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Although large amounts of genomic data are available, it remains a challenge to reliably infer 9 

causal relationships among molecular phenotypes (such as gene expression), especially when 10 

many phenotypes are involved. We present MRPC, which learns a causal biological network 11 

efficiently and robustly from integrating genotype and molecular phenotype data, in which 12 

directed edges indicate causal directions. MRPC is the first machine learning algorithm that 13 

incorporates the Principle of Mendelian randomization (PMR) in classical algorithms for 14 

learning causal graphs in computer science. We demonstrate through simulation that MRPC 15 

outperforms existing general-purpose network inference methods and methods using the PMR. 16 

We apply MRPC to distinguish direct and indirect targets among multiple genes associated with 17 

expression quantitative trait loci (eQTLs). We also construct a causal network for frequently 18 

altered cancer genes.  19 

 20 

 21 

 22 
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Whereas experiments (e.g., temporal transcription or protein expression assays, gene knockouts 23 

or knockdowns) have been conducted to understand the causal relationships among genes1,2, or 24 

between an expression quantitative trait loci (eQTL) and its direct and indirect target genes3, it 25 

remains a challenge to learn causality directly from genomic data. It is even harder to learn (i.e., 26 

infer) a causal network, which may represent which genes regulate which other genes.  We 27 

address this problem in this paper.  Correlation (or association) is often used as a proxy of a 28 

potentially causal relationship, but similar levels of correlation can arise from different causal 29 

mechanisms (Models 1-4 in Fig. 1a). For example, between two genes with correlated 30 

expression levels, it is plausible that one gene regulates the other gene (Models 1 and 2 in Fig. 31 

1a); it is also plausible that they do not regulate each other directly, but both are regulated by a 32 

common genetic variant (Model 3 in Fig. 1a).    33 

 34 

Correlation between the expression, or any molecular phenotype, of two genes is symmetrical – 35 

we cannot infer which of the two genes is the regulator and which the target. However, if a 36 

genetic variant (e.g., a SNP) is significantly associated with the expression of one of the two 37 

genes, then we may assign a directed edge from the variant to the gene, as it is reasonable to 38 

assume that the genotype causes changes in the phenotype (expression), not the other way 39 

around. This additional, directed edge breaks the symmetry between the two genes, and makes it 40 

possible to infer the causal direction (e.g., compare Models 1 and 2 in Fig. 1a). This is the 41 

rationale behind the Principle of Mendelian Randomization (PMR). The randomization principle 42 

in experimental design (e.g., clinical trials) is critical in establishing causality: only when 43 

subjects are randomly assigned to different exposures is it possible to draw causal connections 44 

between exposure and outcome.  As a randomization principle, the PMR assumes that the alleles 45 
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of a genetic variant are randomly assigned to individuals in a population, analogous to a natural 46 

perturbation experiment and therefore achieving the goal of randomization4. The PMR has been 47 

widely used in epidemiology studies, where genetic variants are used as instrumental variables to 48 

facilitate the estimate of causal effect between a mediator (or exposure, such as gene expression) 49 

and an outcome (e.g., a disease phenotype4). It received increasing attention in genetics in recent 50 

years5-17 51 

 52 

Large consortia, such as the GEUVADIS consortium18 and subsequently the GTEx consortium19, 53 

have established the widespread genetic variation (i.e. eQTLs) in human genome that may 54 

regulate gene expression, making PMR-based methods increasingly relevant and important for 55 

understanding interactions among genes.  Furthermore, genome-wide association studies 56 

(GWASs) have identified a large number of genetic variants that are potentially causal to 57 

diseases20.  Understanding the roles of these GWAS-significant variants is key to understanding 58 

the mechanisms underlying diseases.  Interestingly, likely half of the GWAS-significant variants 59 

genetic variants are eQTLs21.  As it becomes more common nowadays to collect gene expression 60 

data in disease studies6,11, studying eQTLs (which may also be GWAS-significant SNPs) and 61 

their associated genes provides a powerful approach for a deeper understanding of diseases. 62 

 63 

The research of complex diseases often focuses on moderately-sized networks of dozens or 64 

hundreds of disease-relevant genes, aiming to identify key regulators and understand the 65 

processes involved6,11.  Being able to accurately reconstruct the causal network of a moderate set 66 

of genes will help biologists generate testable hypotheses (e.g., which genes are the key 67 
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regulators and may potentially serve as drug targets) and relate these networks to other 68 

phenotypes, such as drug response.   69 

 70 

However, existing methods adopting the PMR (e.g. the mediation-based methods12,13, and the 71 

MR methods22) are not directly applicable to inference of a causal network of gene expression.  72 

This is because these methods typically examine the graph of V1→T1→T2 (i.e., Model 1 in Fig. 73 

1a), where V1 is the genetic variant, T1 may represent gene expression, and T2 a clinical trait. 74 

This graph, called the “causal model” by existing PMR-based methods, is sensible when T2 is a 75 

potential outcome of T1. However, when we examine relationships among gene expression or 76 

other molecular phenotypes, it is usually not known beforehand which of T1 and T2 is more likely 77 

to be the outcome of the other, and Model 1 alone does not have the flexibility of examining 78 

other possibilities. As a result, these methods are limited in the causal relationships they can 79 

recover. In this paper, we generalize the interpretation of the PMR to account for a variety of 80 

causal relationships. 81 

 82 

Additionally, applications of the PMR in genomics has not been efficient: existing methods 83 

generally work with a small number of nodes, may require spatial (e.g. locations of genetic 84 

variants on the genome) or temporal information, or tend to add many false positive edges. There 85 

has been some recent effort to address the efficiency issue13. Meanwhile, in machine learning, a 86 

class of algorithms, such as those based on the classic PC algorithm23-27, have been developed in 87 

over a decade to efficiently learn causal graphs for a large number of nodes. These algorithms 88 

typically consist of two main steps (Fig. 1b): i) inferring the graph skeleton through a series of 89 

statistical independence tests. The graph skeleton is the same as the final graph except that the 90 
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edges are undirected; and ii) determining the direction of the edges in the skeleton. Variants of 91 

the original PC algorithm have been developed to reduce the impact of the ordering of the nodes 92 

on inference (e.g., the R package pcalg26,27), or to reduce the number of statistical tests needed 93 

for inferring the skeleton (e.g., the R package bnlearn24,25).  94 

 95 

Here we develop a new method, namely MRPC, which incorporates the PMR into PC algorithms 96 

and learns a causal graph where the nodes are genetic variants and molecular phenotypes (such 97 

as gene expression), and where the edges between nodes are undirected or directed, with the 98 

direction indicating causality. Crucially, by combining the PMR with machine learning, our 99 

method is efficient and accurate. Our extended interpretation of the PMR can be thought of as a 100 

way of introducing useful constraints in graph learning and effectively reducing the search space 101 

of possible topologies. We demonstrated the performance of MRPC on simulated and real data.   102 

 103 

Results 104 

Multiple causal relationships under the Principle of Mendelian Randomization (PMR).  We 105 

extended the interpretation of the PMR to consider five causal relationships in a triplet of a 106 

genetic variant and two phenotypes, including the “causal model” (Fig. 1a). Under the 107 

assumption that genotype influences phenotype and not the other way around, these five models 108 

are mutually exclusive and encompass all possibilities, with Model 0 being the null model where 109 

the two phenotype nodes are not related, and the other four models being non-null models. As 110 

mentioned in the Introduction, Model 1 (V1→T1→T2) is typically referred to as the causal model 111 

under standard use of the PMR with T1 being the exposure (e.g., gene expression) and T2 being 112 
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the outcome (e.g., clinical phenotype). cit12,28 and findr13, two existing PMR-based methods for 113 

example, both focus on testing Model 1. 114 

However, Model 1 is limited. Among other possible causal relationships, Model 2 (V1→T1←T2) 115 

defines a v-structure where both edges point to the same node. This model is suitable when no 116 

genetic variant is available for T2 in the data. Model 3 (V1→T1 and V1→T2) captures the 117 

scenario where T1 and T2 are not directly related, but both regulated by V1.  The current 118 

interpretation of the  PMR in other methods typically rejects these two models in search of the 119 

“causal” model (Model 1). However, under our interpretation of the PMR, Models 2 and 3 120 

describe alternative regulatory mechanisms between two genes, and therefore should also be 121 

allowed when constructing the network of molecular phenotypes. Model 4 (V1→T1; V1→T2; 122 

T1−T2) refers to the case where the two phenotypes T1 and T2 have additional dependence 123 

(represented by the undirected edge) on top of that induced by the sharing genetic variant. We 124 

consider undirected and bidirected edges to be equivalent for simplicity, in that an undirected can 125 

be thought of as an average of two equally likely directions, namely M5 (V1→T1; V1→T2; 126 

T1→T2) and M6 (V1→T1; V1→T2; T1←T2); in other words, M4=1 2⁄ ×M5 + 1 2⁄ ×M6.  M5 127 

and M6 are indistinguishable in terms of their dependence relationships (i.e., they are Markov 128 

equivalent29): all pairs of nodes can be marginally dependent and conditionally dependent given 129 

the remaining node. It is plausible that a hidden variable regulates both T1 and T2, although we 130 

currently do not consider hidden variables in our inference. 131 

 132 

MRPC, a novel causal network learning algorithm.  Our method, namely MRPC, is a novel 133 

causal network inference method for genomic data (Fig. 1b; Supplementary Figs. 1, 2). This 134 

method analyzes a data matrix with each row being an individual, and each column a genetic 135 
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variant or a molecular phenotype. Our method also consists of the two main steps as described 136 

above. The first step of learning the graph skeleton is similar to that of other PC algorithms, but 137 

with an online control of the false discovery rate (FDR), which is explained in detail below. We 138 

incorporated the PMR in the second step of edge orientation (Fig. 1b; Supplementary Fig. 2), 139 

which involves three scenarios: i) MRPC first identify edges involving the genetic variants and 140 

orient these edges to point to the molecular phenotype; ii) MRPC then looks for three nodes with 141 

a potential v-structure (e.g., Model 2 in Fig. 1a, or among three molecular phenotypes, 142 

T1→T2←T3). MRPC conducts additional conditional independence tests if no such test has been 143 

performed in the first step; and iii) among the remaining edges, MRPC iteratively finds node 144 

triplets with only one undirected edge. It examines the results from the independence tests from 145 

the first step to identify which of the five basic topologies is consistent with the test results for 146 

this triplet. In MRPC, we use Fisher’s z transformation for Pearson correlation in all the marginal 147 

tests and for the partial correlation in all the conditional tests, consistent with the default method 148 

in pcalg (see “Conditional independence tests based on partial correlations” in Methods). 149 

However, other parametric or nonparametric tests for marginal and conditional independence 150 

tests may be performed in place of Fisher’s z transformation test.   151 

 152 

Existing network inference algorithms (such as those implemented in R packages pcalg and 153 

bnlearn) control the type I error rate for each individual statistical test, but not the family-wise 154 

error rate (FWER) or the FDR, as most methods controlling both the FWER and FDR require the 155 

knowledge of the total number of tests, which is not known in advance in graph learning. Lack of 156 

correction for multiple comparison often leads to too many false edges in the inferred graph, 157 

especially when the graph is large (see our simulation results below). We implemented in MRPC 158 
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the LOND (Levels based on Number of Discoveries) method for controlling the FDR in an 159 

online manner30 (see “Sequential FDR control” in Methods). The LOND method estimates the 160 

expected FDR conditioned on the number of tests performed so far and the number of rejections 161 

from these tests. 162 

 163 

Furthermore, genomic data may contain outliers31, which can greatly distort the inferred graph 164 

(see our simulation results below). Like pcalg, MRPC uses the correlation matrix, rather than the 165 

individual-feature matrix, as input. We implemented in MRPC a method for calculating the 166 

robust correlation matrix31 (see “Calculation of robust correlation” in Methods) in place of 167 

Pearson correlation to alleviate the impact of outliers if they are present. 168 

 169 

MRPC outperforms existing network inference algorithms and PMR-based methods on 170 

synthetic data in overall accuracy. We compared MRPC with two popular network inference 171 

algorithms: the pc method (implemented in pcalg) and the mmhc method (implemented in 172 

bnlearn), and three PMR-based methods, namely cit, findr and QPSO32. Except for QPSO, which 173 

is implemented in MATLAB, all the methods are implemented in R. We simulated data using 174 

linear models for the five basic topologies, three common topologies in biology33,34 (such as 175 

multi-parent, star, and layered graphs), as well as a complex topology with over 20 nodes (Fig. 176 

2). We varied the sample size, as well as the signal strength through the coefficients in the linear 177 

models (see “Generating simulated data” in Methods). 178 

 179 

For each topology, we generated 1000 data sets with different combinations of signal strength 180 

and sample size, and ran each method with their default parameters.  Specifically, we ran MRPC 181 
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with FDR=0.05, Pearson correlation ( = 0; see “Sequential FDR control” in Methods) and the 182 

LOND method ( = 2; see “Calculation of robust correlation” in Methods).  We ran mmhc and 183 

pc with the type I error rate being the default value of 0.05.  We explained the procedures for 184 

running other PMR-based methods in the next section.   185 

 186 

We compared the recall and precision (see “Recall and precision” in Methods) across methods 187 

(Fig. 3a; Supplementary Figs. 3, 4; Supplementary Tables 1, 2). Recall (i.e., power, or 188 

sensitivity) measures how many edges from the true graph a method can recover, whereas 189 

precisions (i.e., 1-FDR) measures how many correct edges are recovered in the inferred graph.  190 

Across different topologies and parameter settings, MRPC has the highest median recall and 191 

precision, with both median recall and median precision above 85%.  MRPC is followed by 192 

mmhc, findr, QPSO, pc, with cit trailing far behind (Fig. 3a). MRPC recovers the true graph 193 

particularly well at moderate or stronger signal with a medium or larger sample size. For the 194 

complex topology, MRPC performs consistently better than pc and mmhc. This is still the case 195 

when the signal strength is heterogeneous across the complex topology (see “Simulation under 196 

the complex topology with heterogeneous signal strengths” in Methods; Supplementary Fig. 5).  197 

Examination of inferred graphs from different methods shows that pc is unable to determine edge 198 

directions or wrongly identifies v-structures when the true model contains none (Fig. 3b; 199 

Supplementary Figs. 6, 7).  PMR-based methods, such as findr and cit, can infer too many or 200 

too few edges, whereas QPSO cannot identify the direction correctly.  In the presence of outliers, 201 

MRPC with robust correlation as input substantially outperforms pc and mmhc (Supplementary 202 

Fig. 8).   203 

 204 
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Existing PMR-based methods cannot deal with complex causal relationships. We examine 205 

the performance of PMR-based methods more closely in this section.  Since cit and findr focus 206 

on Model 1, the topologies they can identify are limited to those that involve primarily Model 1, 207 

such as the star graph and the layered graph: the star graph consists of four M1s, and the layered 208 

graph five (Fig. 2). For method comparison, we limited the true graphs to those that can be 209 

analyzed by findr or cit, specifically, M0, M1, M3, star and layered graphs for findr, and M1, star 210 

and layered graphs for cit (see “Application of findr and cit” in Methods).   211 

 212 

Unlike MRPC, which is agnostic about which genes may be potential regulators and which 213 

potential targets, findr and cit are applied to ordered gene pairs iteratively, requiring specification 214 

of which of the two genes is the potential regulator and which the target. For example, to test 215 

whether the data are simulated under M1, then findr and cit will be performed twice, on (V1, T1, 216 

T2) and then on (V1, T2, T1). The number of ordered gene pairs is 2 × = 20 for the star graph 217 

and 2 × = 42 for the layered graph. We applied Bonferroni correction with a familywise 218 

type I error rate of 0.05. Take again the star model with a sample size of 1000 for example, 219 

where we varied the signal strengths in simulation. Although Bonferroni correction is already a 220 

conservative method for multiple testing, findr still sometimes infers more edges than there are 221 

(summarized by the lower precision in Fig 3a, also see Supplementary Fig. 7), whereas cit may 222 

infer a very dense graph or no edges at all (summarized by low recall and low precision in Fig. 223 

3a; also see Fig. 3b and Supplementary Figs. 6, 7). 224 

 225 

Next, we investigated the performance of findr and cit when the graph skeleton is known, such 226 

that the number of tests is reduced to one on simple models (M0, M1 and M3), and to four in the 227 
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star graph and to five in the layered graph (Supplementary Fig. 9). In other words, potential 228 

regulators and targets are known to findr and cit. For MRPC we continued to assume that the 229 

skeleton was unknown. With known skeletons, both findr and cit performed similarly to, and in 230 

almost all the cases not better than MRPC.  The performance of cit can still be much worse than 231 

the other two when the signal strength is low or the sample size is small. 232 

   233 

We included QPSO in our comparison upon a reviewer’s request.  Unlike the other five methods 234 

discussed here, QPSO takes a graph skeleton as the input and seeks the optimal orientation of the 235 

edges, its performance therefore depending heavily on how well the skeleton is inferred.  236 

Whereas the authors of QPSO used pc to generate the skeleton, we used MRPC to generate the 237 

input, having observed the unsatisfactory performance of pc.  As a result, the accuracy of MRPC 238 

in identifying the skeleton gives QPSO an advantage in the performance evaluation over other 239 

methods.  A fair comparison is not to compare QPSO directly with all the other methods, but 240 

with MRPC alone.  This comparison again shows that QPSO is lacking both in recall and in 241 

precision (Fig. 3a).  Additionally, QPSO takes much longer time than all the other methods.  For 242 

example, the runtime is 21 minutes per data set with the complex topology, compared to 2.5 243 

seconds for MRPC, 0.2 seconds for mmhc, and 0.3 seconds for pc (Supplementary Table 3).  244 

We therefore calculated recall and precision only for 20 (instead of 1000) data sets in simulation 245 

for QPSO. 246 

 247 

Distinguishing direct and indirect targets of eQTLs. We next applied MRPC to two causal 248 

inference problems that are common in biology. First, we are interested in identifying true targets 249 

when a single SNP is statistically associated with the expression of multiple genes. Multiple 250 
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genes are potential targets often because these genes are physically close to one another on the 251 

genome, and the eQTL analysis usually examines the association between one SNP-gene pair at 252 

a time, ignoring dependence among genes. Indeed, among eQTLs identified from the 253 

GEUVADIS data18 (i.e., gene expression measured in lymphoblastoid cell lines, or LCLs, of a 254 

subset of individuals genotyped in the 1000 Genomes Project), 62 eQTLs discovered under the 255 

most stringent criteria have more than one associated gene (see “Analysis of the GEUVADIS 256 

data” in Methods). We applied MRPC to each of these eQTLs and their associated genes in the 257 

373 Europeans, and identified 11 types of topologies (Fig. 4; Supplementary Table 4; also see 258 

comparison with mmhc and pc for some of the eQTL-gene sets in Supplementary Fig. 11). 259 

Three of these 11 types are Models 1, 3 and 4 shown in Fig. 1a. Seven other topologies are 260 

identified for eight eQTLs each with three associated genes (Supplementary Table 4).  261 

 262 

Although the multiple associated genes of the same eQTL are physically near one another, our 263 

method showed promise in teasing apart the different dependence (or regulatory relationships) 264 

among these genes. For example, the SNP rs479844 (chr11:65,784,486; GRCh38), one of the 62 265 

eQTLs, turns out to be significant in at least three GWASs for atopic march and more 266 

specifically, atopic dermatitis (p values ranging from 10-10 to 10-18)20, 35-37. This SNP has been 267 

linked with two genes, AP5B1 (chr11:65,775,893-65,780,802) and OVOL1 (chr11:65,787,022-268 

65,797,219), in these GWASs, but it is unclear which is the real target.  Our MRPC infers Model 269 

1 for the triplet: rs479844→OVOL1→AP5B1 (Fig. 4a), which suggests that OVOL1 is more 270 

likely to be the direct target, and AP5B1 the indirect one. Meanwhile, for HLA-DQA1 271 

(chr6:32,637,403-32,654,846) and HLA-DQB1 (chr6:32,659,464-32,666,689), both genes are 272 

associated with the SNP rs9274660 and located in the major histocompatibility (MHC) region of 273 
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high linkage disequilibrium. As expected, MRPC infers an undirected edge between the two 274 

genes, as the information on the two genes is highly symmetric in the genotype and gene 275 

expression data. By contrast, mmhc and pc often misspecify edges or their directions 276 

(Supplementary Fig. 11). We focused on the European sample in this analysis, as the sample 277 

size of the Africans is small (89). However, we managed to replicate part of the topologies for 278 

the few eQTLs discovered in both populations (see “Analysis of the GEUVADIS data” in 279 

Methods). 280 

 281 

Since the GTEx consortium19 contains data also from LCLs, we next examined whether the 282 

causal relationships inferred from the GEUVADIS data may be replicated in the LCL samples 283 

from GTEx (see “Analysis of the GTEx data” in Methods). The sample size of 117 is much 284 

smaller in GTEx, though, which reduces the expected number of causal relationships to be 285 

replicated. We therefore focus on eQTL-gene sets that were inferred to have an M1 model in 286 

GEUVADIS by MRPC. We ran MRPC, findr and cit on the 16 eQTL-gene sets with an M1 287 

model that have the genotype and gene expression data in both GEUVADIS and GTEx LCL 288 

samples. findr replicated 9 sets, MRPC 8 and cit only 1 (Supplementary Table 5). This result is 289 

consistent with simulation results (Fig. 3a): whether the graph skeleton is known or not, MRPC 290 

and findr have similar performance on M1 across different sample sizes and signal strengths, 291 

both much better than cit. In particular, we replicated the relationship 292 

rs479844→OVOL1→AP5B1 with both MRPC and findr in the GTEx LCL samples. 293 

 294 

Construction of a causal network for frequently altered cancer genes. In the second 295 

application, we applied MRPC to the genomic data of breast cancer patients from the TCGA 296 
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consortium38 (see “Analysis of the TCGA breast cancer data” in Methods), aiming to learn the 297 

causal gene regulatory network for frequently altered genes in breast cancer; that is, genes with 298 

point mutations, differential expression and different copy number in a large percentage of 299 

patients39. Although these genes have been shown in our previous work to form a dense network 300 

of epistasis and are known to be involved in many pathways known to play an important role in 301 

cancer (e.g., DNA damage repair pathways40, kinase signaling pathways41, and so on)39, how 302 

these genes regulate one another transcriptionally remains unclear. 303 

 304 

Copy number variation usually has a much stronger effect on gene expression than SNPs do in 305 

breast cancer42. We therefore used the copy number variation as the genotype, and gene 306 

expression as the molecular phenotype. Similar to an earlier investigation39, we extracted 85 307 

frequently altered genes (e.g., BRCA1, BRCA2, TP53, etc.) in breast cancer and their copy 308 

number variation data. We calculated the Pearson correlation matrix (Fig. 5a), and applied 309 

MRPC at FDR=0.05 (Fig. 5b), and subsequently at 0.01, 0.10 and 0.15. The inferred graphs 310 

appeared reasonably stable: each graph contains around 200 edges; when the FDR changes by 311 

0.05, the number of edges inferred differently tends to be around 10, which is roughly 1/20 of all 312 

the edges (Fig. 5c; Supplementary Figs. 12-14); this is consistent with the change of 0.05 in 313 

FDR, as this rate implies that on average roughly 5% of all the edges are likely to be false 314 

positives and therefore would not be consistently inferred at another FDR. In other words, most 315 

of the edges are inferred reliably across different FDR levels.  316 

 317 

We searched through literature for evidence supporting the inferred directed edges here 318 

(Supplementary Table 6).  Existing literature is rich on the undirected relationships among 319 
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genes, but scarce on directed ones. Among 49 directed edges inferred here, we found literature 320 

support for only seven directed relationships inferred here (including one edge with the reference 321 

indicating an opposite direction), and for undirected relationships of 14 inferred gene pairs 322 

(Supplementary Table 6). Considering the thousands of pairwise relationships that may exist 323 

among these genes, the causal graph we have inferred here provides a list of plausible regulatory 324 

relationships and helps prioritize which genes to perform knockdown experiments on. 325 

 326 

In the graph inferred at FDR=5%, one gene (MAML2) has three targets (NFIB, MET, and 327 

PIK3R1), followed by nine genes (ATM, CANT1, ELK4, ERCC4, IL6ST, KMT2C, KMT2E, 328 

MAP3K1, and MET) with two targets, 31 genes with one target, and 44 without targets (Fig. 5b). 329 

We then applied WGCNA43 to help visualize the inferred graphs through grouping nodes into 330 

modules. We experimented with several module sizes, and in the end divided the graph into 331 

modules with at least seven nodes (including four genes) per module, such that all the visibly 332 

large clusters of nodes were represented (Fig. 5b; Supplementary Fig. 15; Supplementary 333 

Table 7). Genes have higher connectivity within the module than with other modules, although 334 

most modules have edges connecting one another, consistent with the notion that multiple 335 

biological pathways are involved, and possibly interacting in cancer39 (Fig. 5b). We ran gene 336 

ontology (GO) enrichment analysis44 on the genes in each module (excluding the grey nodes, 337 

which are not allocated to any module). Except for the green module, which contains only four 338 

genes, each module is significantly associated with distinct biological processes or PANTHER 339 

pathways45, suggesting that the causal network we learned has a structure consistent with the 340 

underlying biological functions (Fig. 5b; Supplementary Tables 8, 9). 341 

 342 
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Additionally, our causal inference distinguishes “direct” from “indirect” correlation. For example, 343 

following hierarchical clustering, the correlation heatmap indicates that NF1, ERCC4, and 344 

TRIP11 have higher correlation with one another and are therefore clustered together (Fig. 5a). 345 

However, no edge connects NF1 and ERCC4 at any of the FDRs we examined (Fig. 5b; 346 

Supplementary Figs. 12-14). A closer look at the conditional independence tests showed that 347 

the strong correlation between these two genes is explained away by TRIP11, BRCA1 and the 348 

copy number variation of NF1 (p value: 3e-6; the significance threshold by LOND method: 5e-7). 349 

In other words, the correlation between NF1 and ERCC4 is indirect: it is induced by association 350 

with three other nodes. Indeed, there is no interaction between NF1 and ERCC4 in the literature 351 

to the best of our knowledge. Instead, NF1 has been shown to interact with the KMT2 family40, 352 

also shown in our inferred network (Fig. 5b), whereas the DNA repair gene ERCC4 is recently 353 

shown to be involved in the translesion DNA synthesis together with TRIP11 and other genes46, 354 

consistent with the edge between these two genes in our inferred network (Fig. 5b).  355 

 356 

Discussion 357 

In summary, we have developed MRPC to infer causal networks, which can be an NP-complete 358 

problem (see “Properties of MRPC” in Methods).  Our MRPC method examines a variety of 359 

causal relationships implied by the PMR, and takes advantage of the development of machine 360 

learning algorithms for causal graph inference. MPRC integrates genotypes with molecular 361 

phenotypes, and can efficiently and accurately learn causal networks. Our method is flexible as it 362 

requires only the genotype data (SNPs or other types of variants; see “Multiple genetic variants 363 

of the same phenotype” in Methods) and the molecular phenotype measurements (gene 364 

expression, or other functional data, such as exon expression, RNA editing, DNA methylation, 365 
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etc.), and can be applied to a wide range of causal inference problems. Our method is also 366 

nonparametric in that no explicit distributions are assumed for the underlying graph. MRPC uses 367 

individual-level genomic data to learn plausible biological mechanisms from combining 368 

genotype and molecular phenotypes.   369 

 370 

The key improvements in MRPC over existing methods are i) implementation of the online FDR 371 

control method (the LOND method), which helps reduce false positives.  As our simulation 372 

demonstrated, false positive edges are a severe problem in other methods, whether they are based 373 

on the PMR or not; and ii) accounting for all possible causal relationships a triplet with a genetic 374 

variant can have under the PMR.  This extended interpretation of the PMR allows MRPC to go 375 

beyond the typical “causal model” examined by other PMR-based methods and can deal with 376 

networks of realistic causal relationships.  Computationally, incorporation of the PMR puts 377 

constraints on the space of possible graphs and allows for efficient search of graphs consistent 378 

with the data (see “MRPC and other PMR-based methods” in Methods).  379 

 380 

Here, we demonstrated the outstanding performance of MRPC on small to moderately-sized 381 

graphs.  Additional work is needed to extend the ability of MRPC to larger graphs.  For example, 382 

median precision of 90% in simulation (Fig. 3a) translates to the actual FDR being 10%, above 383 

the expected level of 5%.  We also applied MRPC to the directed networks of 1000 genes and 384 

1000 genetic variants simulated in the DREAM5 Systems Genetics Challenge A47, with FDR 385 

being 30% (see “Analysis of the DREAM5 Systems Genetic Challenge A data” in Methods; 386 

Supplementary Table 10).  With a sample size of 999, our MRPC identified only 19% of 2048 387 

true edges, although precision is 67%, meaning that the actual FDR is 33%, comparable to the 388 
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expected threshold of 30%.   By contrast, the TRANSWESD method48 (published after the 389 

challenge and showed better performance than the best participating method for this challenge) 390 

recovered 68% of the true edges, but had low precision of only 34%% (mmhc, the second best 391 

performing method compared in this paper, has a similar issue).  This suggests that although 392 

controlling the FDR to certain extent, the LOND method can discard too many true positives.   393 

 394 

Like most causal graph learning methods, a key assumption behind MRPC is that there are no 395 

hidden nodes that are connected to the observed nodes in the graph. Whereas this assumption 396 

may not hold in biology, we can take additional measures to alleviate the impact of hidden nodes. 397 

For example, genes are often grouped in clusters that tend to have higher correlation within the 398 

cluster. Our method can be applied to genes within a gene cluster to build the detailed causal 399 

network. As the next step, we are working on extensions of MRPC to deal with hidden variables7, 400 

26. The current version of MRPC has already demonstrated its power in tackling several 401 

biological problems on causality and in integrating large amounts of genomic data. 402 
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 512 

 513 

METHODS 514 

Conditional independence tests based on partial correlations.  We use the same method (and 515 

R functions) as that used in the R package pcalg26 for conducting conditional independence tests 516 

based on partial correlations.  Consider testing conditional independence between variables  517 

and  conditioned on a set of variables .  From the correlation matrix, one may estimate the 518 

partial correlations using an iterative approach26.  Then application of Fisher’s z transformation 519 

gives the test statistic  520 

= − | | − 32 log 1 + ̂ , |1 − ̂ , | , 
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which follows N(0,1) under the null hypothesis of conditional independence49.  In the expression 521 

above, ̂ , |  is the estimated partial correlation,  the sample size, and | |  the number of 522 

variables in the set . 523 

 524 

Calculation of robust correlation. We implemented the method in Badsha et al.31 to calculate 525 

the robust correlation matrix as the input to the MRPC inference. Specifically, for data that are 526 

approximately normal (usually after preprocessing of the data), we calculated iteratively the 527 

robust mean vector  and the robust covariance matrix  until convergence. At the t+1st iteration, 528 

 = ∑ [ ( ; , ) ]∑ ( ; , )                  (1) 529 

and 530 

 = ∑ [ ( ; , )( )( ) ]( ) ∑ ( ; , ) ,               (2) 531 

where, 532 

 ( ; , ) = − ( − ) ( − ) .                                       (3) 533 

In the equations above,  is the vector of gene expression in the ith sample, n the sample size, 534 

and  the tuning parameter. Equation (3) downweighs the outliers through , which takes values 535 

in [0,1]. Larger  leads to smaller weights on the outliers. When = 0, equation (2) is similar to 536 

the standard definition of the variance, except that the scalar is 1/n, whereas the unbiased 537 

estimator of the variance has a scalar of 1/(n-1). When the data matrix contains missing values, 538 

we perform imputation using the R package mice50. Alternatively, one may impute the data using 539 

other appropriate methods, and calculate the correlation matrix as the input for MRPC. 540 

 541 
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When analyzing simulated data with no outliers, we set = 0 , which is close to Pearson 542 

correlation.  We set = 0.005 if outliers were included in simulation.  On real data, we would 543 

usually perform two analyses with = 0 and = 0.005.  These two values did not lead to 544 

different results in most cases.  See details in “Analysis of the GEUVADIS data” in Methods, 545 

which refers to Supplementary Figures 16-18. 546 

 547 

Sequential FDR control. We implemented the LOND algorithm that control FDR in an online 548 

manner, as we did not know the number of tests beforehand in learning the causal graph.  549 

Specifically, consider a sequence of null hypotheses (marginal or conditional independence 550 

between two molecular phenotypes) ( ) = , , , … , , with corresponding p-values 551 ( ) = , , , … , . The LOND algorithm aims to determine a sequence of significance 552 

level , such that the decision for the ith test is  553 

 = 1,											if  ≤ 	 																					(reject )	0,											if  >                    (accept ).                                                                    554 

The number of rejections over  tests is then 555 

 ( ) = ∑ .                  556 

For the overall FDR to be , the significance level  is set to be  557 

 = ( ) + 1 ,                                                       558 

where the FDR for the ith test is  559 

 = ,                                                            560 

such that  561 

 ∑ = ,                  562 
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for integer >1 and a constant c. We choose a nonnegative sequence , such that ∑ =563 .	 The default value for  is set to 2 in MRPC. At an FDR of 0.05 and = 2, we have 564 

 ∑ = ∑ = ∑ = = 0.05.                                        565 

Then 566 

 = ∗ . = 0.0304.                                                                  567 

Values of  and  for the first 18 tests of analysis of a simulated data set are listed in an 568 

example given in Supplementary Table 11.  The larger  is, the more conservative the LOND 569 

method, which means that fewer rejections will be made.  We therefore used = 2 throughout 570 

simulation and real data analyses.  Simulation results in the Results section show that this choice 571 

of  works reasonably well for small and moderately-sized networks, although it can lead to 572 

exclusion of many true edges in large networks (see “Analysis of the DREAM5 Systems Genetic 573 

Challenge A data” in Methods). 574 

 575 

Multiple genetic variants of the same phenotype.  MRPC currently does not directly deal with 576 

multiple genetic variants associated with the same molecular phenotype.  For network inference, 577 

we recommend using the variant with the strongest association, or merging the multiple variants 578 

to create a haplotype variant with the haplotypes being the new genotypes (e.g., two SNPs in 579 

linkage disequilibrium, each having three genotypes, can be merged into one variant with 580 

genotypes 00, 01, 02, 10, 11, 12, 20, 21, and 22). 581 

 582 

Generating simulated data. We generated synthetic data for a variety of graphs, which fall into 583 

three categories depending on the complexity (Fig. 2a): i) basic topologies of a triplet; ii) 584 

topologies common in biological networks: star (i.e., one molecular phenotype has multiple 585 
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targets); multi-parent (i.e., one molecular phenotype has multiple regulators apart from the 586 

genetic variants); and layered; and iii) a complex topology.   587 

 588 

In each topology, we simulated the data first for the nodes without parents, and then for other 589 

nodes. Genetic variants are nodes without parents, and we assume them to be biallelic SNPs with 590 

three genotypes 0, 1, and 2. Denote the minor allele frequency by  and assume Hardy-Weinberg 591 

equilibrium. Then the genotype of the ith variant,  , follows a multinomial distribution: 592 

 Pr( = 0) = (1 − ) , Pr( = 1) = 2 (1 − ), Pr( = 2) = .                                593 

Denote the jth molecular phenotype by  and the set of its parent nodes by Ρ, which may be 594 

empty, or may include variant nodes or nodes of other molecular phenotypes. We assume that 595 

the molecular phenotype  follows a normal distribution 596 

 ∼ + ∑ ∈ + ∑ ∈ , .            597 

The variance may be different for different nodes. For simplicity, we use the same value for all 598 

the nodes. 599 

 600 

We treat undirected edges as bidirected edges and interpret such an edge as an average of the two 601 

directions with equal weights. For example, for the undirected edge in Model 4 in Fig. 1a, we 602 

generate data for T1→T2: 603 

 ∼ 	 + , ;	 ∼ 	 + + , ,                     604 

and separately for T1←T2:   605 

 ∼ 	 + + , 	 ; 		 ∼ 	 + ,			 .                    606 

We then randomly choose a pair of values with 50:50 probability for each sample. 607 

 608 
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For simplicity in simulation, we set = 0 and all the other ′s to take the same value, which 609 

reflects the strength of the association signal. We considered three values for the slopes: 0.2 610 

(weak signal), 0.5 (moderate signal), and 1.0 (strong signal). We also varied the sample size: 50 611 

(very small), 200 (small), 500 (medium), and 1000 (large). Thus, we considered twelve 612 

combinations of signal strength and sample size (Supplementary Figs. 3, 4; Supplementary 613 

Tables 1, 2).   614 

 615 

Under each combination, we generated 1000 data sets for each topology. For each data set, we 616 

shuffled the columns corresponding to gene expression to generate one data set with those 617 

columns reordered; if an inference method is sensitive to the ordering of the columns, the 618 

inferred graph would have a large variance across data sets. We then applied each method to a 619 

data set with permuted columns. To summarize the results, we computed the mean and standard 620 

deviation of recall and precision (see “Recall and precision” in Methods) across 1000 data sets 621 

for each method, and displayed the mean as the bar and the standard deviation as the error bar in 622 

the horizontal bar plots (Supplementary Figs. 3, 4).  The median of recall and precision of each 623 

method across all topologies and all parameter settings are displayed in Fig. 3a.  We also 624 

summarize the median standard deviation of recall and precision in Supplementary Fig. 16.  625 

Note that the standard deviation in recall and precision reflects variation due to both different 626 

data sets and different node orderings.  Except for QPSO, the methods under comparison do not 627 

differ much in variation.  QPSO had a larger variation because only 20 data sets were used for 628 

assessing the performance (due to long runtime). 629 

 630 
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Simulation under the complex topology with heterogeneous signal strengths.  The simulation 631 

strategy described above assumes the same signal strength (value of , the coefficient of the 632 

parent node) across the network, which allows us to examine the performance of the methods in 633 

simple and well-controlled settings.  For the complex strategy, we further allowed the values of  634 

to vary when generating data for each node.  Each  has equal probability of taking on one of 635 

three values: 0.2, 0.5 and 1.0.  Similar to the procedure described above, we also generated 1000 636 

data sets with this strategy, applied relevant methods, and computed recall and precision. 637 

 638 

Recall and precision. Under the standard definition: 639 

Recall = (# edges correctly identified in inferred graph) / (# edges in true graph); 640 

Precision = (# edges correctly identified in inferred graph) / (# edges in inferred graph). 641 

However, we consider it more important to be able to identify the presence of an edge than to 642 

also get the direct correct.  Therefore, we assign 1 to an edge with the correct direction and 0.5 to 643 

an edge with the wrong direction or no direction.  For example, when the true graph is 644 

V→T1→T2 with 2 true edges, and the inferred graphs are i) V→T1→T2, and V→T2; ii) 645 

V→T1−T2; and iii) V→T1←T2, the number of correctly identified edges is then 2, 1.5 and 1.5, 646 

respectively.  Recall is calculated to be 2/2=100%, 1.5/2=75%, and 1.5/2=75%, respectively, 647 

whereas precision is 2/3=67%, 1.5/2=75%, and 1.5/2=75%, respectively.   648 

 649 

When analyzing the complex topology in simulation, which involves correlated genetic variants, 650 

we ignored the edges among genetic variants in the calculation of recall and precision, since 651 

mmhc and pc are not designed to infer the relationships among genetic variants correctly.  findr 652 

and cit are not applicable to this topology, and QPSO requires the graph skeleton as the input, 653 
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with the graph skeleton already specifying the relationship among genetic variants and between 654 

variants and their associated genes. 655 

 656 

Application of findr and cit.  Unlike mmhc and pc that learn the graph skeleton first and orient 657 

the edges next, findr and cit test for directed edges in a single step for a triplet of nodes (the 658 

genetic variant and two gene expression nodes). This means that in order to learn the topology, 659 

we needed to examine all possible gene pairs (e.g., T1 and T2; and T2 and T1) and then apply 660 

findr or cit to the triplet of each of the gene pairs and the genetic variant. Based on the hypothesis 661 

testing result from findr or cit, if there was evidence for a directed edge between two nodes, we 662 

added 1 to the current value in the adjacency matrix for those two nodes. Otherwise we left the 663 

value unchanged. After examining all gene pairs, we converted all positive values in the 664 

adjacency matrix to 1 to represent a directed edge. This way, no edges inferred would be 665 

eliminated in later tests. We then calculated the aSHD between the inferred adjacency matrix and 666 

that of the true graph, and averaged the aSHDs across simulated data sets. 667 

 668 

Although findr aims to compute a causality probability for a triplet, its current implementation 669 

for this calculation cannot be applied to small graphs, or cases where multiple genes share the 670 

same eQTL and where some of the genes do not have eQTLs. We therefore used the function 671 

findr.pijs_gassist_pv() from the R package findr to conduct five hypothesis tests (the p values 672 

from these five tests are then converted to a causality probability) for each ordered gene pair with 673 

the genetic variant. Consider a triplet V1, T1 and T2.  The null (H0) and alternative (Ha) 674 

hypotheses of these five tests are:   675 

Test #1: H0: V1 and T1 independent; Ha: V1→T1; 676 
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Test #2: H0: V1 and T2 independent; Ha: V1→T2; 677 

Test #3: H0 (M1): V1→T1→T2; Ha: V1→T1, V1→T2, T1→T2; 678 

Test #4: H0 (M0): V1→T1, both independent of T2; Ha: V1→T1, V1→T2, T1→T2; 679 

Test #5: H0 (M3): V1→T1, V1→T2; Ha: V1→T1, V1→T2, T1→T2. 680 

We extract the p values (i.e., , = 1, … , 5) for the five tests. The data supports M0, if  is less 681 

than, and  and  greater than a certain threshold. The data supports M1, if  is less than, and 682 

 greater than a certain threshold. The data supports M3, if  and  are less than, and  683 

greater than a certain threshold. We determine the p value threshold with Bonferroni correction, 684 

dividing the unadjusted p value 0.05 by 5 , where  is the total number of genes pairs, because 685 

each findr test contains five tests.  686 

 687 

cit generates an omnibus p value for testing whether the triplet follows M1. We used the function 688 

cit.cp() from the R package cit for calculation of the omnibus p value. Similarly, we determine 689 

the p value threshold also with Bonferroni correction (unadjusted p value 0.05 divided by the 690 

total number of genes pairs).  691 

 692 

Analysis of the GEUVADIS data. The GEUVADIS project  693 

(http://www.ebi.ac.uk/Tools/geuvadis-das/) performed RNA-seq (gene expression) on 373 694 

Europeans and 89 Africans from the 1000 Genomes Project. The GEUVADIS project combined 695 

the gene expression data with the genotype data, and identified eQTLs across the human genome. 696 

Among the most stringent set of eQTLs, 62 have more than one target gene. We extracted the 697 

genotypes of these eQTLs and the expression of the target genes in the 373 Europeans, and 698 

applied MRPC to each eQTL with its target genes.   699 
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 700 

The SNP rs479844, which has GWAS significance, is identified in the European sample to be 701 

the best eQTL for genes OVOL1 and AP5B1. However, this SNP is not identified to be the 702 

eQTL of any gene in the African sample. No eQTLs are reported for these two genes in the 703 

African sample. When we further examined the correlation matrices (Supplementary Figure 17) 704 

between the SNP genotype and expression of the two genes from the two samples, they have 705 

qualitative differences: whereas the eQTL has a much stronger correlation with OVOL1 than 706 

with AP5B1 in Europeans, it is the reverse in Africans. However, these differences are likely due 707 

to the small sample size of the African sample. We therefore do not seek to replicate with the 708 

African sample the topology we identified in the European sample. 709 

 710 

Also because of the small sample size of the African sample, eQTLs and genes identified to have 711 

eQTLs are very different in the two populations. In order to examine whether it is possible at all 712 

to replicate the causal network inference from the European sample, we focused on the five top 713 

eQTLs identified in both samples: namely, esv2658282, esv2676246, rs11305802, rs230326, and 714 

rs7663027. The pairwise correlation matrices (Supplementary Figure 18) for each eQTL in the 715 

two samples are largely similar. However, due to the difference in the sample size, the topology 716 

inferred from the African sample is usually part (Supplementary Figure 19) of that from the 717 

European sample. 718 

 719 

Analysis of the GTEx data.  The GTEx consortium has profiled genotypes and gene expression 720 

levels in 53 tissues across 714 donors (Release V7, dbGaP Accession phs000424.v7.p2; 721 

https://www.gtexportal.org/home/). We extracted the gene expression data of the LCLs, and the 722 
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genotype data of the eQTLs used in the GEUVADIS analysis. Since GTEx uses chromosome 723 

locations to identify genetic variants, we extracted the coordinates of the GEUVADIS eQTLs in 724 

Ensemble (GRCh 37; https://grch37.ensembl.org/index.html) using the rs IDs. Not all 725 

GEUVADIS eQTLs can be found in the GTEx samples. Among eQTLs that can be found in the 726 

GTEx samples, not all their associated genes have expression measurements. In the end, we 727 

found 40 eQTL-gene sets with data available in both GEUVADIS and GTEx LCLs 728 

(Supplementary Table 4). For each of these sets, we ran MRPC with an FDR of 0.05, and 729 

summarized the results in Supplementary Table 4. For those sets that were inferred to have an 730 

M1 model by MRPC in GEUVADIS, we also ran function findr.pijs_gassist_pv() from the R 731 

package findr, and function cit.cp() from the R package cit on each set to test whether there is a 732 

causal model as in V1→T1→T2 or V1→T2→T1 (Supplementary Table 5). 733 

 734 

The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the 735 

Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, 736 

NIMH, and NINDS. The gene expression data used for the analyses described here were 737 

obtained from the GTEx Portal (https://www.gtexportal.org/home/datasets; 738 

GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_tpm.gct.gz) on 10/24/2017, the 739 

genotype data were available through dbGaP accession number phs000424.v7. 740 

 741 

Analysis of the TCGA breast cancer data. We used the frequently altered genes identified 742 

earlier39 for this analysis. We downloaded the copy number variation, expression and 743 

methylation data for these genes from cBioPortal (http://www.cbioportal.org/), which provides 744 

processed and normalized data. We also downloaded the clinical data of the breast cancer 745 
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patients from the TCGA website (https://cancergenome.nih.gov/). Using the clinical data, we 746 

selected 566 patients that were ER+, were identified as white, and also had genetic and 747 

molecular data, for our analysis. 748 

 749 

Adjusted Structural Hamming Distance (aSHD). The SHD, as is implemented in the R 750 

package pcalg26 and bnlearn25, counts how many differences exist between two directed graphs. 751 

This distance is 1 if an edge exists in one graph but missing in the other, or if the direction of an 752 

edge is different in the two graphs. The larger this distance, the more different the two graphs are. 753 

Similar to our approach to recall and precision (see “Recall and precision” in Methods), we 754 

adjusted the SHD to reduce the penalty on the wrong direction of an edge to 0.5. For example, 755 

between two graphs V→T1←T2 and V→T1→T2, the SHD is 1 and our aSHD is 0.5. By contrast, 756 

between graphs V→T1←T2 and V→T1, T2 (no edge between T1 and T2, or between V and T2), 757 

both the SHD and aSHD are 1. Therefore, our adjustment penalizes the wrong direction less than 758 

the wrong inference of the edge. 759 

 760 

Properties of MRPC.  A causal graph with a mixture of directed and undirected edges is 761 

essentially an equivalent class of directed acyclic graphs (DAGs) that have the same likelihood.  762 

However, the search problem of learning the DAG with the highest likelihood when the number 763 

of parent nodes is greater than 1 has been proven to be NP-complete51, the hardest computational 764 

problem.  Learning even just the equivalent classes of a DAG with the number of parent nodes 765 

being greater than 1 is also NP-complete52, as the space of equivalent classes of DAGs is super-766 

exponential49 in the number of nodes.  Therefore, the PC algorithm and similar algorithms get 767 

around the computational issue with local searches.  Although it is not known theoretically that 768 
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these PC algorithms achieve the global optimality defined by, for example, the likelihood, it has 769 

been shown that the PC algorithm is consistent49: with a large sample size, the PC algorithm is 770 

expected to recover the true graph.  In particular, consistency of the PC algorithm is essentially 771 

consistency of the step of graph skeleton inference, as this step contains all the statistical 772 

inference53.  Since MRPC uses essentially the same procedure for skeleton inference as the PC 773 

algorithm, MRPC is also consistent. 774 

 775 

MRPC and other PMR-based methods.  Although our MRPC employs the PMR, it is 776 

fundamentally different from other PMR-based methods. Most of the methods incorporating the 777 

PMR fall into two classes.  One class, including cit and findr, is called mediation-based methods 778 

that require individual-level data, generally do not estimate the causal effect sizes, and can infer 779 

networks of multiple phenotypes (e.g., a network of gene expression).  The other class of 780 

methods are called MR methods22 that can be applied to individual-level data as well as summary 781 

statistics, estimate the causal effect sizes, and generally focus on three-node graphs with one 782 

node being the genetic variant, and the other two nodes being phenotypes of interest.  Both 783 

classes of methods employ the PMR and focus on the “causal model”, in which exposure acts as 784 

the mediator.  Although our MRPC method is closer to the mediation-based methods according 785 

to the characteristics described above, the notion of “mediation” is less relevant to our method; 786 

only Model 1 considers the “causal model”, and therefore one of the two genes acts as the 787 

mediator (Fig. 1a).  More importantly, with our method we consider the PMR as a way to define 788 

plausible causal relationships and to put constraints on the space of possible graphs.  As a result, 789 

our method can recover a variety of causal relationships, instead of the few that other PMR-790 

based methods can identify (Fig. 2b). 791 
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 792 

Analysis of the DREAM5 Systems Genetic Challenge A data.  This challenge 793 

(https://www.synapse.org/#!Synapse:syn2820440/wiki/) provided gene expression and genotype 794 

data simulated for 1000 genes in five different directed networks for each of three sample sizes 795 

(100, 300 and 999).  We focused on networks labeled ‘net1’ of each sample size.  These three 796 

networks each contain around 2000 directed edges between gene expression.  We applied MRPC 797 

to these three data sets.  We ran MRPC with FDR=0.3 and TRANSWESD48 with default 798 

parameters.  True positives (1 for an edge with the correct direction, and 0.5 for an edge not with 799 

the correct direction), false positives, recall and precision are summarized in Supplementary 800 

Table 10.  We set the FDR to be 0.3 for MRPC because results from TRANSWESD had a high 801 

FDR of 64-84%.  Setting a low FDR in MRPC also led to fewer edges to be recovered.  For the 802 

data set with the largest sample size (999), we also ran mmhc, since mmhc has the second best 803 

performance in our simulation, and summarized the statistics in this table. 804 

 805 

Code availability.  MRPC is implemented in an R package (v1.0.0) at 806 

https://github.com/audreyqyfu/mrpc/releases. 807 

 808 

49. Kalisch M, Bühlmann P. Estimating high-dimensional directed acyclic graphs with the 809 
PC-algorithm. J Mach Learn Res 8, 613-636 (2007). 810 

 811 
50. van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate imputation by chained 812 

equations in R. J. Stat. Softw. 45, 67 (2011). 813 
 814 
51. Hoffgen K. Learning and robust learning of product distributions. Technical Report 464, 815 

Fachbereich Informatik, Universitat Dortmund (1993). 816 
 817 
52. Chickering DM. Learning Bayesian networks is NP-complete. In: Fisher D, Lenz HJ (eds) 818 

Learning from Data Lecture Notes in Statistics, vol 112 Springer, New York, NY, 121-130 819 
(1996). 820 
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 842 

 843 

Figure 1: Five basic topologies under the principal of Mendelian randomization and the 844 

MRPC algorithm. (a) Each topology involves three nodes: a genetic variant (V1), and two 845 

molecular phenotypes (T1 and T2). Directed edges indicate direction of causality, and undirected 846 

edges indicate that the direction is undetermined (or equivalently, both directions are equally 847 

likely). For each topology (or model), a scatterplot between the two phenotypes is generated 848 

using simulated data, the topology is shown, and the marginal and conditional dependence 849 

relationships are given. M0 is the null model where T1 and T2 are marginally independent, and 850 

therefore the scatterplot does not show correlation. All the other models show scatterplots with 851 

similar levels of correlation. Our MRPC can distinguish the non-null models despite similar 852 

correlation. (b) The MRPC algorithm consists of two steps (see details in Supplementary Figs 1 853 
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and 2).  In Step I, it starts with a fully connected graph shown in (1), and learns a graph skeleton 854 

shown in (2), whose edges are present in the final graph but are undirected.  In Step II, it orients 855 

the edges in the skeleton in the following order: edges involving at least one genetic variants (3), 856 

edges in a v-structure (if v-structures exist) (4), and remaining edges, for which MRPC 857 

iteratively forms a triplet and checks which of the five basic models under the PMR is consistent 858 

with the triplet (5). If none of the basic models matches the triplet, the edge is left unoriented 859 

(shown as bidirected). 860 

 861 

 862 

 863 

 864 
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 866 

Figure 2: Comparison of MRPC with other methods on simulated data.  (a) Topologies used 867 

to generate synthetic data (see “Generating simulated data” in Methods). (b) Table summarizing 868 

graphs to which each method under comparison is applicable.  *Note that QPSO does not learn 869 

the causal graph from scratch.  Instead, it takes a graph skeleton as the input and seeks the 870 

optimal orientation of the edges in this undirected network.  Edges involving genetic variants 871 

need to be already oriented in the skeleton.  Therefore, QPSO does not identify M0 or M3. 872 

 873 
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Figure 3: Results of method comparison on simulated data.  (a) Median recall and precision 875 

over all parameter settings.  For each of the topologies in Fig. 2a, 1000 datasets were generated 876 

for three different signal strengths ( , which is the coefficient of parent nodes in the linear model; 877 

see Methods for simulation details) and four different sample sizes (n). Each of the six methods 878 

was applied where possible and the recall and precision were calculated for the inferred graph 879 

relative to the truth.  The median of all the mean recall (or precision) is used as a metric of the 880 

overall performance of the method. Note that only 20 datasets were used for QPSO in each 881 

parameter setting due to long runtime. (b) An example of inferred graphs from all six methods 882 

on data simulated under a star model with a large sample size (n =1000) and strong signal 883 

( = 1.0). 884 

 885 

 886 

 887 

 888 

 889 
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 890 

Figure 4: MRPC distinguishes direct and indirect target genes of eQTLs in the GEUVADIS 891 

data for the European cohort. (a) rs479844 is a GWAS significant SNP for atopic march in the 892 

GWAS Catalog, and an eQTL identified in GEUVADIS for two genes. (b) MRPC learns 11 893 

distinct topologies among associated genes for eQTLs.  The number in parentheses are the 894 
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number of eQTL-gene sets with the corresponding inferred topology. 895 

 896 

 897 
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 898 

Figure 5: MRPC learns a causal regulatory network for frequently altered cancer genes 899 

using the TCGA breast cancer data. (a) Pearson correlation heatmap for the 85 genes with 900 

hierarchical clustering in rows and columns. (b) The causal network inferred at FDR of 5% by 901 
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MRPC. Modules were identified by WGCNA, such that each non-grey module contains at least 902 

seven nodes and four genes. Grey nodes were not assigned to any module. For each module, the 903 

box with the corresponding color contains the top GO biological processes and PANTHER 904 

pathways (if exist) enriched for the module, with p values in parentheses (complete results in 905 

Supplementary Tables 8, 9). (c) Distances between networks inferred by MRPC at different 906 

values of FDR. The square indicates the FDR with the total number of edges in parentheses, and 907 

the numbers on the lines are the adjusted Structural Hamming Distance (aSHD) between two 908 

graphs (see “Adjusted Structural Hamming Distance (aSHD)” in Methods). These numbers 909 

demonstrate the stability of the MRPC inference; see main text for detail. 910 
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