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Neural mechanisms for parallel evidence accumulation 2 

Abstract 
 
Decision-making is typically studied as a sequential process from the selection of what to attend 
(e.g., between possible tasks, stimuli, or stimulus attributes) to the selection of which actions to 
take based on the attended information. However, people often gather information across these 
levels in parallel. For instance, even as they choose their actions, they may continue to evaluate 
how much to attend other tasks or dimensions of information within a task. We scanned 
participants while they made such parallel evaluations, simultaneously weighing how much to 
attend two dynamic stimulus attributes and which response to give based on the attended 
information. Regions of prefrontal cortex tracked information about the stimulus attributes in 
dissociable ways, related to either the predicted reward (ventromedial prefrontal cortex) or the 
degree to which that attribute was being attended (dorsal anterior cingulate, dACC). Within 
dACC, adjacent regions tracked uncertainty at different levels of the decision, regarding what to 
attend versus how to respond. These findings bridge research on perceptual and value-based 
decision-making, demonstrating that people dynamically integrate information in parallel across 
different levels of decision making. 
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Neural mechanisms for parallel evidence accumulation 3 

Naturalistic decisions allow an individual to weigh their options within a particular task (e.g., 
how best to word the introduction to a paper) while also weighing how much to attend other 
tasks (e.g., responding to e-mails). These different types of decision-making have a hierarchical 
but reciprocal relationship: Decisions at higher levels inform the focus of attention at lower 
levels (e.g., whether to select between citations or email addresses) while, at the same time, 
information at lower levels (e.g., the salience of an incoming email) informs decisions regarding 
which task to attend. Critically, recent studies suggest that decisions across these levels may 
occur in parallel, continuously informed by information that is integrated from the environment 
and from one’s internal milieu1,2.  
 
Research on cognitive control and perceptual decision-making has examined how responses are 
selected when attentional targets are clearly defined (e.g., based on instruction to attend a 
stimulus dimension), including cases in which responding requires accumulating information 
regarding a noisy percept (e.g., evidence favoring a left or right response)3-7. Separate research 
on value-based decision-making has examined how individuals select which stimulus 
dimension(s) to attend in order to maximize their expected rewards8-11. However, it remains 
unclear how the accumulation of evidence to select high-level goals and/or attentional targets 
interacts with the simultaneous accumulation of evidence to select responses according to those 
goals (e.g., based on the perceptual properties of the stimuli). Recent work has highlighted the 
importance of such interactions to understanding task selection12-15, multi-attribute decision-
making16-18, foraging behavior19-21, cognitive effort22,23, and self-control24-27. 
 
While these interactions remain poorly understood, previous research has identified candidate 
neural mechanisms associated with multi-attribute value-based decision-making11,28,29 and with 
selecting a response based on noisy information from an instructed attentional target3-5. These 
research areas have implicated the ventromedial prefrontal cortex (vmPFC) in tracking the value 
of potential targets of attention (e.g., stimulus attributes)8,11 and the dorsal anterior cingulate 
cortex (dACC) in tracking an individual’s uncertainty regarding which response to select30-32. It 
has been further proposed that dACC may differentiate between uncertainty at each of these 
parallel levels of decision-making (e.g., at the level of task goals or strategies vs. specific motor 
actions), and that these may be separately encoded at different locations along the dACC’s 
rostrocaudal axis32,33. However, neural activity within and across these prefrontal regions has not 
yet been examined in a setting in which information is weighed at both levels within and across 
trials. 
 
Here we use a value-based perceptual decision-making task to examine how people integrate 
different dynamic sources of information to decide (a) which perceptual attribute to attend and 
(b) how to respond based on the evidence for that attribute. Participants performed a task in 
which they regularly faced a conflict between attending the stimulus attribute that offered the 
greater reward or the attribute that was more perceptually salient (akin to persevering in writing 
one’s paper when an enticing email awaits). We demonstrate that dACC and vmPFC track 
evidence for the two attributes in dissociable ways. Across these regions, vmPFC weighs 
attribute evidence by the reward it predicts and dACC weighs it by its attentional priority (i.e., 
the degree to which that attribute drives choice). Within dACC, adjacent regions differentiated 
between uncertainty at the two levels of the decision, regarding what to attend (rostral dACC) 
versus how to respond (caudal dACC). 
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Neural mechanisms for parallel evidence accumulation 4 

 
Results 
Participants were shown random dot kinematograms that varied along two dimensions, direction 
of dot motion (up or down) and the dominant dot color (blue or red) (Fig. 1)3,4. They gave a 
single response on each trial (left or right), which could be correct for neither, one, or both 
attributes (Fig. 1A). Participants were allowed to freely choose how much to rely on each 
attribute in selecting their response, and were rewarded for each attribute they responded to 
correctly. We independently varied the level of perceptual noise (i.e., the discriminability) of the 
two attributes across trials, such that motion or color information could be more salient on a 
given trial (Fig. 1B). Correct responses for the two attributes were either rewarded equally 
(Epoch 1) or one attribute was rewarded twice as much as the other (Epochs 2-3) (Fig. 1C), 
biasing attention towards the more rewarded attribute on a given block of trials. 
 

 
Figure 1. Behavioral paradigm. A) Participants viewed random dot motion patterns and could 
indicate whether the dots were primarily moving up or down and/or whether they were majority 
red or blue. They responded with either a left or right button press. Responses were bivalent, 
denoting both a color and a motion direction, and participants were rewarded based on the 
number of dimensions for which this response was correct. B) The coherence and correct 
response for motion and color dimensions were varied orthogonally across trials. Four 
participant-specific coherence levels were used for each attribute. *Response mappings and 
Epoch 2-3 reward associations were counter-balanced across participants. C) Participants 
performed three epochs (192 trials each) that varied in motion/color reward associations, either 
rewarding both equally (Epoch 1) or differently (Epochs 2-3). 

 
Effect of attribute evidence on choice 
To examine the influence of each stimulus attribute on choice, we entered the coherence of the 
two attributes into a mixed-effects logistic regression predicting choice on a given trial. Focusing 
first on the initial task epoch – during which the two attributes were rewarded equally – we 
found that, as expected, subjects’ choices were significantly influenced by the coherence of both 
motion (b = 1.5, SE = 0.11, z =13.7) and color (b = 0.9, SE = 0.09, z =10.1, ps < 0.0001). The 
more evidence provided by either attribute in favor of a given response, the more likely that 
response. Overall, choices were also more influenced by motion than color evidence in this 
initial (baseline) block (b = 0.39, SE = 0.11, t = 3.7, p < 0.001).  
 
In Epochs 2-3 of the session, correct responses for one attribute were more highly rewarded than 
the other (either motion or color, counter-balanced across segments and participants). During 
these epochs we found that subjects weighed their decisions much more heavily toward the more 
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rewarding attribute (b = 1.9, SE= 0.13, t =14.3) but the low reward attribute continued to exert a 
significant influence (b = 0.45, SE= 0.06, t = 7.8, ps < 0.0001; Fig. 2). RTs were also faster the 
more evidence supported the chosen response (high-reward: b = -0.34, SE = 0.03 t = -11.9; low-
reward: b = -0.05, SE = 0.01 t = -5.6, ps < 0.001). Effects of both high and low reward attributes 
on choices and RTs held irrespective of whether motion or color was more highly rewarded (ts > 
3.5, ps < 0.002).  
 

 
Figure 2. Behavioral sensitivity to attribute evidence and rewards. During Epochs 2-3, 
responses were highly sensitive to both evidence (coherence) and the relative reward for the two 
attributes. A) A psychometric curve shows that participants were much more likely to select a 
response the more evidence it provided for the high-reward attribute. B) Average regression 
coefficients for the influence of high and low reward coherence on choice. While high-reward 
attribute coherence exerted the strongest influence on responses, participants were still sensitive 
to the evidence supporting the low-reward attribute. Error bars reflect s.e.m. 

 
Dissociable correlates of attribute evidence in dACC and vmPFC 
Given their previous involvement in evidence integration for perceptual and/or value-based 
decisions, we tested the degree to which dACC and vmPFC tracked the perceptual evidence 
supporting the chosen response (e.g., if the left response was made on a given trial, this is the 
signed motion and color coherence level in support of the left response).  
 
Consistent with previous findings3,11,16,34,35, we found that vmPFC tracked how much total 
evidence was available for the chosen option (b = 0.05, SE = 0.01, tvmPFC = 3.7, p < 0.001) while 
dACC tracked how little evidence was available for that option (b = -0.07, SE = 0.01, tdACC = -
6.8, p < 0.001). Furthermore, consistent with previous studies of value-based integration of 
stimulus attributes11,16,36,37, we found that vmPFC encoded the evidence favoring the chosen 
option from both the higher reward attribute (b = 0.055, SE = 0.015, t = 3.7, p < 0.001) and the 
lower reward attribute (b = 0.03, SE = 0.01, t = 2.3, p < 0.03). The vmPFC’s relative encoding of 
evidence for these two attributes was in fact almost identical to the relative reward provided for a 
correct response along these attributes (vmPFC ratio: 1.99:1; actual ratio: 2:1) (Fig. 3B). This is 
particularly notable given that participants were not given trial-wise feedback about their 
performance. By contrast, dACC was primarily sensitive to the (inverse) evidence for the high-
reward attribute (b = -0.11, SE = 0.02, t = -7.3, p < 0.001) and exhibited a weaker and non-
significant trend for evidence of the low-reward attribute (b = -0.01, SE = 0.01, t = -1.6, p = 
0.13) (Fig. 3C).  
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Neural mechanisms for parallel evidence accumulation 6 

As explored further below, these findings tentatively suggest that vmPFC signals of attribute 
evidence scale with the expected reward for that attribute (compare Fig. 3B inset) whereas 
equivalent signals of attribute evidence in dACC scale with the influence that attribute has on the 
ultimate decision (and therefore how much attention was likely paid to that attribute prior to 
making a decision) (compare Fig. 3C inset). Accordingly, vmPFC activity was greater on trials 
where motion and color information supported the same response (b = 0.05, SE = 0.02, t = 2.5, p 
< 0.02) while dACC, with its primary emphasis on the high-reward attribute, did not encode 
whether the alternate attribute provided congruent information (t = -0.39, p > 0.70). This region 
of dACC was therefore sensitive to uncertainty at the level of which response to give (left or 
right) but only as it pertained to the more rewarding attribute. Follow-up analyses found 
comparable effects in regions that were independently identified as being most sensitive to color 
and motion (Supplementary Analysis 1). 
 

 
Figure 3. vmPFC and dACC differentially encode evidence for the high and low reward 
attributes. A) vmPFC (yellow) and dACC (red) ROIs were defined a priori based on relevant 
findings from research on integration of information from multi-attribute stimuli3,11. B) 
vmPFC positively tracked the evidence each attribute provided for the chosen response (signed 
coherence), but it did not weigh evidence for both attributes equally. Rather, responses to the 
two attributes were weighed in proportion to the reward expected for responding correctly to 
that attribute. For reference, the inset shows the reward amounts (in dollars) expected for each 
attribute. C) dACC tracked how little evidence was available for these two attributes, weighing 
evidence for the two attributes in proportion to the influence that attribute will have on the 
ultimate choice (inset from Fig. 2B), potentially reflecting the amount of attention placed on 
that attribute while forming a decision. Error bars reflect s.e.m. 
 

These findings demonstrate the degree to which these two regions respond to evidence for the 
response that was chosen on a given trial. As such, they point to potential roles these regions 
may play during decision-making about which action to select. In order to instead examine the 
role these regions may play in higher-level decisions about which attribute to attend, we can 
instead examine the degree to which these regions track the salience of each attribute (i.e., how 
much evidence was available for a given attribute, irrespective of the response it supported; also 
referred to as its unsigned coherence). In particular, given that participants heavily prioritized the 
high-reward attribute when selecting their ultimate response (Fig. 2), increased salience of that 
attribute might serve to increase their confidence in the decision to focus their attention on it. 
Conversely, as the salience of the low-reward attribute increases, the participant may experience 
greater uncertainty about whether to continue focusing on the high-reward attribute or whether to 
instead focus more on the low-reward attribute.   
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Neural mechanisms for parallel evidence accumulation 7 

 
We found a significant interaction in the degree to which these two regions tracked the salience 
of the high versus low reward attributes: dACC negatively tracked the salience of the high 
reward attribute and positively tracked the salience of the low reward attribute, while vmPFC 
showed the reverse pattern (Supplementary Fig. 1; dACC vs. vmPFC: bhigh = -0.07, SEhigh = 0.01, 
thigh = -6.5, p < 0.001, blow = 0.02, SElow = 0.01, tlow = 2.4, p < 0.02). 
 
Encoding of levels of uncertainty along dACC’s rostrocaudal axis 
The previous analyses demonstrated that dACC and vmPFC tracked the salience of the low-
reward attribute with opposite signs. While they provide preliminary evidence that the salience 
of the low-reward attribute may be tracked negatively in vmPFC and positively in dACC, these 
effects of low-reward attribute salience were individually non-significant. However, given that 
our a priori dACC ROI was based on the dACC’s response in a previous study3 to the attribute 
an individual was instructed to attend – which may correspond to the high-reward attribute in the 
current study – we considered the possibility that this may not have been the optimal choice of 
ROI for capturing a reliable effect of the low-reward attribute. Therefore, we performed a whole-
brain analysis to examine whether responses to attribute salience varied outside of this region of 
dACC. When doing so, we found a striking distinction: whereas a more caudal region of dACC 
was sensitive to the absence of evidence for the high reward attribute, a more rostral region was 
sensitive to the availability of evidence for the low reward attribute (Fig. 4A). 
 
While not initially expected, this anatomical distinction appeared to be consistent with previous 
proposals that signals of cognitive demand may be topographically organized along a rostro-
caudal axis within dACC33,38. This work has shown that increasingly rostral regions of dACC 
track cognitive demands related to increasingly abstract or complex control targets – ranging 
from uncertainty/conflict between potential motor actions (caudal-most) to potential decision 
options (central) to potential strategies (rostral-most) – paralleling similar patterns of 
representational abstraction on the lateral surface39,40. We therefore sought to test whether the 
anatomical distinction we observed reflected a functional dissociation along this proposed 
rostrocaudal axis, between uncertainty at the level of responses (left vs. right) and uncertainty at 
the level of attentional targets (motion vs. color attribute). 
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Figure 4. dACC encoding of attribute salience varies along rostrocaudal axis. A) A whole-
brain analysis revealed that more caudal regions of dACC negatively tracked the salience of the 
high-reward attribute (red) and more rostral regions positively tracked the salience of the low-
reward attribute (green). Activations reflect t-statistics, whole-brain corrected to achieve a 
clusterwise p<0.05. B) This rostocaudal pattern was confirmed with average beta estimates 
extracted from a set of independent ROIs drawn from an earlier study33, which proposed that 
these reflect a range of uncertainty/conflict levels, from low-level responses (e.g., motor 
actions) most caudally to more abstract responses (e.g., decisions and strategies) more rostrally. 
Left panel modified from Ref. 33. Error bars reflect s.e.m. 

 
Analyses along this rostrocaudal axis confirmed the presence of such a dissociation (Fig. 4B): 
high reward salience is negatively tracked in more caudal ROIs and low reward salience is 
positively tracked in more rostral ROIs. To test this dissociation more explicitly, we compared 
salience encoding in the two most rostral and the two most caudal ROIs. This analysis revealed a 
significant interaction between ROI location and type of salience encoding, with the rostral ROIs 
tracking the salience of the low reward attribute more positively than the caudal ROIs (b = 0.03, 
SE = 0.01, t = 3.1, p < 0.005) and the caudal ROIs tracking the salience of the high-reward 
attribute more negatively than the rostral ROIs (b = 0.03, SE = 0.01, t = 2.4, p < 0.03). Moreover, 
the effect of low reward attribute salience in the rostral-most ROIs remained even when 
restricting our analysis to trials on which motion and color evidence supported the same response 
(congruent trials; b = 0.05, SE = 0.01, t = 3.5, p<0.001), suggesting that these regions were not 
simply tracking whether the low-reward attribute was strongly supporting a different response 
than the high reward attribute41. 
 
Since regions of dACC have been previously implicated in encoding other signals of cognitive 
demand, including various forms of errors41-44, we further tested the extent to which each of 
these regions also signaled errors in the current task. In addition to tracking the salience of these 
attributes, these regions of dACC also encoded whether the participant committed a high-reward 
error on a given trial (caudal: b = 0.16, SE = 0.03, t = 5.6; rostral: b = 0.17, SE = 0.03, t = 4.9, 
ps<0.001). While we excluded missed trials from all other analyses, when specifically including 
this as a regressor we also find, as expected, that both regions of dACC also exhibit increased 
activity when participants fail to respond by the deadline (caudal: b = 0.81, SE = 0.08, t = 9.7; 
rostral: b = 0.45, SE = 0.07, t = 6.3, p<0.001), independent of the salience of the attributes. 
Caudal ROIs responded more strongly than rostral ROIs to having missed a response (b = 0.38, 
SE = 0.09, t = 4.4, p < 0.001). 
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Rostral dACC and attention to low-reward attribute salience 
We found that rostral dACC positively encoded the salience of the low-reward attribute, which 
competes with the high-reward attribute for attention and influence over the ultimate decision. 
We therefore performed logistic regressions to test whether activity in this region affected how 
much influence the low-reward attribute exerted on choice. We found that the likelihood of 
providing the correct response for the low-reward attribute was predicted by an interaction 
between rostral dACC activity and the salience of that attribute (b = 0.05, SE = 0.02, z = 2.6, p < 
0.02). In other words, increased activity in this region was associated with an increased 
likelihood that the participant responded according to a salient low-reward attribute. This was not 
true for the interaction of rostral dACC with high-reward attribute salience (z = 0.36, p = 0.72), 
nor was it true for the interaction of caudal dACC with low-reward attribute salience (z = 1.3, p = 
0.18). 
 
Trial history effects in vmPFC 
We performed a final exploratory analysis to examine whether activity in vmPFC and/or dACC 
reflected evidence accumulated not only on the current trial (as reported above) but also from 
previous trials. We found this to be the case in vmPFC – controlling for the signed coherence of 
the two attributes on the current trial, activity in vmPFC was greater when more high-reward 
attribute information had been available to support the response chosen on the last trial (b = 0.03, 
SE = 0.01, t = 2.5, p<0.02). There was no significant effect of the previous signed coherence of 
the low-reward attribute (t = -0.31, p=0.76), nor did either region of dACC track the previous 
signed coherence of either attribute (|ts| < 1.0, ps>0.30). 
 
 
Discussion 
Most everyday tasks invoke a natural tension between focusing on the current task and switching 
to an alternative. Rather than committing to a given task and then performing it, individuals 
typically face a recurring decision regarding which task to attend and how much22,23,31. In the 
current study, we asked participants to make perceptual decisions involving two parallel streams 
of visual evidence (motion direction and color proportion), allowing them to select how much to 
allow each stream to guide their choice. As a result, their decisions were two-fold: (1) how much 
to attend each stream and (2) which motor response to select. Whereas the latter decision was 
influenced by the overall evidence in favor of each response (i.e., upward vs. downward motion, 
concentration of blue vs. red), the former was influenced by the available reward and the salience 
(absolute coherence) of a given attribute. We found that the uncertainty associated with each of 
these two decisions was encoded in adjacent but distinct regions of dorsal ACC: a more caudal 
region tracked the uncertainty in discriminating evidence for a left versus right response 
(replicating previous findings3,30,45), while a more anterior region appeared to track the 
uncertainty in selecting which attribute to attend. Specifically, anterior dACC increased activity 
with the relative ease of attending the less preferred attribute on a given block. 
 
Our findings within dACC are consistent with previous proposals that this region signals 
demands for cognitive control (e.g., conflict, error likelihood46-48) and that these demands may be 
differentially encoded across different populations within dACC41,42. Most notably, our findings 
are broadly consistent with the recent proposal that dACC signals such demands in a hierarchical 
manner32,33,38 (cf. Refs.14,49). Specifically, it has been suggested that dACC contains a 
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topographic representation of potential control demands, with more caudal regions reflecting 
demands at the level of individual motor responses and more rostral regions reflecting demands 
at increasing levels of abstraction (e.g., at the level of effector-agnostic response options). 
According to this framework, it is reasonable to assume that this rostrocaudal axis might encode 
uncertainty regarding which attribute to attend more rostrally than uncertainty regarding which 
response to select. Our findings may also be consistent with a more recent proposal that a similar 
axis within dACC tracks the likelihood of responses and outcomes (e.g., error likelihood) at 
similarly increasing levels of abstraction50. Collectively these accounts of the current findings are 
consistent with our theory that regions of dACC integrate information regarding the costs and 
benefits of control allocation (including traditional signals of control demand) in order to 
adaptively adjust control allocation31,48.  
 
The dACC signals we observed are also consistent with evaluation processes unrelated to control 
per se, indicating for instance the costs of maintaining the current course of action in caudal 
dACC and the value of pursuing an alternate course of action (cf. foraging) in rostral dACC19,20. 
The connection between rostral dACC activity and choices to follow evidence for the low-
reward attribute can be seen as further support for such an account (though this could similarly 
reflect adjustments of attentional allocation). Our current study is limited in adjudicating 
between these two accounts because increasing evidence in support of an alternative attentional 
target in our task (i.e., increased salience of the low-reward attribute) necessarily leads to greater 
uncertainty regarding whether to continue to focus on the high-reward attribute. However, given 
that evidence for foraging-specific value signals in dACC remains inconsistent35,48,51, an 
interpretation of our findings that appeals to cognitive costs or demands may be more 
parsimonious. That said, future studies are required to substantiate the current interpretation by 
demonstrating that the dACC’s response to the tempting alternative (the salient low-reward 
attribute) decreases when the relative salience and reward of the alternate attribute are such that 
the decision to switch one’s target of attention is easy. 
 
In contrast to dACC, where activity tracked how little evidence was available to support the 
chosen response (i.e., to discriminate between the correct and incorrect response), vmPFC 
instead tracked the evidence in favor of the chosen response, in a manner proportional to the 
reward expected for information about each attribute. This finding is broadly consistent with 
previous findings in the value-based decision making literature, where vmPFC is often 
associated with the value of the chosen option and/or its relationship to the value of the unchosen 
option52,53. The fact that vmPFC’s weights on these attributes were not proportional to the weight 
each attribute was given in the final decision suggests that vmPFC may have played less of a role 
in determining how this information was used to guide a response, than in providing an overall 
estimate of expected reward. In addition to any incidental influence it may have on the 
perceptual decision on a given trial, this reward estimate could provide a learning signal about 
the task context more generally (e.g., overall reward rate)26, consistent with our observation that 
this region encodes elements of reward expected from a previous trial.  
 
Previous research has identified a number of parallels between behavioral and neural patterns 
evoked by perceptual and value-based decisions54-56. Both have been well described by similar 
classes of evidence accumulation models8,57,58. This observation has led researchers to treat value 
as a form of evidence that is noisily accumulated in a manner isomorphic to the accumulation of 
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sensory evidence when perceiving a random dot kinematogram. However, given that the 
dynamics of value accumulation are more difficult to measure and manipulate than the dynamics 
of perceptual accumulation, questions still remain regarding the basis of value as a form of 
evidence and the nature of the noise associated with its integration58. By manipulating the value 
associated with sensory evidence accumulated in a multi-attribute decision-making task, the 
current task could provide leverage in understanding the relationship between these two forms of 
evidence accumulation. Moreover, the uncertainty our task engenders at the level of both 
responses and goals (i.e., attentional targets) also makes it well-suited as a potential low-level 
analog for more complex goal conflicts that occur in daily life, ranging from dietary choice to 
perseverance on a demanding task in the face of attractive alternatives. While more research is 
needed to bridge our understanding of how we maintain focus on a paper with our understanding 
of how we select the words that go on a page, the current findings offer promise that advancing 
our understanding of one will bring us nearer to closure on the other. 
 
 
Methods 
Participants 
Thirty-four individuals (71% female, Age: M = 21.1, SD = 2.8) participated in this study. All 
participants had normal color vision and no history of neurological disorders. Three additional 
participants were excluded prior to analysis, two due to mechanical errors and one due to an 
incomplete session. Participants provided informed consent in accordance with the policies of 
the Princeton University Institutional Review Board. 
 
Procedure: Choice Task 
The main task performed in the scanner required participants to view a random dot 
kinematogram consisting of red and blue colored dots3,4 (Fig. 1). On a given trial, a majority of 
the dots were either blue or red, and a proportion of the dots (independent of their color) moved 
in either an upward or downward direction. For consistency with previous studies, we use the 
term color coherence to refer to the relative proportion of red versus blue dots, and motion 
coherence to refer to the proportion of dots moving consistently in one of the two directions. 
Four coherence levels were used for each attribute, determining varying degrees of 
discriminability for that attribute on a given trial. For each attribute, these coherence levels were 
defined as multiples of a single individually-calibrated coherence level that asymptotically 
produced approximately 80% accuracy on that attribute (see below). For motion, these four 
levels were 50%, 95%, 140%, and 185% of the calibrated motion coherence level (e.g., if the 
staircase procedure below settled on a calibrated motion coherence of 10% for a given 
participant, then the most difficult motion coherence level for this participant would be 5% 
motion coherence and the easiest level would be 18.5% motion coherence). Initial pilot testing 
suggested that slightly different scaling values needed to be used for the color attribute in order 
to more closely match choice preferences across these two attributes, so the equivalent scaling 
values for the four color levels were 50%, 105%, 160%, and 215% of the calibrated color 
coherence level. Unless otherwise specified, details of the dot presentation (e.g., color and speed) 
were identical to Kayser et al (2010), including subjectively isoluminant values of blue and red 
for the dot colors. 
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Each color and motion direction was associated with one of two responses (e.g., left button to 
indicate that the dots are majority blue and/or moving upward; right button to indicate that the 
dots are majority red and/or moving downward) (Fig. 1A). These response contingencies were 
counter-balanced across subjects. Participants could only provide one response on each trial (left 
or right), and this response could be correct for neither, one, or both dimensions. The coherence 
of each dimension and the congruency across dimensions (i.e., whether or not the same response 
was correct for both dimensions) was varied independently across trials (Fig. 1B). 
 
Participants were given three seconds (3s) to respond, and the random dot display remained on 
the screen for that entire duration, including after the response was made. After each trial, 
participants viewed a fixation cross for 1.2-7.2s (uniformly distributed across trials), which 
concluded with an additional 0.5s during which the fixation cross changed color to prepare the 
participant for the onset of the next trial. 
 
Subjects were rewarded based on the number of attributes their (single) response correctly 
discriminated on a given trial (0, 1, or 2). The rewards for answering each attribute correctly 
changed over the course of the session, across three epochs of equal length (Fig. 1C): in the first 
epoch these two dimensions were rewarded equally ($0.15 each); in the second epoch one 
dimensions was rewarded $0.20 (e.g., motion) and the other $0.10 (e.g., color); and in the final 
epoch these reward contingencies were reversed (i.e., the attribute that was previously rewarded 
$0.20 for a correct response was now rewarded $0.10, and vice versa). Each epoch consisted of 
192 trials, split across four blocks of 48 trials each.  
 
Before starting the main task, participants performed 16 practice trials outside of the scanner and 
16 practice trials inside the scanner (during which no fMRI volumes were collected). These 
practice trials were followed by feedback on the reward they could have earned for each trial. 
During the main task (while being scanned) this trial-wise feedback was omitted and participants 
were only given feedback about average performance at the end of each task block. At the end of 
the session, 20 trials were selected at random, and participants received the total payment 
received across those trials. 
 
Procedure: Psychometric Calibration 
Before performing the main task in the scanner, participants performed a task intended to 
calibrate and match overall performance across the two stimulus attributes. In separate blocks, 
participants were asked to respond based on one of the two attributes, and the coherence of that 
target attribute was systematically varied across trials based on a 3-1 psychometric staircase 
procedure (while the coherence of the alternate attribute was held constant at 0% over that 
block). Color calibration blocks started at 33% coherence and motion calibration blocks started 
at 40% coherence. For both block types, coherence was decreased by steps of 1.5% after every 3 
consecutive correct trials and increased by the same amount after every error. The participant’s 
threshold coherence for each attribute was determined based on an average of coherence levels 
over the last 12 trials of the calibration block. 
 
In order to ensure as stable estimate of the participant’s asymptotic discrimination abilities, the 
psychometric staircase for each attribute terminated once the following criteria were met: (1) at 
least 300 trials had passed, (2) the current estimate of threshold coherence (average of coherence 
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levels over the previous 12 trials) was less than 30%, (3) the current estimate of threshold 
coherence was no greater than 6% (four steps on the psychometric staircase) above the lowest 
threshold the participant reached over the previous 400 trials (or as many trials had been 
completed up to that point, whichever were fewer) and (4) there was no significant linear trend in 
the coherence values over the past 15 trials (i.e., a non-parametric correlation yielded a p-value 
greater than 0.10). 
 
Due to a coding error, the fourth calibration criterion above was not properly implemented for 
the first seven participants, resulting in coherence thresholds that may have differed slightly from 
what they would have been assigned with the intended procedure. However, we were unable to 
find any differences between the behavioral performance of these participants and the remaining 
participants, in terms of overall accuracy for the high-reward dimension (z = 0.1, p = 0.89), 
overall RT (t = 1.0, p = 0.34), or in the influence of coherence on either choices or RTs (ps > 
0.48). We therefore include these participants in all of our analyses but note that all of our 
findings are robust to their exclusion. 
 
MRI Sequence 
Scanning was performed on a Siemens Skyra 3T MR system. We used the following sequence 
parameters for the main task and localizer: field of view (FOV) = 196mm x 196mm, matrix size 
= 66 x 66, slice thickness = 3.0mm, slice gap = 0.0mm, repetition time (TR) = 2.4, echo time 
(TE) = 30ms, flip angle (FA) = 87°, 46 slices, with slice orientation tilted 15° relative to the 
AC/PC plane. We collected 160 volumes for the decision-making task and 169 volumes for the 
functional localizers. At the start of the imaging session, we collected a high-resolution structural 
volume (MPRAGE) with the following sequence parameters: FOV = 200mm x 200mm, matrix 
size = 256 x 256, slice thickness = 0.9mm, slice gap = 0.45mm, TR = 1.9s, TE = 2.13ms, FA = 
9°, 192 slices. 
 
Behavioral Analysis 
All behavioral data were analyzed using mixed-effects regressions in R 3.3.1 (lmer and glmer 
functions), modeling all possible subject-wise intercepts and slopes. Response times were log-
transformed prior to analysis to reduce skew. 
 
fMRI Analysis 
Imaging data were analyzed in SPM8 (Wellcome Department of Imaging Neuroscience, Institute 
of Neurology, London, UK). Functional volumes were motion corrected, normalized to a 
standardized (MNI) template (including resampling to 2mm isotropic voxels), spatially smoothed 
with a Gaussian kernel (6mm FWHM), and high-pass filtered (128s cut-off period).  
 
Our primary analyses focused on a priori regions of interest (ROIs) within vmPFC, dACC, and 
areas MT+ and V4 (identified in previous studies and localizers; see below). For these analyses, 
we generated first-level general linear models (GLMs) that included a separate regressor for each 
trial, and extracted the associated trial-wise beta estimates for each ROI. These beta estimates 
were arcsine-transformed (to reduce kurtosis) and then included in mixed-effects regressions 
across participants, modeling participant-wise random intercepts and slopes.  
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In order to test for regions sensitive to attribute coherence outside these ROIs, we also performed 
exploratory whole-brain GLMs. These GLMs modeled event regressors at the onset of each trial 
(separately for each epoch), with non-orthogonalized parametric regressors for the coherence of 
each attribute. We then performed second-level analyses consisting of one-sample t-tests over 
contrasts estimated from the first-level GLM. Activations were displayed using a voxelwise p-
value of 0.005, extent-thresholded to achieve a whole-brain cluster-wise corrected p < 0.05. 
 
All first-level GLMs included additional regressors modeling intercepts and linear trends for 
each task block. Moreover, in order to minimize the influence of outlier time-points (e.g., due to 
head motion or signal artifact), these GLMs were estimated using a reweighted least squares 
approach (RobustWLS Toolbox)59. 
 
Rather than using the absolute coherence values used for a given participant (e.g., 12%, etc.), 
fMRI and behavioral regressions coded coherence based on their ordinal levels (1-4). Signed 
coherence, which reflected the amount of evidence an attribute provided for the response made 
on that trial, varied from -4 to +4. Positive signed coherence values represented coherence levels 
that were increasingly consistent with the participant’s response, whereas negative signed 
coherence values represented coherence levels that were increasingly inconsistent with that 
response. Unsigned coherence (also referred to as salience), which reflected the overall amount 
of evidence provided by an attribute irrespective of the response it supports, varied from 1 to 4. 
 
For visualization purposes, plots of beta estimates within a given brain region are based on 
averaged beta estimates extracted from these whole-brain analyses across subjects. Results of 
equivalent mixed-effects regressions are reported in the main text. 
 
Regions of interest 
We defined ROIs for dACC and vmPFC based on locations of relevant past findings in research 
on perceptual or value-based integration of multi-attribute stimuli. Our dACC ROI combined 
two dACC peaks reported by Kayser et al.3, which negatively correlated with the evidence for 
the attended dimension in a cued-attention version of the current task (MNI coordinates [x, y, z] 
= 6, 16, 49 and 8, 23, 40; spheres with 6mm radii). Our vmPFC ROI was centered on the peak 
vmPFC activation from Hare et al.11, which positively correlated with the evidence related to two 
attributes of a value-based stimulus (the taste and health of a food) (3, 36, -12; radius = 5mm). 
Further analyses within dACC focused on five rostrocaudally arranged 6mm ROIs along the 
dorsomedial surface, drawn from Taren et al.33 (see also Ref. 38). This axis ranged from the 
caudal-most region associated with response conflict (center: -4, 10, 50), to a central region 
associated with decision conflict (6, 23, 39), to the rostral-most region associated with strategy 
conflict (-6, 35, 34). Intermediate ROIs fell between the first two ROIs (-4, 16, 45) and the 
second two ROIs (-4, 30, 37). 
 
Data availability 
All data are available from the authors upon request.  
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Supplementary Methods 
 
Defining motion and color-sensitive regions 
We included localizer scans at the end of each session to identify regions that were especially 
sensitive to dot motion (MT+) and color (V4). Following Kayser and colleagues 3, each localizer 
consisted of ten consecutive 40s blocks, with each block consisting of 10s of increased motion or 
color information followed by a 30s baseline. For the motion localizer, the 10s period consisted 
of 100% coherently moving dots, the direction of which changed every second (sampled 
randomly from the range 0°:36:324°, without replacement), and the 30s baseline consisted of 
static dots. The color localizer consisted of Mondrian-like images alternating every second in 
color (10s) versus grayscale (30s baseline).  
 
MT+ and V4 ROIs were generated based on the motion and color localizer tasks, spatially 
constrained by a priori regions identified by Kayser and colleagues. We performed whole-brain 
analyses for both localizers, in each case examining regions whose activity was increased during 
the condition of interest (high-coherence motion or colorful Mondrians) relative to the relevant 
baseline (static dots or gray patches). The associated first-level analyses and contrasts proceeded 
as described above. We then used each participant’s localizer to identify the 20 voxels within 
MT+ (6mm ROI centered at -46, -74, -2) most sensitive to motion and the 20 voxels within V4 
(centered at -28, -84, -22) most sensitive to color.  
 
Supplementary Analyses 
 
Effect of attribute evidence in MT+ and V4 
In spite of their selectivity to motion and color information more generally, previous work 
explicitly instructing participants to attend either color or motion has found MT+ and V4 show 
little selectivity for one type of information and instead both negatively track evidence for the 
attended dimension 3. Consistent with these findings, during the biased segments (when reward 
disproportionately favored one attribute) we found that both regions negatively tracked evidence 
for the high-reward attribute (e.g., when motion was more rewarding, both MT and V4 
negatively tracked signed motion coherence). This was true both when motion (tMT = -4.0, tV4 = -
4.2, p < 0.001) and color (tMT = -2.8, tV4 = -2.1, p < 0.05) were the high-reward dimensions; in 
both cases, these regions did not significantly track the coherence of the low-reward attribute 
(|ts|<1.6, ps>0.10). When both attributes were rewarded equally, these regions negatively tracked 
the coherence of both attributes (motion: tMT = -2.3, tV4 = -3.7, p < 0.05; color: tMT = -2.2, tV4 = -
2.1, p < 0.05).  
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Supplementary Figures 
 
 

 
 
Supplementary Figure 1. vmPFC and dACC differentially encode the salience of the high 
and low reward attributes. Whereas vmPFC positively tracked the salience (unsigned 
coherence) of the high-reward attribute and negatively tracked the salience of the low-reward 
attribute, dACC exhibited the opposite pattern. Error bars reflect s.e.m. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2017. ; https://doi.org/10.1101/171454doi: bioRxiv preprint 

https://doi.org/10.1101/171454
http://creativecommons.org/licenses/by/4.0/

