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Abstract 

Although large amounts of genomic data are available, it remains a challenge to reliably infer 

causal (i.e., regulatory) relationships among molecular phenotypes (such as gene expression), 

especially when many phenotypes are involved. We extend the interpretation of the Principle of 

Mendelian randomization (PMR) and present MRPC, a novel machine learning algorithm that 

incorporates the PMR in classical algorithms for learning causal graphs in computer science. 

MRPC learns a causal biological network efficiently and robustly from integrating genotype and 

molecular phenotype data, in which directed edges indicate causal directions. We demonstrate 

through simulation that MRPC outperforms existing general-purpose network inference methods 

and other PMR-based methods. We apply MRPC to distinguish direct and indirect targets among 

multiple genes associated with expression quantitative trait loci.  
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Introduction 

Whereas experiments (e.g., temporal transcription or protein expression assays, gene knockouts or 

knockdowns) have been conducted to understand the causal relationships among genes1,2, or 

between an expression quantitative trait loci (eQTL) and its direct and indirect target genes3, it 

remains a challenge to learn causality directly from genomic data. It is even harder to learn (i.e., 

infer) a causal network, which may represent which genes regulate which other genes.  We address 

this problem in this paper.  Correlation (or association) is often used as a proxy of a potentially 

causal relationship, but similar levels of correlation can arise from different causal mechanisms 

(Models 1-4 in Fig. 1a). For example, between two genes with correlated expression levels, it is 

plausible that one gene regulates the other gene (Models 1 and 2 in Fig. 1a); it is also plausible 

that they do not regulate each other directly, but both are regulated by a common genetic variant 

(Model 3 in Fig. 1a).    

 

Correlation between the expression, or any molecular phenotype, of two genes is symmetrical – 

we cannot infer which of the two genes is the regulator and which the target. However, if a genetic 

variant (e.g., a SNP) is significantly associated with the expression of one of the two genes, then 

we may assign a directed edge from the variant to the gene, as it is reasonable to assume that the 

genotype causes changes in the phenotype (expression), not the other way around. This additional, 

directed edge breaks the symmetry between the two genes, and makes it possible to infer the causal 

direction (e.g., compare Models 1 and 2 in Fig. 1a). This is the rationale behind the Principle of 

Mendelian Randomization (PMR). The randomization principle in experimental design (e.g., 

clinical trials) is critical in establishing causality: only when subjects are randomly assigned to 

different exposures is it possible to draw causal connections between exposure and outcome.  As 
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a randomization principle, the PMR assumes that the alleles of a genetic variant are randomly 

assigned to individuals in a population, analogous to a natural perturbation experiment and 

therefore achieving the goal of randomization4. The PMR has been widely used in epidemiology 

studies, where genetic variants are used as instrumental variables to facilitate the estimate of causal 

effect between a mediator (or exposure, such as gene expression) and an outcome (e.g., a disease 

phenotype4). It received increasing attention in genetics in recent years5-17 

 

Large consortia, such as the GEUVADIS consortium18 and subsequently the GTEx consortium19, 

have established the widespread genetic variation (i.e. eQTLs) in human genome that may 

regulate gene expression, making PMR-based methods increasingly relevant and important for 

understanding interactions among genes.  Furthermore, genome-wide association studies 

(GWASs) have identified a large number of genetic variants that are potentially causal to 

diseases20.  Understanding the roles of these GWAS-significant variants is key to understanding 

the mechanisms underlying diseases. Interestingly, likely half of the GWAS-significant variants 

genetic variants are eQTLs21.  As it becomes more common nowadays to collect gene expression 

data in disease studies6,11, studying eQTLs (which may also be GWAS-significant SNPs) and 

their associated genes provides a powerful approach for a deeper understanding of diseases. 

 

However, existing methods adopting the PMR (e.g. the mediation-based methods12,13, and the MR 

methods22) are not directly applicable to inference of a causal network of gene expression. This is 

because these methods typically examine the graph of V1→T1→T2 (i.e., Model 1 in Fig. 1a), where 

V1 is the genetic variant, T1 may represent gene expression, and T2 a clinical trait. This graph, 

called the “causal model” by existing PMR-based methods, is sensible when T2 is a potential 
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outcome of T1. However, when we examine relationships among gene expression or other 

molecular phenotypes, it is usually not known beforehand which of T1 and T2 is more likely to be 

the outcome of the other, and Model 1 alone does not have the flexibility of examining other 

possibilities. As a result, these methods are limited in the causal relationships they can recover. In 

this paper, we generalize the interpretation of the PMR to account for a variety of causal 

relationships. 

 

On the other hand, in machine learning, a class of algorithms, such as those based on the classic 

PC algorithm23-27, have been developed in over a decade to efficiently learn causal graphs for a 

large number of nodes. These algorithms typically consist of two main steps (Fig. 1b): i) inferring 

the graph skeleton through a series of statistical independence tests. The graph skeleton is the same 

as the final graph except that the edges are undirected; and ii) determining the direction of the 

edges in the skeleton. Variants of the original PC algorithm have been developed to reduce the 

impact of the ordering of the nodes on inference (e.g., the R package pcalg26,27), or to reduce the 

number of statistical tests needed for inferring the skeleton (e.g., the R package bnlearn24,25).  

 

Here we develop a new method, namely MRPC, which incorporates the PMR into PC algorithms 

and learns a causal graph where the nodes are genetic variants and molecular phenotypes (such as 

gene expression), and where the edges between nodes are undirected or directed, with the direction 

indicating causality. Crucially, by combining the PMR with machine learning, our method is 

efficient and accurate. Our extended interpretation of the PMR can be thought of as a way of 

introducing useful constraints in graph learning and effectively reducing the search space of 

topologies. We demonstrated the performance of MRPC on simulated and real data.   
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Methods 

An extended interpretation of the Principle of Mendelian Randomization (PMR). We 

extended the interpretation of the PMR to consider five causal relationships in a triplet of a genetic 

variant and two phenotypes, including the “causal model” (Fig. 1a). Under the assumption that 

genotype influences phenotype and not the other way around, these five models are mutually 

exclusive and encompass all possibilities, with Model 0 being the null model where the two 

phenotype nodes are not related, and the other four models being non-null models. As mentioned 

in the Introduction, Model 1 (V1→T1→T2) is typically referred to as the causal model under 

standard use of the PMR with T1 being the exposure (e.g., gene expression) and T2 being the 

outcome (e.g., clinical phenotype). cit12,28 and findr13, two existing PMR-based methods for 

example, both focus on testing Model 1. 

However, Model 1 is limited. Among other possible causal relationships, Model 2 (V1→T1←T2) 

defines a v-structure where both edges point to the same node. This model is suitable when no 

genetic variant is available for T2 in the data. Model 3 (V1→T1 and V1→T2) captures the scenario 

where T1 and T2 are not directly related, but both regulated by V1. The current interpretation of the 

PMR in other methods typically rejects these two models in search of the “causal” model (Model 

1). However, under our interpretation of the PMR, Models 2 and 3 describe alternative regulatory 

mechanisms between two genes, and therefore should also be allowed when constructing the 

network of molecular phenotypes. Model 4 (V1→T1; V1→T2; T1-T2) refers to the case where the 

two phenotypes T1 and T2 have additional dependence (represented by the undirected edge) on top 

of that induced by the sharing genetic variant. We consider undirected and bidirected edges to be 

equivalent for simplicity, in that an undirected edge can be thought of as representing two equally 

likely directions, namely M5 (V1→T1; V1→T2; T1→T2) and M6 (V1→T1; V1→T2; T1←T2).  M5 
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and M6 are indistinguishable in terms of their dependence relationships (i.e., they are Markov 

equivalent29): all pairs of nodes can be marginally dependent and conditionally dependent given 

the remaining node. It is plausible that a hidden variable regulates both T1 and T2, although we 

currently do not consider hidden variables in our inference. 

 

MRPC, a novel causal network learning algorithm.  Our method, namely MRPC, is a novel 

causal network inference method for genomic data (Fig. 1b; Supplementary Figs. 1, 2). This 

method analyzes a data matrix with each row being an individual, and each column a genetic 

variant or a molecular phenotype. Our method also consists of the two main steps as described 

above. The first step of learning the graph skeleton is similar to that of other PC algorithms, but 

with an online control of the false discovery rate (FDR), which is explained in detail below. We 

incorporated the PMR in the second step of edge orientation (Fig. 1b; Supplementary Fig. 2), 

which involves three scenarios: i) MRPC first identify edges involving the genetic variants and 

orient these edges to point to the molecular phenotype; ii) MRPC then looks for three nodes with 

a potential v-structure (e.g., Model 2 in Fig. 1a, or among three molecular phenotypes, 

T1→T2←T3). MRPC conducts additional conditional independence tests if no such test has been 

performed in the first step; and iii) among the remaining edges, MRPC iteratively finds node 

triplets with only one undirected edge. It examines the results from the independence tests from 

the first step to identify which of the five basic topologies is consistent with the test results for this 

triplet. In MRPC, we use Fisher’s z transformation for Pearson correlation in all the marginal tests 

and for the partial correlation in all the conditional tests, consistent with the default method in 

pcalg (Appendix A.1). However, other parametric or nonparametric tests for marginal and 

conditional independence tests may be performed in place of Fisher’s z transformation test.   
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Existing network inference algorithms (such as those implemented in R packages pcalg and 

bnlearn) control the type I error rate for each individual statistical test, but not the family-wise 

error rate (FWER) or the FDR, as most methods controlling both the FWER and FDR require the 

knowledge of the total number of tests, which is not known in advance in graph learning. Lack of 

correction for multiple comparison often leads to too many false edges in the inferred graph, 

especially when the graph is large (see our simulation results below). We implemented in MRPC 

the LOND (Levels based on Number of Discoveries) method for controlling the FDR in an online 

manner30 (Appendix A.2). The LOND method estimates the expected FDR conditioned on the 

number of tests performed so far and the number of rejections from these tests. 

 

Furthermore, genomic data may contain outliers31, which can greatly distort the inferred graph (see 

our simulation results below). Like pcalg, MRPC uses the correlation matrix, rather than the 

individual-feature matrix, as input. We implemented in MRPC a method for calculating the robust 

correlation matrix31 (Appendix A.3) in place of Pearson correlation to alleviate the impact of 

outliers if they are present. 

 

Results 

MRPC outperforms existing network inference algorithms and PMR-based methods on 

synthetic data in overall accuracy. We compared MRPC with two popular network inference 

algorithms: the pc method (implemented in pcalg) and the mmhc method (implemented in bnlearn), 

and three PMR-based methods, namely cit, findr and QPSO32. Except for QPSO, which is 

implemented in MATLAB, all the methods are implemented in R. We simulated data using linear 

models for the five basic topologies, three common topologies in biology33,34 (such as multi-parent, 
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star, and layered graphs), as well as a complex topology with over 20 nodes (Fig. 2). We varied 

the sample size, as well as the signal strength through the coefficients in the linear models 

(Appendix A.4). 

 

For each topology, we generated 1000 data sets with different combinations of signal strength 

and sample size, and ran each method with their default parameters.  Specifically, we ran MRPC 

with FDR=0.05, Pearson correlation (! = 0; see Appendix A.2) and the LOND method ($ = 2; 

see Appendix A.3).  We ran mmhc and pc with the type I error rate being the default value of 

0.05.  We explained the procedures for running other PMR-based methods in the next section.   

 

We compared the recall and precision (Appendix A.5) across methods (Fig. 3a, Supplementary 

Tables 1, 2, Supplementary Fig. 3). Recall (i.e., power, or sensitivity) measures how many edges 

from the true graph a method can recover, whereas precisions (i.e., 1-FDR) measures how many 

correct edges are recovered in the inferred graph. Across different topologies and parameter 

settings, MRPC has the highest median recall and precision, with both median recall and median 

precision above 80%.  MRPC is followed by mmhc, QPSO, pc with two parameter settings, findr, 

with cit trailing far behind (Fig. 3a). MRPC recovers the true graph particularly well at moderate 

or stronger signal with a medium or larger sample size. For the complex topology, MRPC performs 

consistently better than pc and mmhc. This is still the case when the signal strength is 

heterogeneous across the complex topology (Appendix A.6; Supplementary Fig. 4).  

Examination of inferred graphs from different methods shows that pc is unable to determine edge 

directions or wrongly identifies v-structures when the true model contains none (Fig. 3b; 

Supplementary Figs. 5, 6).  PMR-based methods, such as findr and cit, can infer too many or too 
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few edges, whereas QPSO cannot identify the direction correctly. In the presence of outliers, 

MRPC with robust correlation as input substantially outperforms pc and mmhc (Supplementary 

Fig. 7).   

 

Existing PMR-based methods cannot deal with complex causal relationships. We examine the 

performance of PMR-based methods more closely in this section. Since cit and findr focus on 

Model 1, the topologies they can identify are limited to those that involve primarily Model 1, such 

as the star graph and the layered graph: the star graph consists of four M1s, and the layered graph 

five (Fig. 2b). For method comparison, we limited the true graphs to those that can be analyzed 

by findr or cit, specifically, M0, M1, M3, star and layered graphs for findr, and M1, star and layered 

graphs for cit (Fig. 2b; Appendix A.7).   

 

Unlike MRPC, which is agnostic about which genes may be potential regulators and which 

potential targets, findr and cit are applied to ordered gene pairs iteratively, requiring specification 

of which of the two genes is the potential regulator and which the target. For example, to test 

whether the data are simulated under M1, then findr and cit will be performed twice, on (V1, T1, 

T2) and then on (V1, T2, T1). The number of ordered gene pairs is 2× '
( = 20 for the star graph 

and 2× )
( = 42 for the layered graph. We applied Bonferroni correction with a familywise type 

I error rate of 0.05. Take again the star model with a sample size of 1000 for example, where we 

varied the signal strengths in simulation. Although Bonferroni correction is already a conservative 

method for multiple testing, findr still sometimes infers more edges than there are (summarized by 

the lower precision in Fig 3a), whereas cit may infer a very dense graph or no edges at all 

(summarized by low recall and low precision in Fig. 3a; also see examples in Fig. 3b and 
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Supplementary Figs. 5, 6). Even when the graph skeleton is known, findr and cit still did not 

outperform MRPC in nearly all cases (Supplementary Figs. 8, 9). 

 

Similar to MRPC, QPSO also has connections to PC-like algorithms.  However, QPSO does not 

infer a graph skeleton. Instead, it requires a graph skeleton as the input and seeks the optimal 

orientation of the edges, its performance therefore depending heavily on how well the skeleton is 

inferred. Whereas the authors of QPSO used pc to generate the skeleton, we used MRPC to 

generate the input, having observed the unsatisfactory performance of pc. With a more accurate 

skeleton, QPSO is still lacking both in recall and in precision (Fig. 3a). Additionally, QPSO is at 

least an order of magnitude slower than other methods (Supplementary Table 3). We therefore 

calculated recall and precision only for 20 (instead of 1000) data sets in simulation for QPSO. 

 

Application of MRPC to distinguishing direct and indirect targets of eQTLs. We are 

interested in identifying true targets when a single SNP is statistically associated with the 

expression of multiple genes. Multiple genes are potential targets often because these genes are 

physically close to one another on the genome, and the eQTL analysis usually examines the 

association between one SNP-gene pair at a time, ignoring dependence among genes. Indeed, 

among eQTLs identified from the GEUVADIS data18 (i.e., gene expression measured in 

lymphoblastoid cell lines, or LCLs, of a subset of individuals genotyped in the 1000 Genomes 

Project), 62 eQTLs discovered under the most stringent criteria have more than one associated 

gene (Appendix A.8). We applied MRPC to each of these eQTLs and their associated genes in the 

373 Europeans, and identified 11 types of topologies (Fig. 4; Supplementary Table 4; also see 

comparison with mmhc and pc for some of the eQTL-gene sets in Supplementary Fig. 10). Three 
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of these 11 types are Models 1, 3 and 4 shown in Fig. 1a. Seven other topologies are identified for 

eight eQTLs each with three associated genes (Supplementary Table 4).  

 

Although the multiple associated genes of the same eQTL are physically near one another, our 

method showed promise in teasing apart the different dependence (or regulatory relationships) 

among these genes. For example, the SNP rs479844 (chr11:65,784,486; GRCh38), one of the 62 

eQTLs, turns out to be significant in at least three GWASs for atopic march and more specifically, 

atopic dermatitis (p values ranging from 10-10 to 10-18)20, 35-37. This SNP has been linked with two 

genes, AP5B1 (chr11:65,775,893-65,780,802) and OVOL1 (chr11:65,787,022-65,797,219), in 

these GWASs, but it is unclear which is the real target.  Our MRPC infers Model 1 for the triplet: 

rs479844→OVOL1→AP5B1 (Fig. 4a), which suggests that OVOL1 is more likely to be the direct 

target, and AP5B1 the indirect one. Meanwhile, for HLA-DQA1 (chr6:32,637,403-32,654,846) 

and HLA-DQB1 (chr6:32,659,464-32,666,689), both genes are associated with the SNP 

rs9274660 and located in the major histocompatibility (MHC) region of high linkage 

disequilibrium. As expected, MRPC infers an undirected edge between the two genes, as the 

information on the two genes is highly symmetric in the genotype and gene expression data. By 

contrast, mmhc and pc often misspecify edges or their directions (Supplementary Fig. 10). We 

focused on the European sample in this analysis, as the sample size of the Africans is small (89). 

However, we managed to replicate part of the topologies for the few eQTLs discovered in both 

populations (Appendix A.8). 

 

Since the GTEx consortium19 contains data also from LCLs, we next examined whether the causal 

relationships inferred from the GEUVADIS data may be replicated in the LCL samples from GTEx 
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(Appendix A.9). The sample size of 117 is much smaller in GTEx, though, which reduces the 

expected number of causal relationships to be replicated. We therefore focus on eQTL-gene sets 

that were inferred to have an M1 model in GEUVADIS by MRPC. We ran MRPC, findr and cit 

on the 16 eQTL-gene sets with an M1 model that have the genotype and gene expression data in 

both GEUVADIS and GTEx LCL samples. findr replicated 9 sets, MRPC 8 and cit only 1 

(Supplementary Table 5). This result is consistent with simulation results (Fig. 3a): whether the 

graph skeleton is known or not, MRPC and findr have similar performance on M1 across different 

sample sizes and signal strengths, both much better than cit. In particular, we replicated the 

relationship rs479844→OVOL1→AP5B1 with both MRPC and findr in the GTEx LCL samples. 

 

Discussion 

In summary, we have developed MRPC to infer causal networks, which can be an NP-complete 

problem (Appendix A.10).  Our MRPC method examines a variety of causal relationships implied 

by the PMR, and takes advantage of the development of machine learning algorithms for causal 

graph inference. MPRC integrates genotypes with molecular phenotypes, and can efficiently and 

accurately learn causal networks. Our method is flexible as it requires only the genotype data 

(SNPs or other types of variants; see Appendix A.11) and the molecular phenotype measurements 

(gene expression, or other functional data, such as exon expression, RNA editing, DNA 

methylation, etc.), and can be applied to a wide range of causal inference problems. Our method 

is also nonparametric in that no explicit distributions are assumed for the underlying graph. MRPC 

uses individual-level genomic data to learn plausible biological mechanisms from combining 

genotype and molecular phenotypes.   
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The key improvements in MRPC over existing methods are i) implementation of the online FDR 

control method (the LOND method), which helps reduce false positives. As our simulation 

demonstrated, false positive edges are a severe problem in other methods, whether they are based 

on the PMR or not; and ii) accounting for all possible causal relationships a triplet with a genetic 

variant can have under the PMR. This extended interpretation of the PMR allows MRPC to go 

beyond the typical “causal model” examined by other PMR-based methods and can deal with 

networks of realistic causal relationships. Computationally, incorporation of the PMR puts 

constraints on the space of possible graphs and allows for efficient search of graphs consistent with 

the data (Appendix A.12).  

 

Here, we demonstrated the outstanding performance of MRPC on small to moderately-sized 

graphs. Additional work is needed to extend the ability of MRPC to larger graphs while retaining 

inference accuracy. Indeed, apart from mmhc and pc, other existing methods for inferring large 

causal graphs also tend to have high false positive rates: for example, the TRANSWESD method 

developed for the DREAM5 Systems Genetics Challenge A (a network of 1000 SNPs and 1000 

genes with directed and undirected edges) showed better performance than other participating 

method for this challenge. However, even TRANSWESD has an actual FDR as high as 64% at a 

large sample size of 99948, suggesting that much work is still needed to accurately infer a large 

causal graph.  

 

Our current model behind MRPC also does not account for additional noise in measurements.  By 

calculating correlation and performing statistical tests based on correlation, we account for 

variation in gene expression, which contains both (true) stochasticity in expression and 
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measurement error.  For future development, we will consider additional measurement errors that 

lead to systematic bias in the data22. 

 

Like most causal graph learning methods, a key assumption behind MRPC is that there are no 

hidden or confounding nodes that are connected to the observed nodes in the graph. As the next 

step, we are working on extensions of MRPC to account for confounding variables.  In our 

application here, the effect of confounding variable is alleviated as we focus on genes that have 

been identified to be strongly associated with the eQTL.   

 

 

Appendix A 

A.1 Conditional independence tests based on partial correlations.  We use the same method 

(and R functions) as that used in the R package pcalg26 for conducting conditional independence 

tests based on partial correlations. Consider testing conditional independence between variables + 

and , conditioned on a set of variables -.  From the correlation matrix, one may estimate the partial 

correlations using an iterative approach26. Then application of Fisher’s z transformation gives the 

test statistic  

. =
/ − - − 3

2 log
1 + 78,:|<
1 − 78,:|<

, 

which follows N(0,1) under the null hypothesis of conditional independence49. In the expression 

above, 78,:|< is the estimated partial correlation, / the sample size, and -  the number of variables 

in the set -. 
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A.2 Sequential FDR control. We implemented the LOND algorithm that control FDR in an online 

manner, as we did not know the number of tests beforehand in learning the causal graph.  

Specifically, consider a sequence of null hypotheses (marginal or conditional independence 

between two molecular phenotypes) = > = =?,=(, =@, … , =B , with corresponding p-values 

C > = C?, C(, C@, … , CB . The LOND algorithm aims to determine a sequence of significance 

level DE, such that the decision for the ith test is  

 FE =
1,											if  CE≤ 	DE																					(reject =E)
	0,											if  CE> DE                   (accept =E)

.                                                                    

The number of rejections over > tests is then 

 I B = FEB
EJ? .                  

For the overall FDR to be K, the significance level DE is set to be  

 DE = KE I EL? + 1 ,                                                       

where the FDR for the ith test is  

 KE =
M
EN

,                                                            

such that  

 KEO
EJ? = K,                  

for integer $>1 and a constant c. We choose a nonnegative sequence KE, such that KEO
EJ? = PIF.	 

The default value for $ is set to 2 in MRPC. At an FDR of 0.05 and $ = 2, we have 

	 KEO
EJ? = M

ER
O
EJ? = S ?

ER
O
EJ? = TUR

V
= 0.05.																												 	 	 	 								 

Then 

 S = V∗Y.Y'
UR

= 0.0304.                                                                  

Values of KE and DE for the first 18 tests of analysis of a simulated data set are listed in an example 

given in Supplementary Table 6. The larger $ is, the more conservative the LOND method, 
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which means that fewer rejections will be made. We therefore used $ = 2 throughout simulation 

and real data analyses. Simulation results in the Results section show that this choice of $ works 

reasonably well for small and moderately-sized networks. 

 

A.3 Calculation of robust correlation. We implemented the method in Badsha et al.31 to calculate 

the robust correlation matrix as the input to the MRPC inference. Specifically, for data that are 

approximately normal (usually after preprocessing of the data), we calculated iteratively the robust 

mean vector Z and the robust covariance matrix [ until convergence. At the t+1st iteration, 

	 Z\]? =
[_` ab;Zd,[d

e
bfg ab]

_` ab;Zd,[de
bfg

		 	 	 	 	 	 	 	 								(1)	

and 

	 [\]? =
[_` ab;Zd,[d abLZd abLZd i]e

bfg
?]j kg _` ab;Zd,[de

bfg
,		 	 	 	 	 	 								(2)	

where, 

	 lj a; Z, [ = m+C −j
(
a − Z n[L? a − Z .			 	 	 																																		(3)	

In the equations above, aE is the vector of gene expression in the ith sample, n the sample size, and 

! the tuning parameter. Equation (3) downweighs the outliers through !, which takes values in 

[0,1]. Larger ! leads to smaller weights on the outliers. When ! = 0, equation (2) is similar to the 

standard definition of the variance, except that the scalar is 1/n, whereas the unbiased estimator of 

the variance has a scalar of 1/(n-1). When the data matrix contains missing values, we perform 

imputation using the R package mice50. Alternatively, one may impute the data using other 

appropriate methods, and calculate the correlation matrix as the input for MRPC. 
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When analyzing simulated data with no outliers, we set ! = 0 , which is close to Pearson 

correlation. We set ! = 0.005 if outliers were included in simulation.  On real data, we would 

usually perform two analyses with ! = 0  and ! = 0.005 . These two values did not lead to 

different results in most cases.  See details in Appendix A.8, which refers to Supplementary Figs. 

11-13. 

 

A.4 Generating simulated data. We generated synthetic data for a variety of graphs, which fall 

into three categories depending on the complexity (Fig. 2a): i) basic topologies of a triplet; ii) 

topologies common in biological networks: star (i.e., one molecular phenotype has multiple 

targets); multi-parent (i.e., one molecular phenotype has multiple regulators apart from the genetic 

variants); and layered; and iii) a complex topology.   

 

In each topology, we simulated the data first for the nodes without parents, and then for other 

nodes. Genetic variants are nodes without parents, and we assume them to be biallelic SNPs with 

three genotypes 0, 1, and 2. Denote the minor allele frequency by o and assume Hardy-Weinberg 

equilibrium. Then the genotype of the ith variant, pE , follows a multinomial distribution: 

 Pr pE = 0 = (1 − o)(, Pr pE = 1 = 2o 1 − o , Pr pE = 2 = o(.																															 

Denote the jth molecular phenotype by .t and the set of its parent nodes by R, which may be empty, 

or may include variant nodes or nodes of other molecular phenotypes. We assume that the 

molecular phenotype .t follows a normal distribution 

 .t ∼ v wY + wxpxx∈R + wz.zz∈R , {t( .            

The variance may be different for different nodes. For simplicity, we use the same value for all the 

nodes. 
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We treat undirected edges as bidirected edges and interpret such an edge as an average of the two 

directions with equal weights. For example, for the undirected edge in Model 4 in Fig. 1a, we 

generate data for T1→T2: 

 .? ∼ v wY	 + w?p, {?( ;	.( ∼ v wY	 + w?p + w(.?, {(( ,                     

and separately for T1←T2:   

 .? ∼ v wY	 + w?p + w(.(, {?(	 ; 		.( ∼ v wY	 + w?p,			{(( .                    

We then randomly choose a pair of values with 50:50 probability for each sample. 

 

For simplicity in simulation, we set wY = 0 and all the other w′s to take the same value, which 

reflects the strength of the association signal. We considered three values for the slopes: 0.2 (weak 

signal), 0.5 (moderate signal), and 1.0 (strong signal). We also varied the sample size: 50 (very 

small), 200 (small), 500 (medium), and 1000 (large). Thus, we considered twelve combinations of 

signal strength and sample size (Supplementary Tables 1, 2).   

 

Under each combination, we generated 1000 data sets for each topology. For each data set, we 

shuffled the columns corresponding to gene expression to generate one data set with those columns 

reordered; if an inference method is sensitive to the ordering of the columns, the inferred graph 

would have a large variance across data sets. We then applied each method to a data set with 

permuted columns. To summarize the results, we computed the mean and standard deviation of 

recall and precision (Appendix A.5) across 1000 data sets for each method.  The median of recall 

and precision of each method across all topologies and all parameter settings are displayed in Fig. 

3a.  We also summarize the median standard deviation of recall and precision in Supplementary 

Fig. 3.  Note that the standard deviation in recall and precision reflects variation due to both 
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different data sets and different node orderings.  Except for QPSO, the methods under comparison 

do not differ much in variation.  QPSO had a larger variation because only 20 data sets were used 

for assessing the performance (due to long runtime). 

 

A.5 Recall and precision. Under the standard definition: 

Recall = (# edges correctly identified in inferred graph) / (# edges in true graph); 

Precision = (# edges correctly identified in inferred graph) / (# edges in inferred graph). 

However, we consider it more important to be able to identify the presence of an edge than to also 

get the direct correct.  Therefore, we assign 1 to an edge with the correct direction and 0.5 to an 

edge with the wrong direction or no direction.  For example, when the true graph is V→T1→T2 

with 2 true edges, and the inferred graphs are i) V→T1→T2, and V→T2; ii) V→T1-T2; and iii) 

V→T1←T2, the number of correctly identified edges is then 2, 1.5 and 1.5, respectively.  Recall is 

calculated to be 2/2=100%, 1.5/2=75%, and 1.5/2=75%, respectively, whereas precision is 

2/3=67%, 1.5/2=75%, and 1.5/2=75%, respectively.   

 

When analyzing the complex topology in simulation, which involves correlated genetic variants, 

we ignored the edges among genetic variants in the calculation of recall and precision, since mmhc 

and pc are not designed to infer the relationships among genetic variants correctly. findr and cit 

are not applicable to this topology, and QPSO requires the graph skeleton as the input, with the 

graph skeleton already specifying the relationship among genetic variants and between variants 

and their associated genes. 
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A.6 Simulation under the complex topology with heterogeneous signal strengths.  The 

simulation strategy described above assumes the same signal strength (value of w, the coefficient 

of the parent node) across the network, which allows us to examine the performance of the methods 

in simple and well-controlled settings. For the complex strategy, we further allowed the values of 

w to vary when generating data for each node. Each w has equal probability of taking on one of 

three values: 0.2, 0.5 and 1.0. Similar to the procedure described above, we also generated 1000 

data sets with this strategy, applied relevant methods, and computed recall and precision. 

 

A.7 Application of findr and cit.  Unlike mmhc and pc that learn the graph skeleton first and 

orient the edges next, findr and cit test for directed edges in a single step for a triplet of nodes (the 

genetic variant and two gene expression nodes). This means that in order to learn the topology, we 

needed to examine all possible gene pairs (e.g., T1 and T2; and T2 and T1) and then apply findr or 

cit to the triplet of each of the gene pairs and the genetic variant. Based on the hypothesis testing 

result from findr or cit, if there was evidence for a directed edge between two nodes, we added 1 

to the current value in the adjacency matrix for those two nodes. Otherwise we left the value 

unchanged. After examining all gene pairs, we converted all positive values in the adjacency 

matrix to 1 to represent a directed edge. This way, no edges inferred would be eliminated in later 

tests. We then calculated recall and precision using the inferred adjacency matrix and that of the 

true graph, and averaged the rates across simulated data sets. 

 

Although findr aims to compute a causality probability for a triplet, its current implementation for 

this calculation cannot be applied to small graphs, or cases where multiple genes share the same 

eQTL and where some of the genes do not have eQTLs. We therefore used the function 
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findr.pijs_gassist_pv() from the R package findr to conduct five hypothesis tests (the p values from 

these five tests are then converted to a causality probability) for each ordered gene pair with the 

genetic variant. Consider a triplet V1, T1 and T2.  The null (H0) and alternative (Ha) hypotheses of 

these five tests are:   

Test #1: H0: V1 and T1 independent; Ha: V1→T1; 

Test #2: H0: V1 and T2 independent; Ha: V1→T2; 

Test #3: H0 (M1): V1→T1→T2; Ha: V1→T1, V1→T2, T1→T2; 

Test #4: H0 (M0): V1→T1, both independent of T2; Ha: V1→T1, V1→T2, T1→T2; 

Test #5: H0 (M3): V1→T1, V1→T2; Ha: V1→T1, V1→T2, T1→T2. 

We extract the p values (i.e., CE, } = 1,… , 5) for the five tests. The data supports M0, if C? is less 

than, and C( and C~ greater than a certain threshold. The data supports M1, if C? is less than, and 

C@ greater than a certain threshold. The data supports M3, if C? and C( are less than, and C' greater 

than a certain threshold. We determine the p value threshold with Bonferroni correction, dividing 

the unadjusted p value 0.05 by 5>, where > is the total number of genes pairs, because each findr 

test contains five tests.  

 

cit generates an omnibus p value for testing whether the triplet follows M1. We used the function 

cit.cp() from the R package cit for calculation of the omnibus p value. Similarly, we determine the 

p value threshold also with Bonferroni correction (unadjusted p value 0.05 divided by the total 

number of genes pairs).  

 

When the graph skeleton is known, the number of tests is reduced to one on simple models (M0, 

M1 and M3), and to four in the star graph and to five in the layered graph (Supplementary Figs. 
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8, 9). In other words, potential regulators and targets are known to findr and cit. For MRPC we 

continued to assume that the skeleton was unknown. With known skeletons, both findr and cit 

performed similarly to, and in almost all the cases not better than MRPC. The performance of cit 

can still be much worse than the other two when the signal strength is low or the sample size is 

small.   

 

A.8 Analysis of the GEUVADIS data. The GEUVADIS project  

(http://www.ebi.ac.uk/Tools/geuvadis-das/) performed RNA-seq (gene expression) on 373 

Europeans and 89 Africans from the 1000 Genomes Project. The GEUVADIS project combined 

the gene expression data with the genotype data, and identified eQTLs across the human genome. 

Among the most stringent set of eQTLs, 62 have more than one target gene. We extracted the 

genotypes of these eQTLs and the expression of the target genes in the 373 Europeans, and applied 

MRPC to each eQTL with its target genes.   

 

The SNP rs479844, which has GWAS significance, is identified in the European sample to be the 

best eQTL for genes OVOL1 and AP5B1. However, this SNP is not identified to be the eQTL of 

any gene in the African sample. No eQTLs are reported for these two genes in the African sample. 

When we further examined the correlation matrices (Supplementary Figure 11) between the SNP 

genotype and expression of the two genes from the two samples, they have qualitative differences: 

whereas the eQTL has a much stronger correlation with OVOL1 than with AP5B1 in Europeans, 

it is the reverse in Africans. However, these differences are likely due to the small sample size of 

the African sample. We therefore do not seek to replicate with the African sample the topology we 

identified in the European sample. 
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Also because of the small sample size of the African sample, eQTLs and genes identified to have 

eQTLs are very different in the two populations. In order to examine whether it is possible at all 

to replicate the causal network inference from the European sample, we focused on the five top 

eQTLs identified in both samples: namely, esv2658282, esv2676246, rs11305802, rs230326, and 

rs7663027. The pairwise correlation matrices (Supplementary Figure 12) for each eQTL in the 

two samples are largely similar. However, due to the difference in the sample size, the topology 

inferred from the African sample is usually part (Supplementary Figure 13) of that from the 

European sample. 

 

A.9 Analysis of the GTEx data.  The GTEx consortium has profiled genotypes and gene 

expression levels in 53 tissues across 714 donors (Release V7, dbGaP Accession 

phs000424.v7.p2; https://www.gtexportal.org/home/). We extracted the gene expression data of 

the LCLs, and the genotype data of the eQTLs used in the GEUVADIS analysis. Since GTEx 

uses chromosome locations to identify genetic variants, we extracted the coordinates of the 

GEUVADIS eQTLs in Ensemble (GRCh 37; https://grch37.ensembl.org/index.html) using the rs 

IDs. Not all GEUVADIS eQTLs can be found in the GTEx samples. Among eQTLs that can be 

found in the GTEx samples, not all their associated genes have expression measurements. In the 

end, we found 40 eQTL-gene sets with data available in both GEUVADIS and GTEx LCLs 

(Supplementary Table 4). For each of these sets, we ran MRPC with an FDR of 0.05, and 

summarized the results in Supplementary Table 4. For those sets that were inferred to have an 

M1 model by MRPC in GEUVADIS, we also ran function findr.pijs_gassist_pv() from the R 
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package findr, and function cit.cp() from the R package cit on each set to test whether there is a 

causal model as in V1→T1→T2 or V1→T2→T1 (Supplementary Table 5). 

 

The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the 

Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, 

NIMH, and NINDS. The gene expression data used for the analyses described here were 

obtained from the GTEx Portal (https://www.gtexportal.org/home/datasets; 

GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_tpm.gct.gz) on 10/24/2017, the 

genotype data were available through dbGaP accession number phs000424.v7. 

 

A.10 Properties of MRPC.  A causal graph with a mixture of directed and undirected edges is 

essentially an equivalent class of directed acyclic graphs (DAGs) that have the same likelihood.  

However, the search problem of learning the DAG with the highest likelihood when the number 

of parent nodes is greater than 1 has been proven to be NP-complete51, the hardest computational 

problem. Learning even just the equivalent classes of a DAG with the number of parent nodes 

being greater than 1 is also NP-complete52, as the space of equivalent classes of DAGs is super-

exponential49 in the number of nodes. Therefore, the PC algorithm and similar algorithms get 

around the computational issue with local searches.  Although it is not known theoretically that 

these PC algorithms achieve the global optimality defined by, for example, the likelihood, it has 

been shown that the PC algorithm is consistent49: with a large sample size, the PC algorithm is 

expected to recover the true graph. In particular, consistency of the PC algorithm is essentially 

consistency of the step of graph skeleton inference, as this step contains all the statistical 
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inference53.  Since MRPC uses essentially the same procedure for skeleton inference as the PC 

algorithm, MRPC is also consistent. 

 

A.11 Multiple genetic variants of the same phenotype.  MRPC currently does not directly deal 

with multiple genetic variants associated with the same molecular phenotype. For network 

inference, we recommend using the variant with the strongest association, or merging the multiple 

variants to create a haplotype variant with the haplotypes being the new genotypes (e.g., two SNPs 

in linkage disequilibrium, each having three genotypes, can be merged into one variant with 

genotypes 00, 01, 02, 10, 11, 12, 20, 21, and 22). 

 

A.12 MRPC and other PMR-based methods.  Although our MRPC employs the PMR, it is 

fundamentally different from other PMR-based methods. Most of the methods incorporating the 

PMR fall into two classes. One class, including cit and findr, is called mediation-based methods 

that require individual-level data, generally do not estimate the causal effect sizes, and can infer 

networks of multiple phenotypes (e.g., a network of gene expression). The other class of methods 

are called MR methods22 that can be applied to individual-level data as well as summary statistics, 

estimate the causal effect sizes, and generally focus on three-node graphs with one node being the 

genetic variant, and the other two nodes being phenotypes of interest.  Both classes of methods 

employ the PMR and focus on the “causal model”, in which exposure acts as the mediator.  

Although our MRPC method is closer to the mediation-based methods according to the 

characteristics described above, the notion of “mediation” is less relevant to our method; only 

Model 1 considers the “causal model”, and therefore one of the two genes acts as the mediator 

(Fig. 1a).  More importantly, with our method we consider the PMR as a way to define plausible 
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causal relationships and to put constraints on the space of possible graphs.  As a result, our method 

can recover a variety of causal relationships, instead of the few that other PMR-based methods can 

identify (Fig. 2b). 

Code availability.  MRPC is implemented in an R package (v1.0.0) at https://cran.r-

project.org/web/packages/MRPC/index.html. 
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Figure 1: Five basic topologies under the principal of Mendelian randomization and the 

MRPC algorithm. (a) Each topology involves three nodes: a genetic variant (V1), and two 

molecular phenotypes (T1 and T2). Directed edges indicate direction of causality, and undirected 

edges indicate that the direction is undetermined (or equivalently, both directions are equally 

likely). For each topology (or model), a scatterplot between the two phenotypes is generated using 

simulated data, the topology is shown, and the marginal and conditional dependence relationships 

are given. M0 is the null model where T1 and T2 are marginally independent, and therefore the 

scatterplot does not show correlation. All the other models show scatterplots with similar levels of 

correlation. Our MRPC can distinguish the non-null models despite similar correlation. (b) The 

MRPC algorithm consists of two steps (see details in Supplementary Figs 1 and 2).  In Step I, it 
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starts with a fully connected graph shown in (1), and learns a graph skeleton shown in (2), whose 

edges are present in the final graph but are undirected.  In Step II, it orients the edges in the skeleton 

in the following order: edges involving at least one genetic variants (3), edges in a v-structure (if 

v-structures exist) (4), and remaining edges, for which MRPC iteratively forms a triplet and checks 

which of the five basic models under the PMR is consistent with the triplet (5). If none of the basic 

models matches the triplet, the edge is left unoriented (shown as bidirected). 
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Figure 2: Comparison of MRPC with other methods on simulated data.  (a) Topologies used 

to generate synthetic data (Appendix A.4). (b) Table summarizing graphs to which each method 

under comparison is applicable.  *Note that QPSO does not learn the causal graph from scratch.  

Instead, it takes a graph skeleton as the input and seeks the optimal orientation of the edges in this 

undirected network.  Edges involving genetic variants need to be already oriented in the skeleton.  

Therefore, QPSO does not identify M0 or M3. 
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Figure 3: Results of method comparison on simulated data.  (a) Median recall and precision 

over all parameter settings.  For each of the topologies in Fig. 2a, 1000 datasets were generated 

for three different signal strengths (w, which is the coefficient of parent nodes in the linear model; 

see Methods for simulation details) and four different sample sizes (n). Each of the six methods 

was applied where possible and the recall and precision were calculated for the inferred graph 

relative to the truth.  The median of all the mean recall (or precision) is used as a metric of the 

overall performance of the method. We experimented with two settings of the pc function: the 

default (“PC”) and the conservative (“PCcons”).  Since the default setting outperforms the 

conservative one, we use only the default setting in other analyses.  Note that only 20 datasets were 

used for QPSO in each parameter setting due to long runtime. (b) An example of inferred graphs 

from all six methods on data simulated under a star model with a large sample size (n =1000) and 

strong signal (w = 1.0). 
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Figure 4: MRPC distinguishes direct and indirect target genes of eQTLs in the GEUVADIS 

data for the European cohort. (a) rs479844 is a GWAS significant SNP for atopic march in the 

GWAS Catalog, and an eQTL identified in GEUVADIS for two genes. (b) MRPC learns 11 

distinct topologies among associated genes for eQTLs.  Numbers on edges are probabilities of the 
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corresponding directed edge being present in a bootstrap sample of 200. The number in parentheses 

under each topology is the number of eQTL-gene sets with the corresponding inferred topology. 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2018. ; https://doi.org/10.1101/171348doi: bioRxiv preprint 

https://doi.org/10.1101/171348
http://creativecommons.org/licenses/by-nc/4.0/

