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ABSTRACT  
While understanding the structure of RNA molecules is vital for deciphering their functions, 
determining RNA structures experimentally is exceptionally hard. At the same time, extant 
approaches to computational RNA structure prediction have limited applicability and 
reliability. In this paper we provide a method to solve a simpler yet still biologically relevant 
problem: prediction of secondary RNA structure using structure of different molecules as a 
template.  
 
Our method identifies conserved and unconserved subsequences within an RNA molecule. 
For conserved subsequences, the template structure is directly transferred into the generated 
structure and combined with de-novo predicted structure for the unconserved subsequences 
with low evolutionary conservation. The method also determines, when the generated 
structure is unreliable. 
 
The method is validated using experimentally identified structures. The accuracy of the 
method exceeds that of classical prediction algorithms and constrained prediction methods. 
This is demonstrated by comparison using large number of heterogeneous RNAs. The 
presented method is fast and robust, and useful for various applications requiring knowledge 
of secondary structures of individual RNA sequences.  
 

INTRODUCTION  
Experimental identification of RNA structures is extremely technically demanding. 

Therefore, computational predictions of RNA secondary structures are frequently employed 
as proxies for native structures. There is plenty of heterogeneous prediction methods, 
reviewed in Mathews et al. 2006 (1) for the free energy minimization and dynamic 
programing techniques, and in Gardner et al. 2004 (2) for comparative methods. However, 
known methods are unreliable namely for longer sequences (approx. > 150 nucleotides) and 
more complex structures, e.g. those that contain longer single-stranded segments. This is 
owing to the extreme theoretical complexity of the prediction. 

Nevertheless, the number of experimentally identified RNA structures is growing in 
spite of the technical demands. These structures are available as potential templates to 
generate secondary structures of uncharacterized but related RNA sequences. In principle, 
template-based prediction can be treated as constrained prediction, which is supported by 
several methods, e.g. the RNA Vienna Package (3), RNAstructure (4) and Locarna (5). 
However, the conversion of the template into a structural constraint for Locarna and 
RNAstructure is not trivial, as the template and the query sequence frequently have different 
lengths. Locarna produces a consensus structure different from an individual structure that 
cannot be mapped directly. RNAstructure requires multiple input sequences as input 
otherwise it predicts either MFE structure or a set of probable structures. The only directly 
applicable method is thus via RNA Vienna Package. 

It includes an utility, refold.pl, that can be used for conversion of secondary structures 
into an RNAfold constraint through a sequence alignment. The constraint is then used for 
RNAfold constrained prediction.  

A different approach to the template-based prediction was adopted for ribosomal 
RNAs (6). The rRNA structure can not be predicted by available methods due to their lengths 
and complexity. The method uses known rRNA structures as templates for comparative 
prediction of homologous sequences but it requires extensive manual input and is slow. 

We adopted a principally different approach: our method generates RNA secondary 
structure for the molecule under investigation directly from the template structure. The 
reliability of the generated structure is then evaluated by a bootstrapping scheme. We show 
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that the proposed method achieves high-quality predictions for sequences where a structure 
for a putative homolog is known, including a number of sequences that are intractable by 
current prediction software.  

An utility based on the method is available on request from the authors. 
 
MATERIALS AND METHODS 
In this section, we first describe the proposed prediction method and then deal with 

the evaluation methodology. 
 
Generating a structure 
Input to the template-based prediction task consists of a template sequence, the 

corresponding template structure and a query sequence. The task is to predict the query 
structure of the query sequence. 

In terms of folding space, we have a subspace of the complete folding space of the 
query sequence. The subspace contains all possible structures of evolutionarily unconserved 
segments of the query structure, while the structure of evolutionarily conserved segments is 
taken from the template and kept fixed. The solution over this subspace is in principle easier 
than over the complete space, and can be found by determining the optimal structure of the 
unconserved segments. It is accomplished as follows:  

I. A pairwise alignment of the query and template sequences is computed with 
ClustalW2 (with default parameters except for GAPOPEN = 7 a 
GAPEXT = 0.5) (7). The alignment can be treated as two functions: Aq maps 
positions in the query sequence to positions in the template sequence and At 
maps from template to query sequence. An example alignment is shown in 
Table S1. 

II. The template structure is mapped onto the query sequence, producing 
intermediate structure. The intermediate structure preserves base pairs that the 
alignment maps to complementary nucleotides and marks all other bases as 
unpaired. More precisely, for each position p in the query sequence, there are 
four possibilities: 
1. Aq(p) is a gap,  
2. Aq(p) is not paired in the template structure, 

3. Aq(p) is paired to position r, but  At(r) is either a gap or a non-canonical 
pair for p, 

4. Aq(p) is paired to position r and  At(r) is a canonical pair for p 
In cases 1-3 the intermediate query structure marks p as unpaired, in case 4, p 
is paired with At(r). Further, in cases 2 and 4, the position p is considered to be 
consistent while in cases 1 and 3, p is considered to be inconsistent. 
An example of an intermediate structure is shown in Table S1 and Figure 1B.  

III. The intermediate structure is decomposed into basic structure elements: 
individual hairpins and stems (Figure 1C). Hairpins are identified first, then 
stems. Hairpins are identified by the following procedure:  
1. the loops of the hairpins are identified first as base pairs with only 

unpaired nucleotides in between the pairing nucleotides. 
2. From this base pair, both ends of the hairpin stem are extended until first 

base pair of a different hairpin is encountered on either end. The strands of 
the hairpin must contain the same number of pairing nucleotides. All 
single-strand nucleotides between pairing nucleotides are added to the 
hairpin as well.  
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3. If there are single-strand nucleotides following the last base pair of a 
hairpin, they are added to the hairpin while ensuring they are not shared by 
multiple neighboring hairpins. 

Stems are identified in between hairpins. Stems have two strands, the 5’ strand 
and the 3’ strand, identified by the following procedure:  
1. the strands of the stem start at the first nucleotide not occupied by hairpins 

or previously identified stems at 5’ and 3’ ends of the intermediate 
structure for the 5’ and 3’ strands, respectively. 

2. The strands are extended in opposite directions, i.e. the 5’ strand in 5’->3’ 
and the 3’ strand in 3’->5’ for the same number of base pairs, until a base 
pair belonging already to a hairpin is encountered. 

Unlike hairpins, stems are not extended with neighboring single-strand 
nucleotides.  

IV. Identification of inconsistency of the elementary structure elements (Figure 
1D). Structural elements are considered inconsistent, if their proportion of 
inconsistent positions identified in step II is over a given threshold. The 
threshold was set to 20% for hairpins and 10% for stems. The threshold values 
were identified based on optimization using both the cross-validation and large 
scale datasets.  

V. De novo prediction of the structure of the inconsistent elements (Figure 1E). 
RNAfold and RNAduplex (8) were used for hairpins and stems, respectively. 
The goal of this step is that the prediction corrects the wrong structure 
information at inconsistent positions. The advantage is that the elements are 
small and therefore the prediction of their structure is highly reliable in 
contrast to the prediction of the whole structure.  

VI. The de novo predicted structures of the inconsistent elements are combined 
(pasted) with the intermediate structure of the consistent elements (Figure 1F) 
to form the resulting structure.  

 

 
Figure 1. Demonstration of the method using SAM I structure. Structures are plotted by 
VARNA viewer (9). The sequence representation of the copy step is in Table S1. Note that 
VARNA interprets the signs for false non-canonical base pairs ('3'), gapped base pairs ('1') 
and gaps (‘-‘) used in Table S1 as ‘-‘ signs in yellow circles.  
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Bootstrap of the generated structure  
Since the presented method will generate a structure for any input, even if the 

template and query sequences are completely unrelated, it is important that we distinguish 
reliable results from spurious ones.  

We compute the reliability using a bootstrapping scheme. We use the query sequence 
to generate N sequences with randomly shuffled dinucleotides. For the shuffled sequences, 
structures are generated with the same procedure as for the query sequence.  

First we validated a criterion that is evaluated by the bootstrapping scheme. We chose 
between tree edit distances and free energy (FE). For the first, distances drnd = 
{drnd,1,…,drnd,N} between the generated structures and the template structure are computed. 
For the later, FEs ernd = {ernd,1,…,ernd,N} of the generated structures are computed.  

Now drnd and ernd approximate the distributions of tree edit distances and FEs obtained 
from non-homologous, i.e. shuffled sequences with the same length and nucleotide 
composition. The quality of the generated structure is then assessed with a z-score (10) 
relative to the population of non-homologous sequences: 

zd = (dgen - rndd ) / std(drnd), ze = (egen - rnde ) / std(ernd). 
The generated structure of the original sequence is considered reliable with a z-score 

≥ 2 (corresponding to the limit of the statistical significance of p-value = 0.05). In our 
experiments, we used N = 100. 

Unlike direct use of the tree edit distance, the z-scores are relevant also when the 
query sequence is only a fragment of the template sequence. The generated structure is then 
naturally dissimilar to the template structure and has a relatively large tree edit distance. But 
reliable structure can still be generated by transferring the relevant substructure of the 
template. The presented bootstrapping scheme correctly classifies such substructures as 
reliable. 

For purpose of validation of the bootstrap metrics and evaluation of the variance of z-
scores, we repeated the bootstrap 100 times (100 runs with 100 randomized sequences each) 
for the 52 generated structures of the cross-validation dataset. 

 
Comparison to available methods  
The presented method was compared to both a classical prediction method (RNAfold) 

and constrained prediction with RNAfold and refold.pl. The Vienna RNA package ver. 2.3.3 
was used. The first method represents state-of-the-art of de novo prediction and is included 
mainly to put the improvements made by our method into proper scale. The latter tool should 
in theory perform the same task as our method and uses the same input information and thus 
is a more fair comparison.  

The refold.pl script takes as input an alignment and a consensus structure. To perform 
template-based prediction we pass it a pairwise alignment between the subject sequence and 
the sequence of the template and the template structure extended to have the same length as 
the alignment by introducing the gaps identified by the alignment into it. The constraints 
were then used with RNAfold –C, as described in the Vienna RNA package user guide. 

The comparison consists of two steps: first we validate the proposed method on a 
small dataset of experimentally identified RNA structures and then we perform a large scale 
evaluation on sequences without known structure. 

 
Cross-validation using experimentally identified structures 
For the cross-validation, RNA families with at least two homologs with 

experimentally identified structures were identified and used. They let us to generate 
structure of one homolog using structure of other homolog of the same family as a 
template/constraint and vice versa. The generated structures were then compared to their 
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experimentally identified counterparts.  
The sequences and structures of the experimentally identified RNAs used for the 

cross-validation are shown in supplementary file S1.fasta. We collected 34 families with at 
least two experimentally identified structures per one family mainly from PDB, allowing for 
52 predictions. The sources of the structures including databases and/or related papers are 
included in Table S4.  

Accuracy of the generated/predicted structures was evaluated using two criteria: 1) 
percent of nucleotide positions with correctly predicted structural information, 2) tree edit 
distances (computed by RNAdistance (8)) to the experimentally identified structures. Ideally, 
the generated/predicted structures should have 100% of nucleotide positions with correctly 
predicted structural information and their tree edit distance to the experimentally identified 
structures should be zero.  

 
Large scale evaluation 
The comparison was carried out using a reference dataset. Its characteristics are 

summarized in Table S2 and S3. The sequences are included in supplementary file S2.fasta. 
Templates including their sequences and structures are included in supplementary file 
S2a.fasta. The dataset was created from the test dataset of CentroidHomfold (11, 12) and 
extended with other RNAs to get more sequence/structure variability. The dataset consisted 
of 32 RNA families where at least one experimentally identified structure is known. In total, 
the dataset contains 3192 sequences with pairwise sequence similarity within families 
ranging from 43 to 95% and sequence similarity to the templates of 38 – 93%. The sequences 
were downloaded from Rfam (13) and SRPDB (14) databases, or when unavailable in the 
databases, identified using corresponding papers cited in Table S3 and downloaded from 
Genbank. As templates, the experimentally identified structures were used, downloaded 
together with their sequences from databases (mostly PDB (15)) or acquired using 
corresponding papers (Table S3).  

 
RESULTS 
Cross-validation with experimentally identified structures 
The results of the cross-validation are summarized in Table S4 and Figure 2. The 

methodology of the cross-validation is explained in details in Methods. The proposed method 
generated more accurate structures than RNAfold and the refold method for 49 of total 52 
predictions. The result was the same, when the accuracy was evaluated by tree edit distance 
and percentage of nucleotide positions with correctly predicted structural information.  
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Figure 2. Cross-validation. In A and B, x-axis shows RNAs, whose structure is predicted and (in 

parenthesis) the RNAs, whose structures were used either for constraints or as templates. Y-axis shows tree edit 
distances (A) and percentage of nucleotide positions with correctly predicted structural information (B). Circles, 
squares and crosses show values for the proposed method, the refold method and RNAfold, respectively. For 
(A), the lesser the distance, the higher the structural similarity to experimentally identified structure; 0 for 
identical structures. For (B), the maximum of structural similarity to experimentally identified structure is 
indicated by 100%. For predictions marked with *, three structural versions were obtained by removing 
pseudoknots. Organism names are abbreviated: E.c.-E. coli, H.m.- H. marismortui, B.s.-B. subtilis, D.m.-D. 
melanogaster, H.s.-H. sapiens, O.c.-O. cuniculus, T.t.-T. tencogensis, C.s.-C. subterraneus, P.f.-P. falciparum, 

T.m.-T. maritima., S.c.-S. coelicolor.Figure 2 indicates that the proposed method was capable to 
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generate more accurate structures than both classical prediction represented by RNAfold and 
the principally same method (the refold method). The main improvement is the ability to 
generate both large structures of long sequences and structures with long single-strand 
segments that are notoriously hard to be predicted with available prediction methods. Such 
typical structures here are rRNAs (16S and 18S rRNAs) and bacterial RNaseP. For some 
species of shorter and highly paired structures, as E. coli and T. tencogensis 5S RNAs and 
lysine riboswitches, the proposed method and the refold method provided similar accuracy 
(Figure 2A and B). For three RNAs, namely E. coli 6S RNA, synthetic lysine riboswitch and 
H. marismortui 5S RNA, RNAfold was more accurate than both the proposed method and the 
refold method. These structures were both shorter (with less than 190 nucleotides) and highly 
paired, which made them convenient for RNAfold prediction.  

With respect to the structure similarity metrics, both tree edit distance and percentage 
of nucleotide position with correctly predicted structural information, were similarly reliable, 
indicating that tree edit distance is a good indicator of structure quality. We use tree edit 
distance in the remainder of the evaluation as the other metrics depends on the method used 
for sequence alignment. Note that the value of the tree edit distance depends on the size of 
structures and, as it is a distance: the higher the similarity, the lower the score, and the value 
of zero indicates structural identity.  

 
Reliability of the generated structure  
The bootstrap procedure for evaluation of the reliability of the generated structure and 

its metrics (see Methods) was validated using the cross-validation dataset, i.e. experimentally 
identified structures. The FE-based z-scores obtained by the repeated bootstrap (100 runs 
with 100 randomized sequences each) evaluated 18 of total 52 generated structures as 
unreliable. Nevertheless, 15 of these 18 unreliable structures were false negatives (FNs). An 
example of a FN is shown Figure 3. It is the secondary structure of C. subterraneus glmS 
ribozyme generated using synthetic glmS ribozyme as the template. The generated structure 
is obviously accurate (cf. Figure 3B and D), but its ze = 1.85, marking it as unreliable (ze < 2). 
For comparison, we generated true negative (TN) structure of the same sequence using the 
proposed method with different values of inconsistency thresholds (30% for hairpins and 
20% for stems) (Figure 3C). Its ze = 2.7, i.e. evaluated as reliable (> 2), though it is obviously 
unreliable (cf. Figure 3C and B) and therefore a false positive. The accuracy of both the 
structures was documented well by their tree edit distances (d=4 and d=44, respectively) to 
their experimentally identified counterpart. Analogous situations occurred for the other 15 
generated structures that were evaluated as unreliable by the FE-based z-scores. 
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Figure 3. Validation of the structural similarity metrics. An example of structure of C. subterraneus 

glmS ribozyme is used for demonstration. Its experimentally identified secondary structure (derived from PDB 
ID 3b4c) is shown in A. The structure was predicted by RNAfold (B), the refold method (C) and the proposed 
method (D). For the latter two, experimentally identified secondary structure of homologous synthetic glmS 
ribozyme (PDB ID 3l3c)(shown in E) was used for constraint and as a template, respectively. ΔG – free energy, 
d - tree edit distance, per - percentage of nucleotide positions with correctly predicted structural information. 
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We therefore used tree edit distance between generated structures and templates 
instead of FE. The distance-based z-scores evaluated 3 of 52 generated structures as 
unreliable with more than 50% of their z-scores obtained by the repeated bootstrap (100 runs 
with 100 randomized sequences each) less than 2.  

Our z-scores are however not definitive proofs of quality of the structure and z > 2 
should be interpreted only as a high likelihood of the structure is reasonable. The main reason 
is the z-scores’s variance with respect to the randomized structures used in the bootstrap. The 
variance was estimated using the repeated bootstrap (100 runs with 100 randomized 
sequences each) for the 52 generated structures of the cross-validation dataset and counting 
how many z-scores were < 2 and > 2 for each generated structure. Besides of the 3 unreliable 
structures, 39 of total 52 structures had 100% z-scores greater than 2. Remaining 10 
structures had their z-scores greater than 2 from 90.6% in average (for individual values, see 
Figure S1, the black curve). 

For the example in Figure 3, the z-scores were zd=3.5 and 0.3 for the accurate and 
inaccurate structures, respectively (Figure 3D and C, respectively). Such z-scores better 
corresponded to the reliability of the structures.  

The reason why FE was inadequate for our task was most likely its position 
independency. Two dissimilar structures with similar base pairs, though at different position 
on a sequence, can have similar FEs. As a result, an inaccurate structure can have correct FE, 
as demonstrated by the example in Figure 3. This fact is further demonstrated by the structure 
predicted by the refold method (Figure 3F) that is relatively dissimilar to its experimentally 
identified counterpart (Figure 3B). Nevertheless, the difference in FE between the predicted 
and experimentally identified structure is 1.2 Kcal/Molecule (-23 Kcal/Mol - -24.2 
Kcal/Mol). The structure generated by the proposed method (Figure 3D) is fairly similar to 
the experimentally identified structure, but the difference in FE is 3.8 Kcal/Mol (-23 
Kcal/Mol - -27 Kcal/Mol), i.e. higher, indicating stronger dissimilarity than for the structure 
predicted by the refold method.  

 
Large scale evaluation 
As shown above, tree edit distance is biologically more relevant for comparison than 

free energy. In the following section we thus treat tree edit distance as our primary metric. 
Results of the large-scale evaluation are summarized by Table S5 and Figure 4. They 

both document higher accuracy of the presented method when compared to both RNAfold 
and the refold-based method. In the first case, the higher accuracy was achieved due to the 
extra information used by the presented method. For the latter, that uses the same input 
information, the higher accuracy was is due to the active search for inconsistent structural 
elements and correction of their structure. 

For 3 families (SRP bact small, Bs2 6S and group I ribozyme) RNAfold and the 
proposed method performed nearly the same. These families include densely and 
unambiguously paired structures that are convenient for the classical prediction, represented 
by RNAfold.  
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Figure 4. Comparison of the presented method. The compared methods were RNAfold as a representative of 
classical, single sequence secondary RNA structure prediction, and a refold.pl-based method that allows for the 
principally same type of prediction as the presented method. In the figure, 32 panels show results for 32 families 
of the reference dataset. In each panel, three box plots for the refold method, RNAfold and the presented method 
are shown (x-axis). Individual box plots show the median (red line), the 25th and 75th percentiles (the tops and 
bottoms of the boxes, respectively) and outliers (the whiskers) of the edit tree distances of the predicted 
structures of a single family to the templates. The distances between the tops and bottoms of the boxes are the 
interquartile ranges. The families are indicated by titles of the plots. 

 
Examples  
In the following, the presented method is demonstrated in details using selected RNAs 

from the reference dataset. The examples are intended to illustrate situations when the 
proposed method is advantageous. Additional state-of-the-art prediction algorithms, 
principally different from the proposed method, were included in this demonstration to cover 
a broader spectrum of available prediction methods.  
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Large single-strand segments: gcvB RNA 
The first example is gcvB RNA, whose structure, experimentally identified in Sharma 

et al., 2007 (16) for S. typhimurium (Figure 5A), is difficult to predict as it includes relatively 
long single-strand segments. For this example we predict structures of gcvB homologs 
identified in the above cited paper. The sequence and structure of the template and the 
sequences of gcvB homologs and their predicted/generated structures are in supplementary 
file S3.fasta in sections a) and b), respectively. 

RNAfold and CentroidHomfold (used for single sequence prediction) tended to pair 
the sequences of long single-strand segments (Figure 5b and d). More accurate was Turbofold 
thanks to all the sequences of the homologs used as input (Figure 5a). Locarna and the 
refold.pl-based method that used the experimentally identified structure as constraint did not 
predict plausible structures of homologs (Figure 5c and e). Tree edit distances that quantify 
the similarity of the generated/predicted structures areshown in Table S6. 
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Figure 5. Individual secondary structures of gcvB RNA homologs predicted by available methods (a-e) and 
generated by the presented method (f). Structures are organized in rows and columns according to the method 
and species, respectively. The experimentally identified template structure of S. typhimurium gcvB RNA 
structure is shown at the top. 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 1, 2017. ; https://doi.org/10.1101/171108doi: bioRxiv preprint 

https://doi.org/10.1101/171108
http://creativecommons.org/licenses/by/4.0/


15 
 

In contrast, the presented method was capable to generate structures that were similar 
to the experimentally identified structure (cf. Figure 5f and Figure 5A). The similarity is 
measured by tree edit distances (see Table S6). It was for two reasons: (i) the wrong, 
excessive pairing was prevented by the information of single-stranded segments copied from 
the template. This made the proposed method more accurate than the single-sequence 
prediction methods. (ii) The proposed method actively searched for inconsistent structural 
elements after copy step and predicted their structure de novo. This made it more accurate 
than the other methods that use the same information as input. Comparison of the accuracy 
using tree edit distances is in Table S6.  

The improved accuracy can help to recognize non-homologous sequences. It is 
demonstrated here with the sequence of E. coli gcvB with randomly shuffled dinucleotides. 
Structure of this shuffled sequence, which represented an RNA not homologous to gcvB, 
could be distinguished from the gcvB homologs by its edit tree distance to the experimentally 
identified gcvB structure, when generated by the proposed method. The distance was twice 
longer than those of the structures of the gcvB homologs (Table S6). Recognition of this non-
homologous RNA was not clear by the available methods as its tree edit distance was not 
unambiguously higher than the distances of the gcvB homologs (Table S6). The predicted 
structures of the shuffled RNA are in supplementary file S4.fasta. 

The non-homologous RNA with the shuffled sequence could also be recognized by z-
score of its generated structure. It was -3.6, which indicated strong unreliability. In contrast, 
z-scores for the gcvB homologs were all higher than 2 (namely 9.7, 3.6, 2.9 and 4.4 for E. 
coli, V. cholera, H. ducreyi and M. succiniciproducens, respectively). The usefulness of z-
scores of the generated structures is further demonstrated in the next example. 

 
Large structure: 18S ribosomal RNAs  
Large structures with long sequences are another class of sequences, when the 

classical prediction is often inaccurate. This is demonstrated here by the structure of 
mammalian 18S rRNAs. The methods of classical prediction that use either a single input 
sequence (RNAfold) or multiple input sequences (CentroidHomfold, Turbofold), and also 
methods that use a homologous experimentally identified structure (H. sapiens 18S rRNA) as 
a constraint (Locarna and the refold method) were largely inaccurate. This is demonstrated 
visually by Figure 6b, c (for RNAfold and the refold method only from technical reasons due 
to the large size of the 18S rRNA structures). The predicted structures were included in 
supplementary file S5.fasta.  

The presented method was more accurate as its accuracy is largely independent of 
sequence length (Figure 6a). The improved accuracy was demonstrated by shorter tree edit 
distances of the generated structures to the experimental identified template of H. sapiens 18S 
rRNA (Table S7).  
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Figure 6. Individual secondary structures of 18S rRNA homologs predicted by available methods (b-c) and 
generated by the presented method (a). Structures are organized in rows and columns according to the method 
and species, respectively. The experimentally identified template structure of H. sapiens 18S rRNA structure is 
shown at the top. 

 
Interesting is the identification of the 18S rRNA fragment of S. harrisii 18S rRNA 

and the elongated 18S sequence of S. scrofa 18S rRNA. The proposed method identified 
correctly that the S. harrisii fragment contained only the expansion segments 3 and 6 of the 
whole 18S rRNA structure (Figure 6a). In contrast, the S. scrofa sequence included, beside 
the entire 18S rRNA structure, an additional ~700 nucleotides flanking the regular 18S rRNA 
structure (Figure 6a). Tree edit distances of these two structures were relatively high, when 
compared to the G. variegatus 18S rRNA structure that is complete (Table S7). This was due 
to the natural dissimilarity of either structural fragments or elongated structures to regular 
structures. However, z-scores were far greater than 2 (6.6, 12.1 and 19.2 for S. harrisii, S. 
scrofa and G. variegatus, respectively) indicating that these sequences are genuine 18S 
rRNAs, yet fragmented/elongated.  

An interesting experiment and also validation of the above identification was to use 
an RNA that was non-homologous to both the fragment and the elongated sequence. To that 
end, we deployed E. coli 16S rRNA as a template. Now the template and the query sequences 
were not longer homologous, yet still related (all were rRNAs), and the z-scores should 
indicate unreliability of the generated structures. Indeed, the z-scores were -0.2, -6 and 0.2 for 
S. harrisii, S. scrofa and G. variegatus, respectively, indicating that the query sequences were 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 1, 2017. ; https://doi.org/10.1101/171108doi: bioRxiv preprint 

https://doi.org/10.1101/171108
http://creativecommons.org/licenses/by/4.0/


17 
 

not homologous to the 16S rRNA. In general, this procedure makes it possible to recognize, 
when the template and query sequences are not homologous, in other words, when the 
transfer of the template structure is biologically irrelevant producing wrong structures. What 
is important is that this bootstrap-based procedure is independent of the fact that query 
sequences are fragmented or elongated, as demonstrated in both this example and the 
previous example.  

 
DISCUSSION AND CONCLUSIONS 
A method for template–based prediction/generation of single-sequence secondary 

RNA structure is presented. As demonstrated on examples, it is useful for determining 
whether an RNA molecule under investigation can conform to a secondary structure taken 
from a different molecule. This is useful for both obtaining RNA secondary structures and 
estimating ability of sequences to adopt the investigated structure. The method provides a 
solution in situations when available methods for secondary RNA structure prediction can not 
be used or are inaccurate. 

It does not mean that a new de novo RNA secondary structure prediction 
algorithm/method is devised. It should be stressed that the presented method requires 
sequences and structures as input in contrast to the prediction methods that usually work only 
with sequences. However, when experimentally derived structures of homologous sequences 
are available, our method is able to correctly predict true biological structures, as shown by 
our cross validation study. We have also performed a large scale comparison of the results 
provided by our method for sequences where the ground truth is unknown, where our method 
also performed favorably. The large scale comparison is not used to benchmark the method, 
but merely for establishing a basis for evaluating the efficiency of the presented method.  

Our method fills a gap resulting from the poor performance of the available methods 
of constrained prediction using known structures. Such prediction is increasingly useful as 
number of experimentally identified RNA structures (and thus the number of available 
templates) grows. The presented method is useful in various situations as demonstrated in this 
work. The method does not depend on length of sequences neither on the type of structure. It 
is fast and robust and it can be used for characterization of large numbers of sequences 
including fragments by structures of other RNAs. It produces z-scores based on bootstrapping 
of generated secondary structures that indicate whether the generated structures are relevant 
for the sequences. A Matlab-compiled executable is available on request. 
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