream cortical areas (e.g., posterior parietal cortex 

and/or lateral prefrontal cortex), yielding a set of prediction errors (relative to each template 
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representation). Based on this comparison, top-down feedback from these higher-order cortical 

areas are relayed to early sensory areas to refine the responses of neural populations in these 

areas. We emphasize that this account is speculative, and additional studies will be needed to 

evaluate specific predictions from this framework.    
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Methods 

Experiment 1 - fMRI 

Participants. Eight neurologically intact volunteers (AA, AB, AC, AD, AE, AF, AG, and AH; 

six females) from the UC San Diego community participated in Experiment 1. All participants 

self-reported normal or corrected-to-normal visual acuity and gave both written and oral 

informed consent as required by the local Institutional Review Board. Each participant 

completed a single one-hour behavioral training session approximately 24-72 hours prior to 

scanning. Seven participants (AA, AB, AC, AD, AE, AF, AG) later completed two 2-hour 

experimental scan sessions; an eighth participant (AH) later completed a single 2-hour 

experimental scan session. Participants AA, AB, AC, AD, AE, AF, and AH also completed a 

single 2-hour retinotopic mapping scan session. Data from this session were used to identify 

visual field borders in early visual cortical areas V1-hV4/V3A and subregions of posterior 

intraparietal sulcus (IPS0-3; see Retinotopic Mapping, below). Participants were compensated at 

a rate of $10/hr for behavioral training and $20/hr for scanning.  

Setup. Stimulus displays were generated in MATLAB using and rendered using Psychophysics 

Toolbox extensions (29). Displays were projected onto a 110 cm-wide screen placed at the base 

of the MRI bore, and participants viewed displays via a mirror attached to the MR head coil from 

a distance of 370 cm. 

Behavioral Tasks. In separate runs (where “run” refers to a continuous block of 30 trials lasting 

280 seconds) participants performed either an orientation mapping task or a category 

discrimination task. Trials in both tasks lasted 3 seconds, and consecutive trials were separated 

by a 5 or 7 s inter-trial-interval (pseudorandomly chosen on each trial).  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/170845doi: bioRxiv preprint 

https://doi.org/10.1101/170845
http://creativecommons.org/licenses/by-nc-nd/4.0/


During the orientation mapping task, participants attended a stream of letters presented at 

fixation (subtending 1.0˚ x 1.0˚ from a viewing distance of 370 cm) while ignoring a task-

irrelevant phase-reversing (15 Hz) square-wave grating (0.8 cycles/deg with inner and outer radii 

of 1.16˚ and 4.58˚, respectively) presented in the periphery. On each trial, the grating was 

assigned one of 15 possible orientations (0˚-168˚ in 12˚ increments). Participants were instructed 

to detect and report the identity of a target (“X” or “Y”) in the letter stream using an MR-

compatible button box. Only one target was presented on each trial. Letters were presented at a 

rate of 10 Hz (50% duty cycle, i.e. 50 msec on, 50 msec off), and targets could occur during any 

cycle from +750 to +2250 msec following the start of each trial.  

During category discrimination runs, participants were shown displays containing a 

circular aperture (inner and outer radii of 1.16˚ and 4.58˚ from a viewing distance of 370 cm) 

filled with 150 iso-oriented bars (see Figure 1A). Each bar subtended 0.2˚ x 0.6˚ with a stroke 

width of 8 pixels (1024 x 768 display resolution). Each bar flickered at 30 Hz and was randomly 

replotted within the aperture at the beginning of each “up” cycle. On each trial, all bars were 

assigned an orientation from 0˚-168˚ in 12˚ increments. Inspired by earlier work in non-human 

primates (8), we randomly selected and designated one of these orientations as a category 

boundary such that the seven orientations counterclockwise to this value were assigned 

membership in “Category 1”, while the seven orientations clockwise to this value were assigned 

membership in “Category 2”. Participants were not informed that the category boundary was 

chosen from the set of possible stimulus orientations. Participants reported whether the 

orientation shown on each trial was a member of Category 1 or 2 (via an MR-compatible button 

box). Participants were free to respond at any time during each trial, though the stimulus was 

always presented for a total of 3000 ms. Each participant was familiarized and trained to 
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criterion performance on the category discrimination task during a one-hour behavioral testing 

session completed one to three days prior to his or her first scan session. Written feedback 

(“Correct!” or “Incorrect”) was presented in the center of the display for 1.25 sec. after each trial 

during behavioral training and MR scanning. 

Across either one (N = 1) or two (N = 7) scan sessions, each participant completed 7 (N = 

1), 13 (N = 1), 14 (N = 1), 15 (N = 1) or 16 (N = 4) runs of the RSVP and category 

discrimination tasks.  

fMRI Acquisition and Preprocessing. Imaging data were acquired with a 3.0T GE MR 750 

scanner located at the Center for Functional Magnetic Resonance imaging on the UCSD campus. 

All images were acquired with a 32 channel Nova Medical head coil (Wilmington, MA). Whole-

brain echo-planar images (EPIs) were acquired in thirty-five 3 mm slices (no gap) with an in-

plane resolution of 3 x 3 mm (192 x 192 mm field-of-view, 64 x 64 mm image matrix, 90° flip 

angle, 2000 ms TR, 30 ms TE). During retinotopic mapping scans (see below) EPIs were 

acquired in 31 3mm thick oblique slices (no gap) positioned over posterior visual and parietal 

cortex with an in-plane resolution of 2 x 2 mm (192 x 192 mm field-of-view, 96 x 96 mm image 

matrix, 90° flip angle, 2250 ms TR, 30 ms TE). EPIs were coregistered to a separate anatomical 

scan collected during the same scan session (FSPGR T1-weighted sequence, 11 ms TR, 3.3 ms 

TE, 1100 ms TI, 172 slices, 18° flip angle, 1 mm3 resolution), unwarped (FSL software 

extensions), slice-time-corrected, motion-corrected, high-pass-filtered (to remove first-, second- 

and third-order drift), transformed to Talairach space, and normalized (z-score) on a scan-by-

scan basis. Data from separate scan sessions were co-registered to a high-resolution anatomical 

image (FSPGR T1-weighted sequences; parameters as described above) collected during the 

retinotopic mapping session. 
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Retinotopic Mapping. Retinotopically organized visual areas V1-hV4v/V3A were defined using 

data from a single retinotopic mapping run collected during each experimental scan session. 

Participants fixated a small dot at fixation while phase-reversing (8 Hz) checkerboard wedges 

subtending 60° of polar angle (at maximum eccentricity) were presented along the horizontal or 

vertical meridian (alternating with a period of 40 seconds; i.e., 20 seconds of horizontal 

stimulation followed by 20 seconds of vertical stimulation). To identify visual field borders, we 

constructed a general linear model with two boxcar regressors, one marking epochs of vertical 

stimulation and another marking epochs of horizontal stimulation. Each regressor was convolved 

with a canonical hemodynamic function (“double gamma” as implemented in BrainVoyager 

QX). Next, we generated a statistical parametric map marking voxels with larger responses 

during epochs of vertical relative to horizontal stimulation. This map was projected onto a 

computationally inflated representation of each participant’s cortical surface for visualization to 

aid in the definition of the borders of visual areas V1, V2v, V2d, V3v, V3d, hV4v, and V3A. 

Data from V2v and V2d were combined into a single V2 ROI, and data from V3v and V3d were 

combined into a single V3 ROI. ROIs were also combined across cortical hemispheres (e.g., left 

and right V1) as no asymmetries were observed and the stimulus was presented in the center of 

the visual field.  

Seven participants (AA, AB, AC, AD, AE, AF, and AH) completed a separate two-hour 

retinotopic mapping scan; data from this session were used to identify retinotopically organized 

regions of visual and inferior parietal sulcus (IPS0-3). During each task run, participants were 

shown displays containing a rotating wedge stimulus (period 24.75 or 36 sec) that subtended 72˚ 

of polar angle with inner and outer radii of 1.75 and 8.75˚, respectively. In alternating blocks, the 

wedge contained a 4 Hz phase-reversing checkerboard or field of moving dots and participants 
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were required to detect small, brief, and temporally unpredictable changes in checkerboard 

contrast or dot speed. Six participants completed between 8 and 14 task runs. To compute the 

best polar angle for each voxel in IPS we shifted the signals from counterclockwise runs by twice 

the estimated hemodynamic response function (HRF) delay (2 x 6.75 s = 13.5 s), removed data 

from the first and last full stimulus cycle, and reversed the time series so that all runs reflected 

clockwise rotation. We next computed the power and phase of the response at the stimulus’ 

period (either 1/24.75 or 1/36 Hz) and subtracted the estimated hemodynamic response function 

delay (6.75 seconds) to align the signal phase in each voxel with the stimulus’ location. Maps of 

orientation preference (computed via cross-correlation) were projected onto a computationally 

inflated representation of each participant’s grey-white matter boundary to aide in the 

identification of visual field borders separating V1-hV4/V3A and IPS0-3. Data from the dorsal 

and ventral aspects of V2 were combined into a single ROI. An identical approach was used to 

define a single V3 ROI. 

An eighth participant (AG) chose not to participate in an additional retinotopic mapping 

session. For this participant, we estimated visual field borders for visual areas V1-hV4/V3A. 

using data from the retinotopic mapping run collected during two experimental scan sessions. 

Given limited data, we did not attempt to define IPS regions IPS0-3 for this participant.  

Decoding Categorical Biases in Visual Cortex. We used a linear decoder to examine whether 

fMRI activation patterns evoked by exemplars adjacent to the category boundary and at the 

center of each category were more similar during the category discrimination task relative to the 

orientation mapping task (i.e., acquired similarity). In the first phase of the analysis, we trained a 

linear support vector machine (LIBSVM implementation; 30) to discriminate between the 

oriented exemplars at the center of each category (48° from the boundary) using data from the 
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orientation mapping and category discrimination tasks. To ensure internal reliability, we 

implemented a “leave-one-run-out” cross validation scheme where data from all but one 

scanning run was used to train the classifier and data from the remaining scanning run were used 

for validation. This procedure was repeated until data from each scan had served as the 

validation set, and the results were averaged across permutations. Next, we trained a linear 

classifier on activation patterns evoked by exemplars at the center of each category boundary and 

used the trained classifier to predict the category membership of exemplars adjacent to the 

category boundary. If category learning increases the similarity of activation patterns evoked by 

exemplars within the same category, then within-category decoding performance should be 

superior during the category discrimination task relative to the orientation mapping task.  

Inverted Encoding Model. A linear inverted encoding model (IEM) was used to recover a model-

based representation of stimulus orientation from multivoxel activation patterns measured in 

early visual areas (11). The same general approach was used during Experiment 1 (fMRI) and 

Experiment 2 (EEG). Specifically, we modeled the responses of voxels (electrodes) measured 

during the orientation mapping task as a weighted sum of 15 orientation-selective channels, each 

with an idealized response function (half-wave-rectified sinusoid raised to the 14th power). The 

maximum response of each channel was set to unit amplitude; thus units of response are 

arbitrary. Let B1 (m voxels or electrodes x n1 trials) be the response of each voxel (electrode) 

during each trial of the RSVP task, let C1 (k filters x n1 trials) be a matrix of hypothetical 

orientation filters, and let W (m voxels or electrodes x k filters) be a weight matrix describing the 

mapping between B1 and C1: 

�� � ��� 
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In the first phase of the analysis, we computed the weight matrix W from the voxel-wise 

(electrode-wise) responses in B1 via ordinary least-squares: 

� �  �������������� 

Next, we defined a test data set B2 (m voxels or electrodes x n2 trials) using data from the 

category discrimination task. Given W and B2, a matrix of filter responses C2 (k filters x n trials) 

can be estimated via model inversion:  

�� � ����������� 

C2 contains the reconstructed response of each modeled orientation channel (the channel 

response function; CRF) on each trial of the category discrimination task. This analysis can be 

considered a form of model-based directed dimensionality reduction whereby activity patterns 

are transformed from their original measurement space (fMRI voxels; EEG electrodes) into a 

modeled information space (orientation-selective channels). Importantly, results from this 

method cannot be used to infer any changes in orientation tuning – or any properties of neural 

responses - occurring at the single neuron level, and only assay the information content of large-

scale patterns of neural activity (22) Additionally, while it is the case that arbitrary linear 

transforms can be applied to the basis set, model weights, and reconstructed channel response 

function (31), results are uniquely defined for a given model specification. Trial-by-trial CRFs 

were multiplied by the original basis set to recover a full 180-degree function, circularly shifted 

to a common center (0°) and sorted by category membership so that any category bias would 

manifest as a clockwise shift (i.e., towards the center of Category 2).  

During Experiment 1, the inverted encoding model was applied to normalized (z-scored) 

multivoxel activation patterns averaged over time (4-6 seconds after stimulus onset). During 
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Experiment 2, the model was applied to instantaneous multi-electrode activity patterns at the 

stimulus’ flicker frequency of 30 Hz. To isolate stimulus-specific responses, the epoched EEG 

timeseries at each electrode was bandpass filtered from 29 to 31 Hz (zero-phase forward and 

reverse 3rd order Butterworth), and the analytic representation of the resulting time series was 

computed using a Hilbert transformation. To visualize and quantify orientation-selective signals 

from frequency-specific responses, we first constructed a complex-valued data set B1(t) (m 

electrodes x ntrain trials). We then estimated a complex-valued weight matrix W(t) (m channels x 

k filters) using B1(t) and a basis set of idealized orientation-selective filters C1. Finally, we 

estimated a complex-valued matrix of channel responses C2(t) (m channels x ntest trials) given 

W(t) and complex-valued test data set B2(t) (m electrodes x ntest trials) containing the complex 

Fourier coefficients measured during the category discrimination task. Trial-by-trial and sample-

by-sample response functions were shifted in the same manner described above so that category 

biases would manifest as a rightward (clockwise) shift towards the center of Category B. We 

estimated the evoked (i.e., phase-locked) power of the response at each filter by computing the 

squared absolute value of the average complex-valued coefficient for each filter after shifting.  

Quantification of Bias in Orientation Representations. To quantify categorical biases in 

reconstructed model-based CRFs, these functions were fit with an exponentiated cosine function 

of the form: 

��	� �  
������	�
������ � � 

where, x is a vector of channel responses and α, β, k and µ correspond to the amplitude (i.e., 

signal over baseline), baseline, concentration (the inverse of bandwidth) and the center of the 

function, respectively. Fitting was performed using a multidimensional nonlinear minimization 

algorithm (Nelder-Mead).  
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Category biases in the estimated center of each construction (µ) during the category 

discrimination task were quantified via permutation tests. For a given visual area (e.g., V1) we 

randomly selected (with replacement) stimulus reconstructions from eight of eight participants.  

Specifically, we computed a “mean” reconstruction by randomly selecting (with replacement) 

and averaging reconstructions from all participants. The mean reconstruction was fit with the 

cosine function described above, yielding point estimates of α, β, k, and µ . This procedure was 

repeated 1,000 times, yielding 1,000 element distributions of parameter estimates. We then 

computed the proportion of permutations where a µ value less than 0 was obtained to obtain an 

empirical p-value for categorical shifts in reconstructed representations.  The same analysis was 

used to quantify category biases in Experiment 2 (EEG). 

Searchlight Decoding of Category Membership. We used a roving searchlight analysis (32-33) to 

identify cortical regions beyond V1-V3 that contained category-specific information. We defined 

a spherical neighborhood with a radius of 8 mm around each grey matter voxel in the cortical 

sheet. We next extracted and averaged the normalized response of each voxel in each 

neighborhood over a period from 4-8 seconds after stimulus onset (this interval was chosen to 

account for typical hemodynamic lag of 4-6 seconds). A linear SVM (LIBSVM implementation; 

30) was used to classify stimulus category using activation patterns within each neighborhood. 

To classify category membership independently of orientation, we designated the three 

orientations immediately counterclockwise to the category boundary (see Figure 1) as members 

of Category 1 and the three orientations immediately clockwise of the boundary as members of 

Category 2. We then trained our classifier to discriminate between categories using data from all 

but one task run. The trained classifier was then used to predict category membership from 

activation patterns measured during the held-out task run. This procedure was repeated until each 
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task run had been held out, and the results were averaged across permutations. Finally, we 

repeated the same analysis using the three Category 1 and Category 2 orientations adjacent to the 

second (orthogonal) category boundary (see Figure 1) and averaged the results across category 

boundaries.  

 We identified neighborhoods encoding stimulus category using a leave-one-participant-

out cross validation approach (34). Specifically, for each participant (e.g., AA) we randomly 

selected (with replacement) and averaged classifier performance estimates from each 

neighborhood from each of the remaining 7 volunteers (e.g., AB-AH). This procedure was 

repeated 1000 times, yielding a set of 1000 classifier performance estimates for each 

neighborhood. We generated a statistical parametric map (SPM) for the held-out participant that 

indexed neighborhoods where classifier performance was greater than chance (50%) on 97.5% of 

permutations (false-discovery-rate corrected for multiple comparisons across neighborhoods). 

Finally, we projected each participant’s SPM onto a computationally inflated representation of 

his or her grey-white matter boundary and used Brain Voyager’s “Create POIs from Map 

Clusters” function with an area threshold of 25 mm2 to identify ROIs supporting above-chance 

category classification performance. Because of differences in cortical folding patterns, some 

ROIs could not be unambiguously identified in all 8 participants. Therefore, across participants, 

we retained all ROIs that were shared by at least 7 out of 8 participants (see Supplementary 

Figure S5). Finally, we extracted multivoxel activation patterns from each ROI and computed 

model-based reconstructions of channel response functions during the RSVP and category tasks 

using a leave-one-run-out cross-validation approach. Specifically, we used data from all but one 

task run to estimate a set of orientation weights for each voxel in each ROI. We then used these 

weights and activation patterns measured during the held-out task run to estimate a channel 
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response function, which contains a representation of stimulus orientation. This procedure was 

repeated until each task run had been held out, and the results were averaged across 

permutations. Note that each participant’s ROIs were defined using data from the remaining 7 

participants. This ensured that participant-level reconstructions were statistically independent of 

the searchlight method used to define ROIs encoding category information.  

Within-participant Error Bars. We report estimates of within-participant variability (e.g., ±1 

S.E.M.; Figures 3-4; Figure 6) throughout the paper. These estimates discard subject variance 

(e.g., overall differences in BOLD response amplitude) and instead reflect variance related to the 

subject by condition(s) interaction term(s) (i.e., variability in estimated channel responses). We 

used the approach described by Cousineau (35): raw data (e.g., channel response estimates) were 

de-meaned on a participant by participant basis, and the grand mean across participants was 

added to each participant’s zero-centered data. The grand mean-centered data were then used to 

compute estimates of standard error.  

Experiment 2 - EEG 

Participants. 28 new participants completed Experiment 2. All participants self-reported normal 

or corrected-to-normal visual acuity and gave both written and oral informed consent as required 

by the local Institutional Review Board. Each participant was tested in a single 2.5-3 hour 

experimental session (the exact duration varied across participants depending on the amount of 

time needed to set up and calibrate the EEG equipment). Unlike Experiment 1, participants were 

not trained on the categorization task prior to testing. We adopted this approach in the hopes of 

tracking the gradual emergence of categorical biases during learning. However, many 

participants learned the task relatively quickly (within 40-60 trials), leaving too few trials to 

enable a direct analysis of this possibility. Monetary compensation was provided at a rate of 
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$15/hr. Data from one participant were discarded due to a high number of EOG artifacts (over 

35% of trials); the data reported here reflect the remaining 27 participants. 

Behavioral Tasks. Stimulus displays were generated in MATLAB and rendered on an electrically 

shielded 19-inch CRT monitor (1024 x 768; 120 Hz) via Psychophysics Toolbox software 

extensions. Participants were seated approximately 55 cm from the display (head position was 

unconstrained). 

In separate runs (where “run” refers to a continuous block of 60 trials lasting 

approximately 6.5 minutes), participants performed orientation mapping and category 

discrimination tasks similar to those used in Experiment 1. During both tasks a rapid series of 

letters (subtending 1.54˚ x 1.54˚ from a viewing distance of 55 cm) was presented at fixation, 

and an aperture of 150 iso-oriented bars (subtending 0.8˚ x 2.2˚) was presented in the periphery. 

The aperture of bars had inner and outer radii of 4.76˚ and 20.13˚, respectively. On each trial, the 

bars were assigned one of 15 possible orientations (again 0˚-168˚ in 12˚ increments) and 

flickered at a rate of 30 Hz. Each bar was randomly replotted within the aperture at the beginning 

of each “up” cycle. Letters in the RSVP stream were presented at a rate of 6.67 Hz 

During orientation mapping runs, participants detected and reported the presence of a 

target letter (an X or Y) that appeared at an unpredictable time during the interval from +750 

msec to +2250 ms following stimulus onset. Responses were made on a USB-compatible 

number pad. During category discrimination runs, participants ignored the RSVP stream and 

instead reported whether the orientation of the bar aperture was an exemplar from category “1” 

or category “2”. As in the neuroimaging experiment, we randomly designated one of the 15 

possible stimulus orientations as the category boundary such that the seven orientations 

counterclockwise to this value were assigned to category 1 and the seven orientations clockwise 
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to this value were assigned to category 2. Participants could respond at any point during the trial, 

but the stimulus was presented for a total of 3000 msec. Trials were separated by a 2.5 – 3.25 sec 

inter-trial-interval (randomly selected from a uniform distribution on each trial). Each participant 

completed five (N = 5), six (N = 5), or 7 (N = 1) blocks of each task. 

EEG Acquisition and Preprocessing. Participants were seated in a dimly lit, sound-attenuated, 

and electrically shielded recording chamber (ETS Lindgren) for the duration of the experiment.  

Continuous EEG was recorded from 128 Ag-AgCl- scalp electrodes via a Biosemi “Active Two” 

system (Amsterdam, Netherlands). The horizontal electrooculogram (EOG) was recorded from 

additional electrodes placed near the left and right canthi, and the vertical EOG was recorded 

from electrodes placed above and below the right eye. Additional electrodes were placed over 

the left and right mastoids. The horizontal and vertical EOG were recorded from electrodes 

placed over the left and right canthi and above and below the right eye (respectively). Electrode 

impedances were kept well below 20 kΩ, and recordings were digitized at 1024 Hz.  

After testing, the entire EEG time series at each electrode was high- and low-pass filtered 

(3rd order zero-phase forward and reverse Butterworth) at 0.1 and 50 Hz and re-referenced to the 

average of the left and right mastoids. Data from both tasks were epoched into intervals spanning 

-1000 to +4000 msec from stimulus onset; the relatively large pre- and post-stimulus epochs 

were included to absorb filtering artifacts that could affect later analyses. Trials contaminated by 

EOG artifacts (horizontal eye movements > ~2° and blinks) were identified and excluded from 

additional analyses. Across participants an average of 4.21% (±0.99%) and 7.59% (±1.49%) of 

trials from the orientation mapping and category discrimination tasks were discarded 

(respectively). Finally, noisy channels (those with multiple deflections ≥ 100 µV over the course 
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of the experiment) were visually identified and eliminated (mean number of removed electrodes 

across participants ±1 S.E.M. = 2.29 ± 0.66).  

Next, we identified a set of electrodes-of-interest (EOIs) with strong responses at the 

stimulus’ flicker frequency (30 Hz). Data from each task were re-epoched into intervals spanning 

0 to 3000 msec around stimulus onset and averaged across trials and tasks (i.e., RSVP and 

category discrimination), yielding a k electrode by t sample data matrix. Next, we computed the 

evoked power at the stimulus’ flicker frequency (30 Hz) by applying a discrete Fourier transform 

to the average time series at each electrode. We selected the 32 electrodes with the highest 

evoked power at the stimulus’ flicker frequency for further analysis. These electrodes were 

typically distributed over occipitoparietal electrode sites (Figure 7C). 

To isolate stimulus-specific responses, the epoched EEG timeseries at each electrode was 

resampled to 256 Hz and then bandpass filtered from 29 to 31 Hz (zero-phase forward and 

reverse 3rd order Butterworth). We next estimated a set of complex Fourier coefficients 

describing the power and phase of the 30 Hz response by applying a Hilbert transformation to the 

filtered data. To visualize and quantify orientation-selective signals from frequency-specific 

responses, we first constructed a complex-valued data set B1(t) (m electrodes x ntrain trials). We 

then estimated a complex-valued weight matrix W(t) (m channels x k filters) using B1(t) and a 

basis set of idealized orientation-selective filters C1. Finally, we estimated a complex-valued 

matrix of channel responses C2(t) (m channels x ntest trials) given W(t) and complex-valued test 

data set B2(t) (m electrodes x ntest trials) containing the complex Fourier coefficients measured 

during the category discrimination task. Trial-by-trial and sample-by-sample response functions 

were shifted in the same manner described above so that category biases would manifest as a 

rightward (clockwise) shift towards the center of Category 2. We estimated the evoked (i.e., 
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phase-locked) power of the response at each filter by computing the squared absolute value of 

the average complex-valued coefficient for each filter after shifting. Categorical biases were 

quantified using the same curve fitting analysis described in the main text.  

 As noted above, orientation mapping and category discrimination trials contaminated by 

EOG artifacts were excluded from this analysis. To obtain an unbiased estimate of orientation 

selectivity in each electrode, we ensured that the training data set B1(t) contained an equal 

number of trials for each stimulus orientation (0-168° in 12° increments). For each participant, 

we identified the stimulus orientation θ with the N fewest repetitions in the orientation mapping 

data set after EOG artifact removal. Next, we constructed the training data set B1(t) by randomly 

selecting (without replacement) 1:N trials for each stimulus orientation. Data from this training 

set were used to estimate a set of orientation weights for each electrode and these weights were 

in turn used to estimate a response for each hypothetical orientation channel during the category 

discrimination task. To ensure that our method generalized across multiple combinations of 

orientation mapping trials, we repeated this analysis 100 times and averaged the results across 

permutations.  
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Figure 1. Behavioral Task. (A) Participants viewed displays containing a circular aperture of 
iso-oriented bars. On each trial, the bars were assigned one of 15 unique orientations from 0-
168°. (B) We randomly selected and designated one stimulus orientation as a category boundary 
(black dashed line), such that the seven orientations counterclockwise from this value were 
assigned to Category 1 (red lines) and the seven orientations clockwise from this value were 
assigned to Category 2 (blue lines). (C) After training, participants rarely miscategorized 
orientations. (D) Response latencies are significantly longer for oriented exemplars near the 
category boundary (RT = response time; shaded regions in C-D are ±1 within-participant 
S.E.M.). 
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Figure 2. Category Decoding Performance. (A) We trained classifiers on activation patterns 
evoked by exemplars at the center of each category boundary during the orientation mapping and 
category discrimination task (blue lines), then used the trained classifier to predict the category 
membership of exemplars adjacent to the category boundary (red lines). (B) Decoding accuracy 
was significantly higher during the category discrimination task relative to the orientation 
mapping task (p = 0.01), suggesting that activation patterns evoked by exemplars adjacent to the 
category boundary became more similar to activation patterns evoked by exemplars at the center 
of each category during the categorization task. The absence of robust decoding performance 
during the orientation mapping task cannot be attributed to poor signal or a uniform enhancement 
of orientation representations by attention, as a decoder trained and tested on activation patterns 
associated with exemplars at the center of each category (C) yielded above-chance decoding 
during both behavioral tasks (D). Decoding performance was computed from activation patterns 
in V1. Error bars depict ±1 S.E.M.  
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Figure 3. Inverted Encoding Model. (A) In the first phase of the analysis, we estimated an 
orientation selectivity profile for each voxel retinotopically organized V1-hV4/V3a using data 
from an independent orientation mapping task. Specifically, we modeled the response of each 
voxel as a set of 15 hypothetical orientation channels, each with an idealized response function. 
(B) In the second phase of the analysis, we computed the response of each orientation channel 
from the estimated orientation weights and the pattern of responses across voxels measured 
during each trial of the category discrimination task. The resulting reconstructed channel 
response function (CRF) contains a representation of the stimulus orientation (example; 24 deg), 
which we quantified via a curve-fitting procedure. 
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Figure 4. Reconstructed representations of Orientation in Early Visual Cortex. The vertical 
bar at 0° indicates the actual stimulus orientation presented on each trial. Channel response 
functions (CRFs) from Category 1 and Category 2 trials have been arranged and averaged such 
that any categorical bias would manifest as a clockwise (rightward) shift in the orientation 
representation towards the center of Category B (see Methods and Fig. S1). Shaded regions are 
±1 within-participant S.E.M (see Methods). Note change in scale between visual areas V1-V3 
and hV4-V3A. a.u., arbitrary units. 
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Figure 5. Category Biases Scale Inversely with Distance from the Category Boundary. (A) 
The reconstructions shown in Fig. 3 by the absolute angular distance between each exemplar and 
the category boundary. In our case, the 15 orientations were bisected into two groups of 7, with 
the remaining orientation serving as the category boundary. Thus, the maximum absolute angular 
distance between each orientation category and the category boundary was 48°. Participant-level 
reconstructions were pooled and averaged across visual areas V1, V2, and V3 as no differences 
were observed across these regions. Shaded regions are ±1 within-participant S.E.M. (B) shows 
the amount of bias for exemplars located 1, 2, 3, or 4 steps from the category boundary 
(quantified via a curve-fitting analysis). Error bars are 95% confidence intervals. a.u., arbitrary 
units. 
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Figure 6. Cortical Areas Supporting Robust Decoding of Category Information. We trained 
a linear support vector machine to discriminate between activation patterns associated with 
Category A and Category B exemplars (independently of orientation; see Searchlight 
Classification Analysis; Methods). The trained classifier revealed robust category-specific 
information in multiple visual, parietal, temporal, and prefrontal cortical areas, including many 
regions previously associated with categorization (e.g., posterior parietal cortex and lateral 
prefrontal cortex). 
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Figure 7. Summary of Experiment 2. (A) Participants viewed displays containing an aperture 
of iso-oriented bars flickering at 30 Hz. (B) The 30 Hz flicker entrained a frequency-specific 
response known as a steady-state visually-evoked potential (SSVEP). (C) Evoked 30 Hz power 
was largest over occipitoparietal electrode sites. We computed stimulus reconstructions (Fig. 7) 
using the 32 scalp electrodes with the highest power. The scale bar indicates the proportion of 
participants (out of 27) for which each electrode site was ranked in the top 32 of all 128 scalp 
electrodes. (D-E) Participants categorized stimuli with a high degree of accuracy; incorrect and 
slow responses were observed only for exemplars adjacent to a category boundary. Shaded 
regions are ±1 within-participant S.E.M.  
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Figure 8. Category Biases Emerge Shortly after Stimulus Onset. (A) Time-resolved 
reconstruction of stimulus orientation. Dashed vertical lines at time 0.0 and 3.0 seconds mark 
stimulus on- and offset, respectively. (B) Average channel response function during the first 250 
ms of each trial. The reconstructed representation exhibits a robust category bias (p < 0.01; 
bootstrap test). a.u., arbitrary units. 
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