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Abstract 

Introduction Missing values exist widely in mass-spectrometry (MS) based metabolomics data. Various 

methods have been applied for handling missing values, but the selection of methods can significantly 

affect following data analyses and interpretations. According to the definition, there are three types of 

missing values, missing completely at random (MCAR), missing at random (MAR), and missing not at 

random (MNAR).  

Objectives The aim of this study was to comprehensively compare common imputation methods for 

different types of missing values using two separate metabolomics data sets (977 and 198 serum samples 

respectively) to propose a strategy to deal with missing values in metabolomics studies. 

Methods Imputation methods included zero, half minimum (HM), mean, median, random forest (RF), 

singular value decomposition (SVD), k-nearest neighbors (kNN), and quantile regression imputation of 

left-censored data (QRILC). Normalized root mean squared error (NRMSE) and NRMSE-based sum of 

ranks (SOR) were applied to evaluate the imputation accuracy for MCAR/MAR and MNAR 

correspondingly. Principal component analysis (PCA)/partial least squares (PLS)-Procrustes sum of 

squared error were used to evaluate the overall sample distribution. Student’s t-test followed by Pearson 

correlation analysis was conducted to evaluate the effect of imputation on univariate statistical analysis.  

Results Our findings demonstrated that RF imputation performed the best for MCAR/MAR and QRILC 

was the favored one for MNAR.  
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Conclusion Combining with “modified 80% rule”, we proposed a comprehensive strategy and developed 

a public-accessible web-tool for missing value imputation in metabolomics data. 

Keywords: Metabolomics; missing value imputation; MCAR; MAR; MNAR; 
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1 Introduction 

Metabolomics is the study of systematic identification and/or quantification of wide ranges of small 

molecule metabolites in bio-samples (cell, tissue, and biological fluids, etc.). Mass spectrometry (MS) is 

one of the main techniques for metabolomics studies (Dettmer et al. 2007). However, missing values, 

that certain compounds cannot be identified/quantified in certain samples, occur widely in MS-based 

metabolomics data due to technical and biological reasons (Bijlsma et al. 2006; Hrydziuszko and Viant 

2012). Generally, there are three types of missing values, missing completely at random (MCAR), 

missing at random (MAR), and missing not at random (MNAR) (Gelman and Hill 2006; Little and Rubin 

2002). Unexpected missing values are considered as MCAR if they originate from random errors and 

stochastic fluctuations during the data acquisition process (e.g., incomplete derivatization or ionization). 

MAR assumes the probability of a variable being missing depends on other observed variables (Gelman 

and Hill 2006; Little and Rubin 2002). Thus, missing values due to suboptimal data preprocessing, e.g., 

inaccurate peak detection and deconvolution of co-eluting compounds, can be called MAR. However, it 

is hard to distinguish these two types of missing values and some imputation methods can be applied for 

both MCAR and MAR data (Lazar et al. 2016). For targeted metabolomics studies, censored missing 

values caused by lower than the limits of quantification (LOQ) are considered as MNAR (Karpievitch et 

al. 2012). For example, previous study showed that bile acids exhibited large variations of concentrations 

in human serum, targeted identification of a panel of bile acids using MS technique produced many 

missing values due to LOQ (Xie et al. 2015). 

The way of handling missing values in metabolomics data differs due to different sources. For those 

caused by random errors or stochastic fluctuations during the data acquisition process, the number of 
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missing values is small and one can re-analyze or re-prepare bio-samples for data acquisition. For 

missing values produced during the data pre-processing step, filling peaks has been proposed in many 

tools by simply extracting and replacing with raw or baseline signals, e.g., fillPeaks in XCMS (Smith et 

al. 2006). However, these signals may not be accurate enough to represent real concentration levels of 

compounds unless baseline has been corrected and none co-eluting compounds exist nearby. For some 

missing values due to strict parameter settings during data processing, it is recommended to adjust or 

apply flexible parameter settings to retrieve real signals of certain compounds, such as low-concentration 

metabolites in biological samples (Y. Ni et al. 2016). Missing values due to LOQ are usually replaced 

with a small value or zero, which may lead to certain biases, e.g., distortions of the distribution of 

missing variables and underestimations of the standard deviation (Gelman and Hill 2006). Of course, in 

metabolomics, missing values that exist in more than 20% of samples may be removed directly from the 

data, which is called “80% rule” (Bijlsma et al. 2006). To decrease the risk of losing potential differential 

metabolites, “modified 80% rule” was proposed that variables are removed from the data when the 

proportion of non-missing elements are accounted for less than 80% among each group (Yang et al. 

2015). 

Instead of simply replacing missing with a specific value, more advanced imputation strategies have 

been proposed for handling missing values in –omics studies, such as k-nearest neighbors (kNN) 

imputation (Troyanskaya et al. 2001), random forest (RF) imputation (Stekhoven and Bühlmann 2012), 

and singular value decomposition (SVD) imputation (Hastie et al. 1999). Several software tools for 

metabolomics data analysis have implemented different methods dealing with missing values (Kessler et 

al. 2013; Luedemann et al. 2012; Xia et al. 2015; Katajamaa et al. 2006; Mak et al. 2014). MetaboAnalyst 
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(Xia et al. 2009; Xia et al. 2015), one widely used metabolomics analysis toolkit, provides Probabilistic 

PCA (PPCA), Bayesian PCA (BPCA) and SVD imputation. However, the selection of methods for 

handling missing values can significantly affect subsequent data analyses and interpretations (Huan and 

Li 2015; Armitage et al. 2015), and it is difficult for users to decide an appropriate one for their data. 

Gromski et al. compared the performance of several missing value imputation methods on GC-MS 

metabolomics data, including zero, mean, median, kNN, and RF, and recommended RF as a favored one 

(Gromski et al. 2014). However, these imputation methods are suitable for MCAR/MAR only. 

Hrydziuszko et al. raised the importance of selecting optimal methods for treating missing values in 

metabolomics. They compared eight imputation methods in univariate and multivariate fashions and 

concluded kNN imputation was an optimal one (Hrydziuszko and Viant 2012). Although two types of 

missing values, MCAR/MAR and MNAR, were mentioned in their work, identical imputation strategies 

were applied and thus made it unclear to determine suitable methods for different types of missing values. 

The quantile regression imputation of left-censored data (QRILC), originally proposed for the 

imputation of MS-based proteomics data, imputes the left-censored missing in truncated fashion could 

be applied for MNAR in metabolomics (Lazar 2015). Thus, a comprehensive and systematic evaluation 

of different methods for handling missing values from different sources is needed for MS-based 

metabolomics studies. 

In this study, we generated both MCAR/MAR and MNAR data in two separate clinical metabolomics 

studies, and then compared five different imputation methods (i.e., RF, kNN, SVD, Mean, Median) for 

MCAR/MAR and six imputation methods (i.e., QRILC, Half-minimum, Zero, RF, kNN, SVD) for 

MNAR. Then, we systematically measured the performance of those imputation methods using three 
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different ways: (1) normalized root mean squared error (NRMSE) and NRMSE-based sum of ranks 

(SOR) were applied to evaluate the imputation accuracy for MCAR/MAR and MNAR correspondingly; 

(2) principal component analysis (PCA)/partial least squares (PLS)-Procrustes sum of squared error were 

used to evaluate the overall sample distribution; and (3) student’s t-test followed by Pearson correlation 

analysis was conducted to evaluate the effect of imputation on univariate statistical analysis. Results 

showed that RF imputation performed the best for MCAR/MAR and QRILC was favored one for MNAR. 

Finally, considering “modified 80% rule” together, we proposed a comprehensive strategy to deal with 

missing values in metabolomics studies with a public-accessible web-tool provided.
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2 Material and Methods 

2.1 Metabolomics data sets 

Two real-world clinical metabolomics data sets were applied to evaluate the performance of different 

imputation methods. Since the measurements required comparisons between imputed data and original 

data, a complete raw data set was needed in our studies. Thus, we removed all missing values in our 

original data beforehand and left a complete data set for consequential analysis. 

(1) The first data set included a total of 977 de-identified subjects and 75 metabolites without missing 

values. It served as a large sample size data set for label-free evaluation.  

(2) The second data set was collected from a study of comparing metabolic profiles between obese 

subjects with diabetes mellitus and healthy controls (Yan Ni et al. 2015). After filtering all missing 

values, this data set contained a total number of 198 subjects (70 patients, 128 healthy controls) and 

130 variables including metabolites (i.e., free fatty acids, amino acids, and bile acids) and/or derived 

ratios. It served as medium sample size data set for both label-free and labeled data evaluation. 

2.2 Missing value generation 

For MCAR/MAR generation, we randomly drew elements and replaced with missing values (NA) from 

the complete data matrix across the proportions from 1% to 50% in a step of 2.5% to generate a list of 

missing data sets. 

For MNAR generation, according to our experience that the missing values usually occur in certain 

variables, we first randomly picked a certain number/proportion (from 4% to 80% in a step of 4%) of 

variables as missing variables. Then, we generated a random quantile cut off from the range 30%~60% 
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for each missing variable and replaced those elements under the cutoff with missing values. A list of 

MNAR data sets was then generated. 

2.3 Missing value imputation methods 

For the situation of MCAR/MAR, we applied five different imputation methods, which were: 

• kNN (k Nearest Neighbors Imputation) (Troyanskaya et al. 2001): The original kNN imputation was 

developed for high-dimensional microarray gene expression data (n << p, n is the number of 

samples, and p is the number of variables). For each gene with missing values, this method finds the 

k nearest genes using Euclidean metric and imputes missing elements by averaging those 

non-missing elements of its neighbors. In metabolomics studies, we applied kNN to find k nearest 

samples instead and imputed the missing elements. We applied R package impute for this imputation 

approach. 

• RF (Imputation with Random Forest) (Stekhoven and Bühlmann 2012): This imputation method 

applies random forest, a powerful machine learning algorithm, to build a prediction model by setting 

particular target variable with non-missing values as the outcome and other variables as predictors, 

then to predict the target variable with missing values iteratively. The R package missForest was 

used for this approach. 

• SVD (Singular Value Decomposition Imputation) (Stacklies et al. 2007; Hastie et al. 1999): SVD 

imputation will initialize all missing elements with zero then estimate them as a linear combination 

of the k most significant eigen-variables iteratively until reaches certain convergence threshold. In 
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metabolomics data, we scaled and centralized the data matrix first and then applied this imputation 

approach with the number of PCs setting to five by using R package pcaMethods. 

• Mean: This method replaces missing elements with an average value of non-missing elements in 

corresponding variable. 

• Median: This method replaces missing elements with a median value of non-missing elements in 

corresponding variable. 

For the situation of MNAR, we applied RF, kNN, SVD and other three methods: 

• QRILC (Quantile Regression Imputation of Left-Censored data) (Lazar 2015): QRILC imputation 

was specifically designed for left-censored data, data missing caused by lower than LOQ. This 

method imputes missing elements with randomly drawing from a truncated distribution estimated by 

a quantile regression. A beforehand log-transformation was conducted to improve the imputation 

accuracy. R package imputeLCMD was applied for this imputation approach. 

• Zero: This method replaces all missing elements with zero. 

• HM (Half of the Minimum): This method replaces missing elements with half of the minimum of 

non-missing elements in corresponding variable. 

2.4 Performance evaluation 

Normalized Root Mean Squared Error (NRMSE) has been commonly used to evaluate accuracy by 

calculating the differences between imputed values and real values by following formula (Oba et al. 

2003)  
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 (1) 

where ��
�� is the true data, ��� is the imputed data. We calculated NRMSE for the situation of 

MCAR/MAR on scaled data. 

For MNAR, considering the missing value is not randomly distributed, using NRMSE directly might 

cause biased results especially for those imputation methods with determined values as we showed in the 

Supplements. Thus, we derived another metric, which was NRMSE-based sum of ranks (SOR). We first 

calculated the NRMSE for each missing variable and ranked them across different imputation methods. 

Consequently, we summed the rank of all missing variables for each method and made a comparison 

based on SOR. The SOR can be represented as following formula 

�	� �  ∑ �����������
��  (2) 

where M is the number of missing variables, ���������� means the rank of NRMSE of different 

imputation methods in ��� missing variable. This non-parametric measurement provides a robust and 

unbiased comparison especially for the situation of MNAR. 

NRMSE and SOR measured imputation accuracy in respect of the value of missing elements. 

Additionally, we measured the effects of different imputation methods in respect of overall sample 

distribution. To do this, we first applied the dimension reduction approach, e.g. PCA, to reduce the data 

dimensions. Then, Procrustes analysis, a statistical shape analysis, was conducted to compare the 

alteration of the imputed sample distributions with original sample distribution in the space of top PCs. 
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Procrustes sum of squared errors were calculated as a quantitative measurements. R package vegan was 

applied for Procrustes analysis (Oksanen 2015). 

In addition to the above label-free evaluations, we conducted extra evaluations from a statistical analysis 

perspective on the labeled data. These evaluations are mainly focused on the influences of different 

imputation methods on consequential statistical analyses. For univariate analysis, we conducted 

Student’s t-test on variables from imputed data and original data and p-values were then log-transformed 

considering their skewed distribution. We then conducted Pearson correlation analysis on the log 

p-values of imputed data and original data. For multivariate analysis, one of the most widely used 

methods in metabolomics studies is partial least squared regression (PLSR)/discriminant analysis 

(PLS-DA). In our case, since the phenotype outcome variable was case/control, we applied PLS-DA as a 

supervised dimensional reduction approach first. Then, we conducted Procrustes analysis to compare the 

sample distribution between imputed data and original data as we did previously. R package ropls was 

applied for PLS-DA (Thévenot et al. 2015).
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3 Results 

3.1 MCAR/MAR imputation and evaluation 

We generated random missing values on both unlabeled and labeled data sets from the proportion of 2.5% 

to 50% in step of 2.5%. Five different imputation methods, RF, kNN, SVD, Mean and Median were 

conducted on all missing data sets. After imputations, NRSME were calculated by comparing differences 

between imputed data and complete data after z-score transformation (scaling and centralization). 

Z-score transformation makes it an unbiased comparison of using NRMSE considering the different 

ranges of variables in their original levels where the variable with large values will dominate the 

evaluation. Fig. 1a and b showed that RF imputation performed the best on both data sets with different 

proportions of missing values, followed by SVD and kNN imputation. We also found that kNN 

imputation method produced even larger NRMSE than two determined value imputation methods (i.e., 

mean and median) when the missing proportion increased to certain proportions. In contrast, these two 

determined value imputations performed stable on data with different proportions of missing values 

since the imputed “average” values made the mean squared error, the numerator of formula (1), 

equals/close to the denominator which is the variance of missing elements in complete data. 

Next, we applied PCA to both complete and imputed data sets and selected first two PCs as they 

represented the most variance. Then, we applied Procrustes analysis to compare the distribution of 

sample points on top two PCs of imputed data with the complete data using scaled sum of squared errors. 

Less distortion of imputed data (smaller sum of squared errors) represented a better recovery of 

imputation regarding the original sample distribution. Results showed that RF performed the best across 

different missing proportions on both data sets (Fig. 1c and d). Meanwhile, these two determined value 
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imputation methods, mean and median, gave very similar trends. In contrast, kNN started performing the 

worst once the proportion of missing values reached to certain cutoff values. 

With sample phenotype information (case/control), we performed both Student’s t-test and PLS-DA on 

the labeled data set with or without missing values. First, we conducted t-test on each variable. Then, we 

measured the Pearson’s r between the log p-values calculated from imputed data and complete data. 

Results showed that RF imputation maintained the highest correlation coefficients across different 

missing proportions (Fig. 1e), which indicated that the most information of original univariate results had 

been remained using RF method. In addition, we applied PLS-Procrustes analysis and found that RF 

imputation kept the best among five imputation methods with the lowest sum of squared errors (Fig. 1f). 

3.2 MNAR imputation and evaluation 

For each MNAR data set, six different imputation methods were applied with two aims: first, to evaluate 

the performances of those imputation methods previously applied on MCAR/MAR (i.e., RF, kNN, SVD) 

on the situation of MNAR; second, to compare the performance of three left-censored imputation 

methods (i.e., QRILC, HM and Zero) on MNAR. After imputation, we applied SOR to evaluate their 

imputation accuracy performances. Results (Fig. 2a and b) showed that all three imputation methods, RF, 

SVD, and kNN, performed poorly on MNAR, together with Zero imputation that had been commonly 

used in metabolomics data analysis. In comparison, QRILC produced much smaller SOR values 

followed by HM imputation, showing consistent good performances on data with different numbers of 

missing variables. 

From PCA-Procrustes analysis, we observed that three imputation methods for MCAR/MAR changed 

original sample distribution to a large extent as the number of missing variables increased (Fig. 2c and d). 
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In contrast, three MNAR imputation methods showed very consistent results, among which, HM 

performed slightly better across the different number of missing variables followed by QRILC. 

For the correlation analysis on log p-values of missing variables, Fig. 2e also demonstrated that three 

MNAR imputation methods performed better with higher correlation coefficients and QRILC performed 

almost as good as HM. For the PLS-Procrustes analysis (Fig. 2f), the result was similar to 

PCA-Procrustes analysis that we observed from Fig. 2d. To summarize, both QRILC and HM showed 

decent and stable performances across different numbers of missing variables. 

3.3 QRILC and HM imputation 

Next, we further compared the overall performance of HM and QRILC methods. QRILC imputes the 

left-censored data by randomly drawing values from a truncated normal distribution while HM replaces 

missing elements by using the half of the minimum of non-missing values. As a determined value 

imputation method, HM has limitations in some circumstances (e.g., distorting distributions and 

underestimating the variances of missing variables that further affect multivariate analysis) (Gelman and 

Hill 2006). In this work, we randomly selected ten variables from the unlabeled data set to construct a 

new data set and assigned eight of them as missing variables which contained 40% ~ 80% left-censored 

missing values. PCA analysis on complete data, QRILC imputed, and HM imputed data with top 2 PCs 

showed that QRILC kept the overall shape and distribution of original data set while HM showed a 

subgroup of samples gathering around to a straight line (Fig. 3a-c). This was because missing values of 

those samples were replaced by the same determined values, making those samples gathered towards a 

straight line on the PCA score plot. In addition, the violin plots also demonstrated that HM method 

severely distorted the distributions of eight variables (Fig. 3d-k).
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4 Discussion 

To avoid potentially biased comparisons, we have explored the performance of each imputation method 

for MS-based metabolomics data and optimized parameter settings or data pre-processing steps to reach 

optimal performance. For example, kNN was previously applied on a p × n gene expression matrix 

(genes in rows and samples in columns) while we found kNN performed better on an n × p metabolomics 

data matrix (samples in rows and metabolites in columns). The underlying difference is that instead of 

finding k nearest variables, which are genes in their original case, we tried to find k nearest samples to 

represent the missing ones. This is reasonable since gene expression data usually contains a large number 

(more than 10,000) of genes where co-expression occurs frequently thus neighbored genes are usually 

good representation for missing ones. For SVD imputation, as suggested by the original paper, a 

pre-scaling of the data will increase the accuracy, and we also found using top five PCs is a good choice 

in our study rather than the default setting of two. Since the original scale function in R is irreversible, we 

implement a scale-recover function, which enables us to recover the scaled table to the original scale. For 

QRILC imputation, log-transformation beforehand was found useful not only to improve imputation 

accuracy but also to ensure a positive value in the original scale. 

In this work, we systematically evaluated a total of eight imputation methods on different types of 

missing values in terms of imputation accuracy, sample distribution, and statistical analysis. Results 

shown that RF imputation performed the best for MCAR/MAR data. For MNAR, we found that QRILC 

and HM performed better than others, however, HM could distort the distribution of single variables as 

indicated by violin plots or of a linear combination of variables as indicated by PCA score plots. Thus, we 

recommend the more smoothed method QRILC for MNAR due to LOQ, especially in targeted 
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metabolomics studies. Combing classic “modified 80% rule” together, we proposed a comprehensive 

strategy to deal with missing values in metabolomics studies (Fig. 4). For both targeted and 

profiling/non-targeted metabolomics data, we recommend (1) checking raw data and if necessary, 

adjusting parameter settings in order to fill back certain missing values in an accurate way; (2) applying 

“modified 80% rule” to remove those unreliable variables that have more than 20% missing values in 

each subgroup of samples; (3) for the remaining missing values, users need to decide the possible reasons 

and choose an appropriate one for missing value imputation; (4) for targeted metabolomics data, QRILC 

imputation is recommended for missing values due to LOQ and for the profiling/non-targeted 

metabolomics data, RF imputation is the recommended method to be applied for MCAR/MAR. 

In addition, a web-tool (https://metabolomics.cc.hawaii.edu/software/MetImp/) has been developed 

allowing users to upload their data and choose an appropriate method for missing value imputation. As 

described in this work, eight different methods dealing with missing values are provided in the web 

server. “Modified 80% rule” was the default setting for group-wise missing filtering while RF and 

QRILC were provided as default imputation methods corresponding to MCAR/MAR and MNAR. 

Additionally, all settings are interactively modifiable for the flexibility of usage. Finally, a complete table 

with all missing values being imputed will be generated and users can download for further statistical 

analyses. 

There are various imputation methods in the field and new methods are developing by researchers 

sequentially. To assist future researches in metabolomics data imputation, we packaged our evaluation 

processes (including missing generation and imputation, evaluation with NRMSE, SOR, correlation, 
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PCA/PLS-Procrustes analysis and visualization) into R functions and developed a convenient and 

comprehensive imputation evaluation pipeline (https://github.com/WandeRum/MVI-evaluation). This 

evaluation pipeline enable researchers to perform further and specific studies on missing value 

imputation problems, e.g., comparing new imputation methods with existing ones, and evaluating 

different methods on specific data sets. In the future, new methods dealing with metabolomics missing 

values, especially for MNAR, will be introduced for comprehensive comparison through our evaluation 

pipeline and added to our web-tool. 
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5 Conclusion 

Missing values occur widely in MS-based metabolomics data due to technical and biological reasons. 

Three different types of missing values, MCAR, MAR, and MNAR, are commonly occurred in 

metabolomics studies. In this work, using two separate metabolomics data sets, we systematically 

evaluated eight different imputation methods, in terms of imputation accuracy, sample distribution, and 

statistical analysis. We found that RF imputation performed the best for MCAR/MAR data and QRILC 

was favored one for MNAR imputation. Combing “modified 80% rule” together, we proposed a 

comprehensive strategy to deal with missing values in metabolomics studies. Finally, a public-accessible 

web server has been developed for dealing with metabolomics missing value imputation. 
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Associated Content 

Supplements.docx – Imputation Evaluation Vignette 
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Figure legends 

Fig. 1 Evaluation of different imputation methods for MCAR/MAR 

(a-b) NRMSE on unlabeled and labeled metabolomics data. (c-d) PCA-Procrustes sum of squared errors 

on unlabeled and labeled metabolomics data. (e) Pearson correlation of log p-values (t-test) of complete 

data and imputed data. (f) PLS-Procrustes sum of squared errors. 

Fig. 2 Evaluation of different imputation methods for MNAR 

(a-b) SOR on unlabeled and labeled metabolomics data. (c-d) PCA-Procrustes sum of squared errors on 

unlabeled and labeled metabolomics data. (e) Pearson correlation of log p-values (t-test) of missing 

variables from complete data and imputed data. (f) PLS-Procrustes sum of squared errors. 

Fig. 3 Comparisons between QRILC and HM for MNAR 

(a-c) PCA score plot for complete data, QRILC imputed data and HM imputed data on top 2 PCs. (d-k) 

Violin plots of eight missing variables. 

Fig. 4 An imputation strategy for metabolomics studies 
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