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SUMMARY	

Nearly	every	cancer	patient	is	treated	with	chemotherapy	yet	our	understanding	of	factors	that	dictate	

response	and	resistance	to	such	agents	remains	limited.	We	report	the	generation	of	a	quantitative	

chemical-genetic	interaction	map	in	human	mammary	epithelial	cells	that	charts	the	impact	of	

knockdown	of	625	cancer	and	DNA	repair	related	genes	on	sensitivity	to	29	drugs,	covering	all	classes	of	

cancer	chemotherapeutics.	This	quantitative	map	is	predictive	of	interactions	maintained	in	cancer	cell	

lines	and	can	be	used	to	identify	new	cancer-associated	DNA	repair	factors,	predict	cancer	cell	line	

responses	to	therapy	and	prioritize	drug	combinations.	We	identify	that	GPBP1	loss	in	breast	and	ovarian	

cancer	confers	resistance	to	cisplatin	and	PARP	inhibitors	through	the	regulation	of	genes	involved	in	

homologous	recombination.	This	map	may	help	navigate	patient	genomic	data	and	optimize	

chemotherapeutic	regimens	by	delineating	factors	involved	in	the	response	to	specific	types	of	DNA	

damage.	
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INTRODUCTION	

Chemotherapy	is	given	to	the	vast	majority	of	cancer	patients	and	used	based	on	average	responses	

rather	than	personalized	decisions	(Barcenas	et	al.,	2014).	Limited	improvements	in	survival	by	the	use	

of	chemotherapy	also	highlight	the	need	to	develop	new	drugs	and	make	better	use	of	existing	drugs	

(Early	Breast	Cancer	Trialists'	Collaborative,	2005).	Furthermore,	choosing	from	multiple	possible	

chemotherapy	options	can	complicate	clinical	decision	making.	Therefore,	optimizing	the	use	of	

chemotherapies	is	a	significant	and	pressing	challenge	in	precision	oncology.		Chemotherapies	commonly	

target	the	heightened	proliferation	resulting	from	unrestrained	cell	cycle	and	DNA	damage	checkpoints	

present	in	cancer	cells	but	their	narrow	therapeutic	window	results	in	the	dose-limiting	toxicities	

common	with	these	agents.	While	tumors	that	harbor	specific	alterations	in	DNA	repair	genes	such	as	

BRCA1,	BRCA2	and	ERCC1	are	more	responsive	to	certain	chemotherapies	(Byrski	et	al.,	2012;	Olaussen	et	

al.,	2006),	our	knowledge	of	relevant	biomarkers	for	chemotherapy	remains	limited.	Therefore,	

understanding	the	impact	that	tumor	mutations	have	on	modifying	drug	responses	can	lead	to	more	

efficient	use	of	chemotherapy.	

	

Recent	advances	in	genomics	have	led	to	a	dramatic	increase	in	the	rate	of	discovery	of	altered	genes	in	

patient	tumors.	This	explosion	in	knowledge	has	led	to	bottlenecks	at	the	level	of	a	functional	

understanding	of	tumor	genomes,	a	key	step	in	therapeutic	development.	Chemical-genetic	interaction	

maps	can	aid	in	elucidating	roles	for	genetic	events	in	cancers	by	causally	linking	them	to	drug	sensitivity	

(Martins	et	al.,	2015;	Muellner	et	al.,	2011).		Furthermore,	effectively	connecting	gene	alterations	with	

therapeutics	will	also	require	clarity	into	the	exact	mechanism	of	drug	action	which	are	often	lacking	for	

classical	chemotherapeutic	agents	as	well	as	newly	developed	drugs	targeting	DNA	repair	and	processing	

(Cheung-Ong	et	al.,	2013;	Helleday,	2011;	Liu	et	al.,	2012;	Mitchison,	2012).	In	the	case	of	PARP	

inhibitors,	their	efficacy	may	be	dependent	on	their	ability	to	trap	PARP	onto	DNA	leading	to	DNA	double	

strand	breaks	(DSBs)	during	replication,	rather	than	blocking	the	repair	of	single-strand	breaks	through	
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enzymatic	inhibition	of	PARP	as	initially	hypothesized	(Helleday,	2011;	Murai	et	al.,	2012).	It	is	likely	that	

insights	into	the	mechanisms	of	action	of	chemotherapies	will	need	to	be	combined	with	an	

understanding	of	gene	function	in	order	to	create	predictive	models	of	drug	responses	in	patients.		

 

A	key	milestone	in	the	field	was	the	discovery	that	tumor	cells	that	are	deficient	in	BRCA1	or	BRCA2	are	

sensitive	to	PARP	inhibitors	in	a	synthetic	lethal	manner,	ultimately	leading	to	approval	of	these	agents	in	

ovarian	cancer.	Mechanistically,	this	synthetic	lethal	interaction	takes	advantage	of	a	deficiency	in	

homologous	recombination	(HR)	caused	by	BRCA1/2	mutation	that	is	necessary	to	repair	DNA	lesions	

incurred	by	PARP	inhibition	(Bryant	et	al.,	2005;	Farmer	et	al.,	2005).	With	the	approval	of	several	PARP	

inhibitors,	both	de	novo	and	acquired	resistance	to	PARP	inhibitors	has	become	an	important	clinical	

problem.	What	appears	to	be	critical	for	resistance	is	the	restoration	of	HR	that	in	some	cases	can	be	

attributed	to	secondary	intragenic	mutations	which	restores	BRCA1	or	BRCA2	functionality	(Norquist	et	

al.,	2011).	Although	additional	factors	have	been	reported,	little	is	known	about	their	relevance	to	

resistance	in	the	clinic	(Lord	and	Ashworth,	2013).	Central	to	emerging	mechanisms	of	resistance	is	the	

interplay	between	two	major	repair	pathways,	non-homologous	end	joining	(NHEJ)	and	HR.	In	a	

competitive	model	between	these	two	pathways,	the	NHEJ	factor	TP53BP1	suppresses	HR	and	TP53BP1	

loss	restores	HR	facilitating	PARP	inhibitor	resistance	(Bouwman	et	al.,	2010;	Bunting	et	al.,	2010;	

Chapman	et	al.,	2012).	However,	TP53BP1	loss	has	not	been	observed	clinically	suggesting	additional	

factors	may	contribute	to	the	resistant	phenotype.		

	

Here,	we	generate	a	systematic	resource	that	quantitatively	maps	the	influence	of	the	knockdown	of	612	

DNA	repair	and	cancer-relevant	genes	on	the	responses	to	31	chemotherapeutic	agents	in	breast	cancer,	

covering	nearly	all	major	FDA	approved	chemotherapies.	We	demonstrate	that	the	map	recovers	many	

known	modulators	of	chemosensitivity	and	is	able	to	link	therapies	with	common	mechanisms	of	action.	

We	show	that	the	map	is	a	predictive	tool	to	computationally	infer	cancer	cell	line	drug	sensitivity	and	
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design	effective	drug	combinations	with	inhibitors	of	the	DNA	damage	signaling	kinase	ATR.	We	also	

identify	GPBP1	as	a	new	factor	whose	loss	contributes	to	PARP	inhibitor	and	platinum	resistance,	a	

finding	that	is	supported	by	data	from	high	grade	serous	ovarian	cancer	patients.	This	chemical-genetic	

interaction	map	can	be	used	to	identify	new	factors	that	dictate	responses	to	chemotherapy	and	aid	in	the	

translation	from	tumor	genomics	to	therapeutics.	

	

RESULTS		

Generation	of	a	chemotherapy	based	genetic	interaction	map	in	breast	epithelial	cells	

We	developed	a	quantitative	chemical-genetic	interaction	mapping	strategy	to	uncover	the	impact	of	

gene	loss	on	proliferative	responses	to	a	panel	of	approved	chemotherapies	as	well	as	emerging	

inhibitors	of	DNA	repair.	Beyond	common	tumor	suppressor	genes,	we	focused	on	genes	recurrently	

deleted	in	breast	and	ovarian	cancer,	two	diseases	which	are	characterized	by	a	high	prevalence	focal	

deletions	and	amplifications	compared	to	point	mutations,	providing	a	rationale	for	using	loss	of	function	

genetics	(Ciriello	et	al.,	2013).	We	mined	TCGA	studies	as	well	as	the	METABRIC	breast	cancer	cohort	

covering	over	3,000	samples	to	identify	a	set	of	over	200	breast	and	170	ovarian	cancer	genes	whose	

deletion	occurred	with	high	frequency	in	these	studies	(Figure	1A,	Table	S1)	(Cancer	Genome	Atlas,	2012;	

Cancer	Genome	Atlas	Research,	2011;	Curtis	et	al.,	2012).	We	also	included	nearly	all	genes	known	to	be	

involved	in	DNA	repair	(n=134).	As	a	complement,	we	assembled	a	collection	of	29	distinct	compounds	

encompassing	nearly	all	FDA	approved	chemotherapies	for	breast	and	ovarian	cancer,	four	PARP	

inhibitors	and	two	other	targeted	therapies	(Figure	1B).	In	addition,	we	profiled	two	common	drug	

combinations	for	a	total	of	31	distinct	treatments.	The	map	was	generated	in	MCF10A	cells	which	are	

epithelial,	derived	from	healthy	breast	tissue,	devoid	of	the	large	numbers	of	mutations	typical	of	cancer	

cells,	diploid	and	HR	competent	(Debnath	et	al.,	2002).	By	molecular	profiling,	these	cells	are	receptor-

negative	or	basal-like,	a	subtype	that	has	been	shown	to	be	similar	in	biology	and	etiology	to	high-grade	

serous	ovarian	cancer	(Cancer	Genome	Atlas,	2012).	Knockdowns	were	performed	using	esiRNAs	which	
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are	enzymatically	cleaved	long	double-stranded	RNAs	that	exist	in	a	pool	with	high	sequence	complexity	

and	exhibit	less	off-target	effects	and	noise	than	commonly	associated	with	siRNA	and	shRNA	approaches	

(Kittler	et	al.,	2007).	To	generate	the	chemical-genetic	interaction	map,	MCF10A	cells	were	transfected	

with	individual	esiRNAs,	exposed	to	either	DMSO	or	drug	in	parallel,	allowed	to	proliferate	for	72	hours	

before	counting.	Knockdown	of	an	essential	gene,	KIF11,	was	used	as	positive	control	for	gene	

knockdown	in	the	screen	(Figure	S1A).	Normalized	cell	numbers	from	each	knockdown	in	the	presence	of	

drug	or	DMSO	were	compared	to	identify	differences	in	proliferation	over	8	replicates	(4	in	each	

condition)	and	the	significance	of	this	difference	was	converted	into	a	signed	chemical-genetic	interaction	

score	(S)	(see	Methods)	(Martins	et	al.,	2015).	Positive	S-scores	indicate	that	the	gene	loss	caused	drug	

resistance	and	negative	S-scores	indicate	that	gene	loss	induced	drug	sensitivity	that	could	constitute	a	

synthetic	lethal	interaction.	Analysis	of	the	distribution	of	scores	based	on	knockdown	of	GFP	as	negative	

control	allowed	the	assignment	of	a	false	discovery	rate	(FDR)	of	10%,	5%	and	<1%	to	cutoffs	of	S=±3,	±4	

and	±5,	respectively		(Figure	1C).	Altogether	we	determined	quantitative	scores	for	19,406	gene-drug	

interactions	and	identified	1,042	positive	and	740	negative	interactions	at	S=±3,	corresponding	to	a	10%	

FDR	(Table	S2).	These	interactions	mapped	to	a	median	of	27	and	22	positive	and	negative	interactions	

per	drug,	respectively	(Figure	S1B).			

	

As	control,	we	examined	the	impact	of	loss	of	BRCA	proteins	on	sensitivity	to	PARP	inhibitors,	a	known	

synthetic	lethal	interaction	(Bryant	et	al.,	2005;	Farmer	et	al.,	2005).	Loss	of	BRCA1	or	BRCA2	was	among	

the	most	synthetic	lethal	with	PARP	inhibitors	in	our	dataset	including	strong	interactions	with	the	PARP	

inhibitor	BMN673	(BRCA1	S=-4.4,	BRCA2	S=-5.6).	This	finding	also	extended	to	members	of	the	BRCA	

pathway,	SHFM1	(S=-2.9)	and	PALB2	(S=-4.9),	which	mediate	HR	as	previously	reported	(Figure	1D)	

(Buisson	et	al.,	2010;	McCabe	et	al.,	2006).	We	also	observed	strong	synthetic	lethal	interactions	between	

BRCA1/2	and	BRCA-pathway	genes	and	DNA	cross-linking	agents	cisplatin	and	mitomycin	C	(BRCA1	with	

cisplatin,	S=-5.8,	and	with	mitomycin	C,	S=-5.1)	(Figure	1D).	In	BRCA1	knockout	cells,	synthetic	lethality	
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with	PARP	inhibitors	is	related	to	its	ability	to	trap	PARP	onto	DNA	(Murai	et	al.,	2014;	Shen	et	al.,	2013).	

Using	the	chemical-genetic	interaction	map	we	next	asked	whether	this	trend	extends	beyond	BRCA1	to	

the	entire	HR	pathway.	We	examined	known	genes	involved	in	HR	and	found	that	they	were	also	often	

synthetic	lethal	with	PARP	inhibitors	in	a	manner	that	was	related	with	the	degree	of	PARP	trapping	onto	

DNA	(Figure	1E).	Illustrating	this	point,	the	strongest	trapper,	BMN673,	had	an	average	score	of	-2.4	with	

19	known	components	of	HR	(p=3.1e-4),	which	was	less	than	any	other	PARP	inhibitor.	Since	these	drugs	

are	comparable	inhibitors	of	PARP	enzymatic	activity,	our	results	indicate	that	synthetic	lethality	with	

loss	of	components	of	HR	machinery	is	more	dependent	on	PARP	trapping	than	enzymatic	inhibition.	

Loss	of	the	NHEJ	factor	TP53BP1	has	been	shown	to	cause	resistance	to	PARP	inhibitors	in	several	

models	(Bouwman	et	al.,	2010;	Bunting	et	al.,	2010;	Chapman	et	al.,	2012).	This	was	also	reflected	in	the	

chemical-genetic	map	with	TP53BP1	knockdown	conferring	resistance	to	PARP	inhibitors	(BMN673	

S=3.3)	and	DNA	cross-linkers	(cisplatin	S=4.3)	(Figure	1D,E).	We	conclude	that	the	chemical-genetic	

interaction	map	recapitulates	known	drivers	of	chemo-sensitivity	and	resistance	in	a	quantitative	fashion	

and	is	a	resource	for	the	identification	of	potential	new	drivers	of	the	drug	response.	

	

Chemical-genetic	profiles	link	drugs	with	similar	mechanisms	of	action	

While	broad	classes	of	chemotherapeutics	target	various	aspects	of	DNA	processing	and	repair,	their	

exact	mechanisms	of	action	are	often	unclear	(Cheung-Ong	et	al.,	2013).	We	therefore	asked	if	the	map	

could	be	used	to	link	together	drugs	based	on	common	mechanisms	of	action.	For	a	given	drug,	its	profile	

of	chemical	interaction	scores	represents	a	high-resolution	phenotype	that	can	be	compared	to	other	

drugs.	Calculating	all-pairwise	correlations	between	drugs	revealed	that	drugs	known	to	operate	in	the	

same	general	class	had	a	higher	average	correlation	of	profiles	as	compared	to	drugs	that	were	unrelated	

(Figure	1F,	p=4e-11).	Overall,	this	trend	was	highest	for	topoisomerase	and	PARP	inhibitors	as	well	as	

DNA	cross-linkers,	which	were	all	significantly	more	inter-related	than	compared	to	background	(p<0.05,	

Figure	1F).	For	topoisomerase	inhibitors,	their	profiles	were	highly	correlated	(mean	r=0.45,	p=4e-15)	
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and	exemplified	by	the	similarity	of	profiles	of	topoisomerase	II	inhibitors,	etoposide	and	doxorubicin	

(r=0.65,	p=5e-79).	The	ability	to	link	drugs	with	similar	mechanisms	of	action	led	us	to	further	

investigate	the	mechanism	of	action	of	PARP	inhibitors	which	have	been	proposed	to	work	through	a	

dual	mechanism	of	enzymatic	inhibition	as	well	as	trapping	of	PARP	onto	DNA	during	replication	(Murai	

et	al.,	2012).	We	found	a	strong	correlation	of	profiles	by	comparing	PARP	inhibitors	with	cisplatin	and	

mitomycin	C	that	both	work	by	causing	intra-strand	crosslinks	that	block	replication	(average	r=0.35,	

p=6.9e-7).	However,	this	correlation	was	highly	related	to	PARP	trapping	ability	with	the	most	potent	

trapper,	BMN673,	having	the	highest	correlation	with	cisplatin	(r=0.51)	and	mitomycin	C	(r=0.49)	

(Figure	1G).	Taken	together,	our	results	further	support	the	model	whereby	PARP	trapping	creates	

double	strand	breaks	during	replication	in	a	manner	similar	to	cisplatin	and	mitomycin	C	and	that	HR	is	

necessary	to	repair	these	lesions.	Therefore	the	genetic	interaction	map	provides	a	high-resolution	

means	to	understand	similarities	and	differences	between	the	mechanism	of	action	of	drugs.	

	

Prediction	of	cancer	cell	line	responses	using	the	chemical-genetic	interaction	map	

Based	on	the	similarity	of	profiles	between	related	drugs	we	next	sought	to	combine	genetic	interactions	

based	on	drug	class	to	identify	a	consensus	chemical-genetic	interaction	map.	In	this	consensus	map	a	

connection	between	a	gene	and	a	compound	category	reflects	a	concordance	of	response	across	multiple	

related	drugs	and	compared	against	a	randomly	permuted	background.	At	an	FDR	of	0.1%	we	identified	

125	connections	between	genes	and	different	drug	classes	(Figure	2A,	Table	S3).	While	connections	

spanned	all	major	drug	classes,	topoisomerase	inhibitors,	PARP	inhibitors	and	alkylating	agents	made	up	

the	majority	of	this	network	while	microtubule	inhibitors	were	under-represented	due	to	the	lack	of	

genetic	interactions	in	common	across	this	class	of	agents	(Figure	S1C,D).	Through	the	analysis	of	

independent	chemical	entities	sharing	a	common	mechanism	this	map	highlights	many	potentially	new	

modifiers	of	drug	responses	that	are	altered	in	breast	and	ovarian	cancers	that	may	participate	in	the	

DNA	damage	response.		
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The	ability	of	the	chemical-genetic	interaction	map	to	identify	causal	genetic	relationships	also	raises	the	

possibility	that	a	quantitative	map	could	complement	pharmacogenomics	efforts	using	large	panels	of	

cancer	cell	lines	(Barretina	et	al.,	2012;	Basu	et	al.,	2013;	Garnett	et	al.,	2012).	While	previous	studies	

have	used	supervised	machine	learning	approaches	to	identify	molecular	correlates	of	drug	sensitivity	

across	cell	lines,	we	hypothesized	that	the	relationships	identified	by	gene	knockdown	constitute	a	more	

direct	and	causal	readout	of	gene	function	that	could	enhance	biomarker	identification.	Comparison	of	11	

drugs	in	common	between	our	study	and	the	Cancer	Therapeutics	Response	Portal	(CTRP)	revealed	a	

strong	degree	of	overlap	between	interactions	identified	in	the	chemical	genetic	interaction	map	and	

genes	whose	response	was	significantly	correlated	with	the	drug	response	(Figure	2B)	(Basu	et	al.,	2013).	

Furthermore,	this	degree	of	overlap	was	highly	related	to	the	score	threshold	used	with	21.5%	of	

interactions	overlapping	at	a	cutoff	of	3	(p=2.9e-3)	and	nearly	60%	overlapping	at	a	cutoff	of	8	(p=3.1e-

5),	reflecting	the	quantitative	nature	of	the	dataset	(Figure	2B).	

	

The	significance	and	quantitative	nature	of	the	overlap	between	our	map	and	expression	based	correlates	

of	drug	sensitivity	found	in	cancer	cell	lines	prompted	us	to	explore	whether	this	map	could	be	used	to	

systematically	predict	cancer	cell	line	sensitivity	in	an	unsupervised	fashion.	For	each	drug	we	used	the	

relative	expression	of	each	of	the	genes	in	its	network	to	derive	a	drug	response	prediction	for	every	cell	

line	(see	Methods).		We	evaluated	this	method	using	a	sliding	cutoff	to	define	the	specific	network	for	

each	drug	and	found	that	more	stringent	networks	provided	increased	power	to	predict	drug	sensitivity	

with	nearly	60-70%	of	drugs	predicted	accurately	at	a	cutoff	between	5	and	6	(Figure	2C).	At	a	cutoff	of	5,	

predictions	were	significant	for	7	out	of	the	11	drugs	(Figure	2D).	Analysis	of	the	genes	that	were	most	

informative	in	making	correct	predictions	in	these	cases	revealed	novel	genes	involved	in	drug	sensitivity	

and	resistance.	Knockdown	of	EIF4A1	caused	resistance	to	methotrexate	(S=6.5)	and	in	cell	lines	EIF4A1	

expression	is	positively	correlated	with	methotrexate	sensitivity	across	645	cell	lines	(r=0.25,	p=1.9e-8),	
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consistent	with	the	network	prediction.	Alternatively,	SNX24	knockdown	was	synthetic	lethal	with	

paclitaxel	(S=-6.8)	and	SNX24	expression	was	negatively	correlated	with	drug	sensitivity	(r=-0.14,	

p=0.0026).	Thus	computational	analysis	of	chemical-genetic	interaction	maps	can	be	used	to	complement	

cancer	cell	line	screens	and	may	be	able	to	produce	biomarkers	that	bridge	correlation	with	causation.	

	

Prediction	of	drug	synergies	using	the	chemical-genetic	interaction	map	

There	has	been	considerable	interest	in	the	development	of	targeted	therapies	that	inhibit	DNA	repair	

machinery	to	be	used	in	combination	with	agents	that	generate	specific	types	of	DNA	damage	(Gavande	

et	al.,	2016).	We	observed	that	loss	of	the	DNA	damage	signaling	kinase	ATR	induced	sensitivity	to	

crosslinking	agents	and	inhibitors	of	DNA	replication	in	the	consensus	map	(Figure	2A).	This	was	in	

contrast	to	its	closely	related	paralog	kinase	ATM,	which	was	not	linked	to	the	response	to	these	drugs	

but	rather	with	moderate	resistance	to	DNA	alkylators	and	nucleotide	analogs	(Table	S3).	These	results	

reflect	the	importance	of	ATR	in	the	repair	of	damage	during	DNA	replication	as	opposed	to	ATM	(Flynn	

and	Zou,	2011).		We	hypothesized	that	the	synthetic	lethal	interactions	observed	with	ATR	knockdown	

could	be	phenocopied	with	a	small	molecule	inhibitor	of	ATR	and	used	to	prioritize	synergistic	drug	

combinations.	We	tested	the	combined	effects	of	the	ATR	inhibitor	VE-821	with	five	drugs	that	were	

synthetic	lethal	with	ATR	knockdown	and	three	drugs	that	were	not	(Figure	3A).	Using	a	matrix	

screening	approach	we	measured	the	effects	of	each	drug	on	proliferation	and	determined	a	synergy	

score	reflecting	the	degree	of	drug	synergy	based	on	the	Loewe	excess	model	(Lehar	et	al.,	2009).	Drugs	

that	were	synthetic	lethal	with	ATR	inhibition	were	more	synergistic	than	those	that	were	not	predicted	

to	be	(p=0.048,	Figure	3B).	In	particular,	for	cisplatin	and	BMN673	we	observed	marked	synergy	at	

multiple	doses,	in	short	as	well	as	long-term	growth	assays	(Figure	3C-E).	Since	little	is	known	about	ATR	

and	PARP	inhibitor	synergy	in	breast	cancer,	we	explored	the	degree	to	which	this	interaction	could	be	

recapitulated	in	breast	cancer	cell	lines.	We	found	that	the	addition	of	VE-821	was	synergistic	and	could	

potentiate	the	activity	of	BMN673	in	3	out	of	the	5	cell	lines	we	tested	(60%)	with	a	combination	index	
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(CI)	between	0.07-0.17	with	CI	<	0.3	indicating	strong	synergy	(Figure	3F)	(Chou,	2006).	Therefore	the	

chemical	genetic	interaction	map	can	be	used	to	prioritize	new	drug	combinations	and	in	the	case	of	ATR	

inhibitors,	highlights	drugs	combinations	that	could	help	optimize	clinical	testing.	

	

Prediction	of	factors	mediating	resistance	to	PARP	inhibition	

We	next	evaluated	the	map	as	a	systematic	resource	to	predict	new	molecules	involved	in	DNA	repair	and	

new	mechanisms	of	resistance	to	chemotherapy.		We	focused	on	PARP	inhibitors	olaparib,	veliparib,	

rucaparib	and	BMN673	as	well	as	cisplatin	since	they	are	of	high	clinical	interest,	have	similar	

mechanisms	of	action	and	generate	DNA	damage	that	depends	on	repair	via	HR	(Figure	1E).	As	controls,	

BRCA1,	BRCA2,	PALB2	and	SHFM1	knockdown	was	synthetic	lethal	with	these	agents	and	loss	of	

TP53BP1	was	associated	with	resistance	(Figure	4A).	An	important	consideration	in	interpreting	genetic	

interaction	data	from	a	single	cell	line	is	the	degree	to	which	such	interactions	are	maintained	in	other	

cellular	contexts	(Ashworth	et	al.,	2011).	To	assess	this	we	identified	chemical-genetic	interactions	using	

the	same	experimental	approach	with	BMN673	in	two	breast	cancer	lines,	MDAMB231	and	SUM149PT,	

and	two	ovarian	cancer	lines	OVCAR3	and	UWB1.289.	After	scoring	esiRNAs	for	their	ability	to	induce	

resistance	or	sensitivity	to	BMN673	in	each	of	these	lines	(defined	based	on	a	cutoff	of	p<0.01),	we	found	

that	the	chemical-genetic	interaction	score	was	highly	predictive	of	whether	a	particular	interaction	was	

preserved	in	other	cell	lines	(Table	S4).	For	example,	interactions	with	BMN673	that	had	a	score	>5	in	

MCF10A	cells	were	40%	likely	to	validate	in	2	or	more	cell	lines	and	70%	likely	to	validate	in	at	least	one	

other	line	(Figure	4B).	Although	this	trend	was	also	evident	for	negative	interactions,	the	magnitude	was	

much	less	pronounced.	Since	two	of	the	tested	lines	were	BRCA1	mutant	(SUM149PT,	UWB1.289),	a	likely	

reason	for	this	difference	is	that	factors	whose	loss	leads	to	PARP	sensitivity	in	HR-competent	MCF10A	

cells	may	not	be	relevant	in	BRCA1	mutant	cells	that	are	already	HR	deficient.	Therefore,	interaction	

strength	in	MCF10A	cells	can	be	used	to	predict	genetic	interactions	in	other	cell	lines	highlighting	the	

quantitative	nature	of	this	map.		
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We	next	sought	to	validate	the	top	two	hits	producing	resistance,	GPBP1	and	ARID1A	in	additional	

models.	Using	independent	siRNAs	we	confirmed	that	loss	of	either	factor	caused	resistance	to	BMN673	

in	MCF10A,	MDAMB231,	SUM149PT	and	UWB1.289	cells	in	most,	if	not	all,	cases	(Figure	4C).	ARID1A	

loss	often	occurs	through	somatic	mutation	and	has	been	previously	linked	to	the	regulation	of	DNA	

repair	processes	(Dykhuizen	et	al.,	2013;	Shen	et	al.,	2015).	We	next	confirmed	this	result	in	engineered	

ARID1A	-/-	MCF10A	cells,	which	were	resistant	to	BMN673	in	comparison	to	parental	MCF10A	(Figure	

S2A).	We	next	searched	for	clinical	evidence	that	ARID1A	loss	contributes	to	resistance	to	PARP	or	

platinum	containing	chemotherapy.	In	support,	we	found	ARID1A	loss	was	linked	to	poor	outcome	in	

TCGA	high-grade	serous	ovarian	cancers	(TCGA	HGSOC)	receiving	platinum	as	standard	of	care	(p=0.01,	

Figure	S2B)	(Cancer	Genome	Atlas	Research,	2011).	To	test	if	this	observation	extended	to	PARP	

inhibitors,	we	analyzed	samples	from	high-grade	serous	or	endometrioid	ovarian	cancer	patients	treated	

with	rucaparib	(NCT01891344)	(Swisher	et	al.,	2017).	We	did	not	identify	any	patients	with	concurrent	

BRCA1	and	ARID1A	mutations	and	therefore	focused	our	analysis	on	a	cohort	of	154	patients	that	did	not	

have	known	mutations	in	the	HR	pathway	where	we	identified	10	that	had	mutations	in	ARID1A.	The	

progression	free	survival	(PFS)	for	these	10	ARID1A	mutant	cases	was	significantly	lower	than	for	the	

rest	of	this	cohort	(p=0.003,	Figure	S2C).	These	clinical	data	show	that	PARP	inhibitors	provide	no	clinical	

benefit	in	ARID1A	mutated	high-grade	serous	or	endometrioid	ovarian	cancer	and	warrants	further	

investigation.	

	

GPBP1	loss	causes	PARP	and	platinum	resistance	by	regulating	the	expression	of	factors	involved	

in	homologous	recombination	

We	next	investigated	the	top	candidate	in	our	categorical	analysis,	GPBP1,	a	transcription	factor	of	

unknown	function.	GPBP1	lies	on	chromosome	5q11,	a	region	focally	deleted	in	approximately	5%	of	

TCGA	HGSOC	and	4%	of	TCGA	breast	cancers.	To	determine	if	GPBP1	plays	a	role	in	the	transcriptional	
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response	to	DNA	damage,	we	performed	RNAseq	analysis	of	control	and	GPBP1-knockdown	MCF10A	

cells	treated	with	or	without	BMN673.	RT-qPCR	of	GPBP1	knockdown	cells	confirmed	90%	knockdown	

at	the	mRNA	level	in	this	experiment	(Figure	S3A).	In	response	to	24	hour	BMN673	treatment,	GPBP1	

knockdown	caused	the	up-regulation	of	factors	involved	in	HR	based	on	gene	set	enrichment	analysis	

(GSEA)	(Subramanian	et	al.,	2005)	(Figure	5A),	indicating	a	potential	compensatory	mechanism	to	

facilitate	repair	of	lesions	incurred	by	PARP	inhibition.	In	contrast	to	control	cells,	GPBP1	knockdown	

resulted	in	up-regulation	of	distinct	and	canonical	HR	factors	such	as	BRCA1	and	RAD51B	in	response	to	

BMN673	(Figure	5B).			

	

We	next	asked	if	this	transcriptional	response	was	sufficient	to	enhance	the	repair	of	double	strand	

breaks	incurred	by	PARP	inhibition	and	if	this	occurred	via	HR.	This	hypothesis	was	particularly	

intriguing	since	GPBP1	knockdown	caused	resistance	to	BMN673	in	BRCA1	mutant	cancer	cell	lines	

suggesting	that	GPBP1	loss	may	bypass	the	requirement	of	BRCA1	for	HR	(Figure	4C).	To	test	this	

hypothesis	we	established	a	HR-deficient	and	PARP	inhibitor	sensitive	MCF10A	model	by	BRCA1	

knockdown	and	in	this	model	knockdown	of	BRCA1	and	GPBP1	together	led	to	a	significant	rescue	of	

BMN673	sensitivity	(Figure	S3B).	Using	immunofluorescence	we	found	that	generation	of	γH2AX	foci	

after	BMN673	treatment	was	reduced	in	BRCA1+GPBP1	versus	BRCA1	knockdown	cells	(p=0.045),	

indicating	that	GPBP1	loss	led	to	a	reduction	in	the	number	of	DNA	double	strand	breaks	formed	after	

PARP	inhibitor	treatment	(Figure	5C).	To	determine	if	this	reduction	in	double	strand	breaks	was	due	to	

heightened	HR	repair	capacity	we	examined	the	recruitment	of	the	strand-exchange	protein	RAD51	to	

damaged	chromatin,	a	mark	of	commitment	to	double	strand	break	repair	using	HR.	We	found	that	the	

recruitment	of	RAD51	was	increased	in	BRCA1+GPBP1	versus	BRCA1	knockdown	cells	after	PARP	

inhibition	indicating	that	GPBP1	loss	led	to	an	increase	in	double	strand	break	repair	through	HR	

(p=0.036,	Figure	5D).	We	confirmed	these	findings	in	BRCA1	mutant	SUM149PT	cells	where	GPBP1	

knockdown	also	led	to	a	significant	reduction	in	H2AX	foci	and	increase	in	RAD51	foci	after	BMN673	
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treatment	(Figure	5E,F)	indicating	that	GPBP1	loss	can	also	restore	HR	in	cases	when	BRCA1	is	mutated.	

These	results	indicate	that	GPBP1	loss	contributes	to	increased	double	strand	break	repair	by	HR	as	a	

mechanism	of	PARP	inhibitor	resistance.	

	

We	next	asked	if	the	expression	of	HR	factors	was	also	elevated	in	human	cancer	samples	harboring	

GPBP1	loss	and	if	it	might	contribute	to	drug	resistance.	There	was	a	strong	concordance	between	genes	

up-regulated	upon	GPBP1	knockdown	and	genes	whose	expression	level	was	higher	in	breast	cancers	

with	GPBP1	loss	(Figure	6A).	Further	analysis	of	samples	with	GPBP1	loss	in	TCGA	ovarian	cancer	

samples	also	reflected	the	increased	expression	of	a	number	of	the	same	HR	factors,	indicating	a	similar	

function	of	GPBP1	in	these	two	disease	types	(Figure	6B).	We	next	asked	if	this	enhancement	in	HR	gene	

expression	upon	GPBP1	loss	resulted	in	drug	resistance	in	ovarian	cancer	patients	treated	with	platinum	

containing	therapy.	In	the	TCGA	ovarian	cohort,	survival	analysis	indicated	that	GPBP1	loss	was	

associated	with	poor	outcome	and	resistance	to	platinum	therapy	(p=0.001	via	log-rank	test,	Figure	6C).		

Therefore	GPBP1	loss	contributes	to	platinum	resistance	in	ovarian	cancer	through	the	increased	

expression	of	genes	involved	in	HR.		

	

DISCUSSION	

We	present	a	quantitative	map	to	link	the	efficacy	of	chemotherapeutics	to	tumor	genetics.	This	dataset	

and	general	approach	can	serve	as	a	platform	for	the	functional	and	therapeutic	translation	of	tumor	

genomes.	In	contrast	to	most	standard	genetic	screens,	this	approach	provides	a	quantitative	readout	

which	approximates	genetic	interaction	strength	and	allows	for	the	comparison	of	responses	across	

many	drugs.	Covering	nearly	20,000	interactions,	this	map	is	larger	than	previously	published	

mammalian	chemical-genetic	interaction	maps	by	nearly	an	order	of	magnitude	(Martins	et	al.,	2015).	To	

aid	in	integration	of	these	data	with	ongoing	efforts	to	systematize	cancer	related	screens,	data	from	this	
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network	have	been	deposited	into	the	Cancer	Target	Discovery	and	Development	(CTD2)	dashboard	

(https://ctd2-dashboard.nci.nih.gov/).		

	

Using	insights	derived	from	the	chemical-genetic	interaction	map,	we	highlight	several	vignettes	

describing	how	it	can	be	used	to	aid	in	the	development	of	cancer	therapeutics.		The	map	was	able	to	

identify	drugs	with	similar	mechanisms	of	action	and	highlights	the	commonalities	between	PARP	

inhibitors	and	DNA	cross-linking	agents	that	contribute	to	synthetic	lethality	with	loss	of	HR	pathway	

genes.		Computational	analysis	of	the	map	was	used	to	predict	the	sensitivity	of	tumor	cells	to	

chemotherapies	as	well	as	predict	synergistic	drug	combinations.	For	example,	by	tracing	drug	

sensitivities	associated	with	ATR	knockdown,	we	predicted	and	tested	synergy	between	the	ATR	

inhibitor	VE-821	and	PARP	inhibitor	BMN673	in	breast	cancer	cells.	Systematic	testing	indicated	synergy	

in	most	breast	cancer	cell	lines	and	future	work	may	evaluate	what	dictates	synergy	in	breast	cancer	and	

other	disease	subsets	that	have	been	reported	(Kim	et	al.,	2017;	Mohni	et	al.,	2015).	In	addition,	the	map	

may	provide	a	platform	for	enhancing	methods	to	predict	drug	responses	from	baseline	genomic	profiles,	

since	current	approaches	do	not	already	use	this	functional	information	(Costello	et	al.,	2014).	Therefore,	

this	work	provides	the	conceptual	framework	to	incorporate	chemical-genetic	interaction	maps	into	

more	direct	drug	development	approaches.	

	

We	demonstrate	several	ways	to	enhance	the	reliability	and	utility	of	this	map.	First,	we	show	that	

related	drugs	have	similar	genetic	interaction	profiles	and	that	analyzing	multiple	compounds	with	the	

same	mechanism	of	action	together	the	map	can	be	used	to	identify	new	modifiers	of	therapeutic	

responses	that	are	not	specific	to	a	single	compound.	As	specific	drugs	may	have	unique	off	targets,	such	

as	the	case	for	PARP	inhibitors	(Knezevic	et	al.,	2016),	analyzing	related	drugs	together	may	identify	

genetic	interactions	linked	to	their	core	mechanism	of	action.	Second,	the	plasticity	in	genetic	networks	

has	been	an	impediment	to	the	identification	of	genetic	interactions	that	are	cell	type	independent	(i.e.	
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‘hard’	versus	‘soft’	interactions)	(Ashworth	et	al.,	2011).	Rescreening	in	multiple	cancer	cell	lines	showed	

that	the	strength	of	genetic	interaction	was	proportional	to	the	likelihood	of	interaction	being	conserved	

in	other	cell	lines.	Therefore	our	data	indicate	that	the	quantitative	nature	of	genetic	interaction	maps	

could	be	used	to	distinguish	between	interactions	that	are	more	globally	preserved	versus	those	more	

specific	to	the	cell	line	tested.		

	

Based	on	our	categorical	analysis,	we	identified	that	ARID1A	loss	causes	PARP	inhibitor	resistance	in	our	

models.	Concordant	with	our	pre-clinical	and	clinical	data,	low	ARID1A	expression	has	been	linked	with	

poor	outcome	and	platinum	resistance	in	high	grade	serous	ovarian	cancer	(Yokoyama	et	al.,	2014)	and	

clear	cell	ovarian	cancers	(Itamochi	et	al.,	2015;	Katagiri	et	al.,	2012).	However,	the	functional	role	of	

ARID1A	on	DNA	repair	is	unclear	with	conflicting	reports	of	its	role	in	homologous	recombination	

(Adamson	et	al.,	2012;	Shen	et	al.,	2015).	Together,	these	data	warrant	a	more	complete	interrogation	of	

the	role	of	ARID1A	on	PARP	inhibitor	resistance.	The	strongest	resistance	interaction	with	PARP	

inhibitors	and	cisplatin	was	GPBP1	that	is	involved	in	the	transcriptional	regulation	of	genes	involved	in	

HR.	Another	transcriptional	regulator,	CDK12	has	been	shown	to	modulate	PARP	inhibitor	sensitivity	

through	the	regulation	of	genes	involved	in	HR	(Bajrami	et	al.,	2014;	Johnson	et	al.,	2016).	Future	studies	

may	seek	to	identify	the	potential	interplay	between	the	targets	of	CDK12	and	GPBP1.	Since	we	observed	

that	GPBP1	loss	is	linked	to	chemoresistance	and	poor	clinical	outcome,	these	functional	and	clinical	data	

warrant	a	more	complete	interrogation	of	the	role	of	GPBP1	and	its	role	in	chemoresistance.	For	example,	

although	GPBP1	loss	was	not	assessed	in	our	rucaparib	clinical	trial	cohort,	future	work	could	determine	

its	clinical	association	with	PARP	inhibitor	resistance.	This	work	highlights	the	utility	of	a	systematic	

chemical-genetic	interaction	map	as	a	resource	for	the	identification	of	clinically	relevant	biomarkers	of	

drug	susceptibility	as	well	as	a	foundation	for	integration	with	other	cancer	datasets	to	enhance	drug	and	

biomarker	development.	
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FIGURE	LEGENDS	

Figure	1:	Design	of	a	chemical	genetic	interaction	map	and	recapitulation	of	known	gene	and	drug	

relationships.	(A)	Composition	of	genes	selected	for	esiRNA	based	knockdown.	TSG	=	tumor	suppressor	

genes	(B)	Selection	of	31	drugs	profiled	in	this	study.	(C)	Distribution	of	chemical	genetic	interaction	

scores	(S)	for	all	drugs	profiled.		Scores	of	899	GFP	knockdowns	across	all	tested	drugs	are	shown.	FDR	

cutoffs	are	based	on	the	percent	of	GFP	knockdowns	falling	outside	of	a	given	score	threshold.	Metho	=	

methotrexate,	Gem	=	gemcitabine.	(D)	Genetic	interactions	with	BRCA-pathway	members	BRCA1,	BRCA2,	

SHFM1,	and	PALB2	as	well	as	the	NHEJ	factor	TP53BP1.	Interactions	with	PARP	inhibitors	and	

crosslinking	agents	are	highlighted	and	p-values	represent	the	significance	of	differences	between	these	

scores	and	zero	using	a	t-test.	Dotted	lines	represent	10%	FDR	cutoff.	(E)	PARP	inhibitor	scores	with	all	

19	annotated	HR	factors	and	10	annotated	NHEJ	factors.	(F)	Correlation	of	chemical-genetic	interaction	

profiles	among	drugs	that	are	known	to	belong	to	the	same	of	different	classes.	For	specific	drug	classes,	

pairwise	correlations	were	compared	against	background	of	correlations	of	drugs	from	different	classes	

and	p-value	assessed	by	t-test.	(G)	Correlation	of	profiles	for	PARP	inhibitors	with	two	cross	linking	

agents,	cisplatin	and	mitomycin	C.	Trapping	potency	from	(Murai	et	al.,	2014).		

	

Figure	2:	Prediction	of	cell	lines	responses	from	the	chemical-interaction	map.	(A)	Consensus	

interaction	map	based	on	coordinate	responses	with	drug	classes.	All	interactions	shown	have	a	FDR	of	

category	association	<0.1%.	The	number	of	drugs	in	each	category	is	indicated.	Thicker	edges	represent	

interactions	that	are	also	found	across	cancer	cell	line	collections	(p<0.01).	(B)	Overlap	with	correlation	

based	chemical-genetic	interactions	from	cancer	cell	lines.	Shown	is	the	fraction	of	chemical	genetic	

interactions	at	a	given	score	cutoff	(|S|)	where	the	expression	of	the	gene	is	also	significantly	associated	

with	resistance	or	sensitivity	to	the	same	drug	across	cell	lines	in	the	CTRP	dataset	(p<0.01).	Dotted	line	

represents	baseline	overlap	at	random	(17.3%).	(C)	Prediction	of	cell	line	responses	to	11	drugs	

overlapping	with	the	CTRP	dataset.	Cell	lines	were	scored	based	on	the	sum	of	normalized	gene	
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expression	for	all	genes	in	the	network	at	a	given	cutoff	where	the	contribution	of	each	gene	to	the	sum	is	

weighted	positively	or	negatively	based	on	the	sign	in	the	chemical-genetic	interaction	map.	These	drug	

and	cell	line	specific	scores	are	then	correlated	with	the	AUC	values	reported	in	the	CTRP	and	significant	

predictors	are	counted	(p≤0.05).	Red	line	is	a	sliding	average.	(D)	Analysis	of	cell	line	response	

predictions	based	on	a	score	cutoff	of	5.	For	each	model	the	correlation	of	predicted	versus	real	AUC	is	

shown	with	accompanying	p-value	when	significant.	Genes	whose	expression	contributed	the	most	to	the	

prediction	accuracy	are	shown	(see	Methods).		

	

Figure	3:	Prediction	of	drug	synergies	based	on	ATR	inhibition.	(A)	Comparison	of	chemical	

interaction	scores	for	ATM	and	ATR	knockdown.	P-value	based	on	difference	in	overall	score	distribution.		

Selected	positive	(green)	and	negative	(red)	drugs	for	ATR	are	shown.	(B)	Synergy	scores	between	the	

ATR	inhibitor	VE-821	and	drugs	selected	based	on	positive	and	negative	scores	with	ATR	in	the	map.	

Percent	inhibition	of	growth	of	MCF10A	cells	treated	with	an	escalating	dose	matrix	of	VE-821	with	(C)	

cisplatin	and	(D)	BMN673.	(E)	Crystal	violet	staining	of	MCF10A	cells	14	days	after	treatment	with	

vehicle,	VE-821,	BMN673	and	the	combination.	Normalized	quantification	of	intensity	shown.	(F)	Relative	

proliferation	of	MCF10A	and	indicated	breast	cancer	cell	lines	treated	with	BMN673	alone	versus	both	

BMN673	and	VE821	together	for	3	days.	Single	agent	BMN673	was	normalized	to	DMSO	and	

combinations	were	normalized	to	VE-821	alone.	A	constant	dose	of	2.5uM	VE-821	was	used	except	in	

MCF7	cells	where	625nM	was	used	due	to	the	toxicity	of	single	agent	VE-821	at	higher	doses.	The	

combination	index	(CI)	value	at	the	indicated	doses	is	shown.	(A,B)	Error	bars	are	s.e.m.	

	

Figure	4:	Assessment	of	genetic	interactions	with	PARP	inhibitors	and	cisplatin.	(A)	Interaction	

profiles	of	four	PARP	inhibitors	and	cisplatin	sorted	based	on	average	across	all	drugs.	Known	factors	

associated	with	resistance	and	sensitivity	indicated	in	red.	(B)	Preservation	of	genetic	interactions	with	

BMN673	between	MCF10A	cells	and	four	independent	cancer	cell	lines,	MDAMB231,	SUM149PT,	OVCAR-
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3	and	UWB1.289.	A	genetic	interaction	is	considered	preserved	if	it	is	significant	(p<0.01)	with	the	same	

direction	in	one	or	more	lines.	Each	point	represents	the	cumulative	rate	of	preservation	in	>1	line	(blue)	

or	>2	lines	(red)	for	all	interactions	scoring	past	a	particular	cutoff.	Solid	lines	are	sliding	averages.	(C)	

Confirmation	of	resistance	interactions	using	independent	synthetic	siRNA	gene	knockdown	in	cell	lines.	

Samples	were	treated	with	approximate	IC50	dose	of	BMN673	and	normalized	to	gene	knockdown	

treated	with	DMSO.	NT4	is	non-targeting	control.	

	

Figure	5:	BMN673	treatment	of	GPBP1	knockdown	cells	causes	up	regulation	of	the	homologous	

recombination	pathway.	(A)	Gene	set	enrichment	analysis	of	homologous	recombination	pathway	

genes	using	RNAseq	data	from	MCF10A	cells	with	GPBP1	knockdown	in	presence	and	absence	of	

BMN673.	(B)	Heatmap	representation	of	expression	of	HR	pathway	genes	differentially	expressed	in	the	

presence	of	BMN673.	TPM	=	transcripts	per	kilobase	million.	(C)	Quantification	of	gamma-H2AX	foci	and	

(D)	RAD51	recruitment	after	treatment	with	500nM	of	BMN673	in	the	presence	of	the	indicated	gene	

knockdowns	in	MCF10A	cells.	(E)	Quantification	of	gamma-H2AX	foci	and	(F)	RAD51	recruitment	after	

treatment	with	50nM	of	BMN673	in	the	presence	of	the	indicated	gene	knockdowns	in	SUM149PT	cells.	

NT4	is	non-targeting	control.	Error	bars	s.e.m.	

	

Figure	6:	Cancers	with	GPBP1	loss	display	heightened	expression	of	HR	genes	and	resist	platinum	

treatment	in	ovarian	cancer.	(A)	Comparison	of	gene	expression	levels	of	homologous	recombination	

pathway	genes	in	the	breast	TCGA	among	tumors	with	GPBP1	homozygous/heterozygous	loss	versus	

diploid	CNV	status.	(B)	Comparison	of	gene	expression	levels	of	homologous	recombination	pathway	

genes	in	ovarian	cancer	patients	from	TCGA	High	Grade	Serous	Ovarian	Cancer	(HGSOC)	dataset	with	

GPBP1	homozygous/heterozygous	loss	versus	diploid	CNV	status.	P-values	were	calculated	by	non-

parametric	Mann-Whitney-Wilcoxon	test.	(C)	The	Kaplan-Meier	disease	free	survival	(DFS)	analysis	of	
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patients	in	TCGA	HGSOC	with	samples	with	deletion	in	GPBP1.	Boxes	represent	the	interquartile	range	

and	whiskers	are	1.5	times	the	interquartile	range.	
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Supplementary	Tables	

Table	S1:	List	of	genes	with	annotations	used	in	the	primary	screen	and	drugs	and	concentrations	used.		

Table	S2:	Chemical	genetic	interaction	scores.		

Table	S3:	List	of	scores	based	on	drug	class	analysis	

Table	S4:	Individual	cell	line	results	from	the	BMN673	rescreen.	
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Figure	1	
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Figure	2	
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Figure	3	

	
	 	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/171918doi: bioRxiv preprint 

https://doi.org/10.1101/171918
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 30	

Figure	4	
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Figure	5	

	
	
	 	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/171918doi: bioRxiv preprint 

https://doi.org/10.1101/171918
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 32	

Figure	6	
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