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Abstract

The progress of cancer genome sequencing projects yields unprecedented information of mutations

for numerous patients. However, the complexity of mutation profiles of patients hinders the further

understanding of mechanisms of oncogenesis. One basic question is how to uncover mutations with

functional impacts. In this work, we introduce a computational method to predict functional somatic

mutations for each of patient by integrating mutation recurrence with similarity of expression profiles

of patients. With this method, the functional mutations are determined by checking the mutation

enrichment among a group of patients with similar expression profiles. We applied this method to three

cancer types and identified the functional mutations. Comparison of the predictions for three cancer types

suggested that most of the functional mutations were cancer-type-specific with one exception to p53.

By checking prediction results, we found that our method effectively filtered non-functional mutations

resulting from large protein sizes. In addition, this methods can also perform functional annotation

to each patient to describe their association with signalling pathways or biological processes. In breast

cancer, we predicted ”cell adhesion” and other mutated gene associated terms to be significantly enriched

among patients.

1 Introduction

Cancer arises from accumulations of somatic mutations and other genetic alterations, which leads to abnormal

cell proliferation [1]. With the progress of cancer genome sequencing projects, such as The Cancer Genome

Atlas (TCGA) project, mutation information for more and more patients are becoming publicly available

[2, 3, 4], which provides the foundation to uncover mechanisms of oncogenesis. However, cancer patients

usually carry an average of 33 to 66 mutations in the protein coding regions and those mutations are supposed

to take unequal roles in oncogenesis [5, 6]. It remains a great challenge to distinguish the functional mutations

that give cells with growth advantages [7], from the ones with non-crucial roles to oncogenesis.

Many computational tools have been developed to predict the functional mutations. One popular strategy
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is to find recurrently mutated genes. Genes with higher mutation frequency are supposed to take a more

essential role in oncogenesis [6, 8, 9]. To improve the accuracy, most computational tools also consider

background mutation rates and protein sizes in discovery of recurrent mutations [10, 11, 12]. Another

strategy is mutual exclusivity, which is based on an assumption that if one gene is mutated in a patient, other

members acting in the same signalling pathway are less likely to be mutated [13]. Using mutual exclusivity,

members of signalling pathways are investigated for their coverage across a large number of patients while not

co-mutated in the same patients [14, 15, 16, 17]. Besides of functional annotations, expression information is

also used in driver mutation discovery. One popular application is to find functional copy number variations

(CNVs) by identifying the differentially expressed genes located in the CNV regions [18]. For somatic

mutations, correlation of gene expression profiles is also used to identify the functional mutations based on

the assumption that somatic mutations will result in altered expression of their downstream targets [19].

Somatic mutations in coding regions are usually supposed to involve oncogenesis by affecting the activities

of proteins associated with cell proliferation [20]. However, somatic mutations at different sites have different

effects on protein activities. One solution is to study the stability of protein structures after mutations.

Amino acid changes in the protein sequences can either stabilize, destabilize or have no effect on protein

structures. Methods based on this strategy calculate the protein folding free energy, which will be used

to evaluate the protein structural stability [21, 22, 23]. However, those methods still face the problems of

establishing the direct connections between protein structures and activities.

In this work, we introduce a novel method to recover functional somatic mutations for each of the studied

patients by integrating mutation recurrence and expression profile similarity among patients. This method

is based on two assumptions: (1) functional mutations will lead to altered expression of genes which reflects

consequences of somatic gene mutations; (2) patients with similar expression profiles are more likely to

carry functional mutations to the same genes. For each patient, we can find a group of patients that have

similar expression profiles to him/her and those patients are called neighboring patients. Mutations of the

studied patient are evaluated for their enrichment among all the neighboring patients. Mutations with

enough enrichment are predicted to be functional mutations. The functional mutations of all patients can

be recovered by repeating this process. This method also performs function annotation analysis to mutated

genes in neighboring patients so that each patient can be assigned with some functional terms to indicate

his/her association with signalling pathways or biological processes. As applications, we applied this method

to three cancer data sets and identified the functional mutations for three type of cancers respectively.
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2 Materials and Methods

2.1 Dataset and their pre-processing

In this work, we focus on prediction of functional somatic mutations, including missense mutation, nonsense

mutation and frame-shift. All the mutation and expression data of cancer patients used in this work are

downloaded from TCGA project (by May 2013) at level two, with which the expression data have been

normalized within samples and that the somatic mutations have also been annotated in exons by the pilot

of TCGA project. We exclude those patients with only mutation or expression data for next-step analysis.

2.2 Expression biomarkers

To describe the expression profiles of patients, we firstly determine a group of genes or probes as expression

biomarkers by selecting the top 2000 genes or probes with the most expression variances among all the

patients. These biomarkers are supposed to better reflect the expression consequences of gene mutations.

The expression profile of one patient is described as a vector with the expression values of biomarkers as the

elements.

2.3 Neighboring patients: patients with similar expression profiles

The similarity of expression profiles of the patients was measured by using Pearson’s correlation r. Conversely,

the distances between patients could be described by 1−r. For each patient, we could find his/her neighboring

patients by selecting n patients with most significant positive correlation values at a minimum r cutoff ( e.g.

r > 0.6), where n ranged from 20 to 50.

3 Results

3.1 Association of mutation and expression profiles

As an exemplary illustration, we checked the association between somatic mutations and cancer patients with

similar expression profiles by investigating 516 breast invasive cancer patients, for which both expression and

somatic mutation information are available from the TCGA project. We selected 2000 probes with most

expression variances as the biomarkers and performed hierarchical clustering to the patients. Then we

checked the distribution of mutated genes on the hierarchical tree. One example is CDH1 gene, which is

mutated in 35 out of 516 patients. As shown in Figure 1, patients with CDH1 gene mutation were not

randomly distributed but preferentially clustered together. To quantify this, we classified the patients into
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six groups based on the structure of hierarchical clustering tree. Among groups, the frequency of CHD1

mutations varied greatly. In Cluster IV, we observed 22 out of 120 patients to carry CDH1 mutations, which

was also the most enriched group. Fisher’s exact test indicated the significance of this enrichment to be

p < 4.4e − 8. In cluster VI, there were 6 out of 70 patients to carry CDH1 mutation without statistical

significance. For cluster I and V, there was even no patient with CDH1 mutation. We also checked the

mutation distribution of other genes and observed non-random distribution in the expression subclusters in

nearly all the test cases.

PIK3CA 262| | || | | | | | | || |||| |||||| ||| |||||||| | |||| || | | ||||||||| | || | |||| | || ||||| | | | | ||||| | || | | | | | | || | || || | | | || |||||||||| || | | | | | || || ||| ||| || ||| |||| | | ||||| | | || | | | ||| ||| || ||| | || | | || ||| | || ||| | | ||||||| ||| | || || |||||||||||||||||| |||| | | ||| || | |||||||| ||||| |||| | | |||||||||| |||||||||| ||

TP53 257|| ||| |||||||||||||| ||||||||| |||||||||||| |||| ||| |||| |||| ||| |||||||| | | || ||||| ||||||| |||| ||||| |||||||||| | | | || | | ||| | || | | | | || ||||||| | | ||||||||||||||| |||| |||||||||||||||||| |||| ||| ||||||| | | || | | | || |||||||| | | | | || || ||||| ||| | | | |||||||| | | | | | | | || || | ||| | | || | ||| | | | | | | | | | |

GATA3 80| | | | ||| | | |||||| | | | | | | || ||| | | ||| | ||| || | || || | | || ||| || ||||| || ||| | | | | | | ||| | ||| | | ||| |

MLL3 60| || | | | | || | | | | | | | | || | | | | | | | | | | | | | | | || | || | | | | | ||| | | | | | | | | | | | | |

MUC4 59| | | || | | | | | | | | | | | | | | | | | | | | || | | | || | | || | ||| | | | | | | | | | || || | || | | |

MAP3K1 57| | | | | | || | | | | | || | | | | | | |||| | | | | | | | | | | | | | || | | | || |||||||||| | |

CDH1 55| | | | | || | | || ||| | | | | | || | | | | | | | | ||| | | | | | | | | | | || | | || | || ||||

ENSG00000210082 54| | | || || | | | | ||| | | | | | | || | | | | || | || | | | | | | | | | | | | | | | || || | | | |

MUC16 54| | | | | | || | | | | | || | || | | | | | | | | | | | | ||| | | | | | | | | || | | | | | | | | | | |

MUC12 44| | | | | | | || | | | | | | | | | | | | | | | | | | | || | | | | || | || | | | | |

USH2A 36| || || | | | | | | | | | | | | | | | | | | | | | | | | || | | | | |

FLG 35| | | | | | | | | | || | | | || | | | | | | | | | | | | | | | | | |

ENSG00000211459 32| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

MAP2K4 32| | | | | | || | | | | | | | | | ||| | || | ||| | || | |

NCOR1 31| | | | | | | | | | | | | | | | | | | | | | ||| || | | | |

FRG1B 30| | || | | | | | | || | | | | | | | | | | | | | | | | | |

ENSG00000198786 31|| | | | | | | | || | | | | | | | | | | | | || | | | | | |

RYR2 30| | || | | | | | | | | | | | | | || | | | | | | | | | | |

NCOA3 28|| | | || | | | | | | | | | | | | | | | | | | | | | |

I II III IV V VI

Figure 1: Hierachical clustering and the mutation distribution of gene

These results suggest that patients with a similar set of mutated genes are more likely to have similar

expression profiles, which can be explained by the fact that gene mutations would directly or indirectly affect

transcription of their downstream targets [19, 24]. Based on this observation, we propose that genes affected

by functional mutations can be identified by checking their enrichment in patients with similar expression

profiles.

3.2 Pipeline to find functional mutations

In this work, we propose a computational method to infer the functional mutations for each studied patient.

This method is based on two assumptions that, (1) genes carrying functional mutations directly or indirectly

lead to altered expression of their downstream target genes; (2) patients with the same functional mutations

will share similar expression profiles. Thus, for each mutated gene from one patient, we can check its

mutation enrichment in the neighboring patients. The impact of gene mutation to studied patients can be

described by a p-value based on statistical frameworks.

The whole process is described in Figure 2. This method requires two matrices as input: one expression

matrix and one binary mutation matrix. As described in Section Methods, the expression matrix are explored

to determine the neighbor patients by checking its expression similarity. For patient P1 with a mutation to
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Expression Matrix

            P_1    P_2 ...
DDR1   0.1     -0.5 ...
PAX8   0.6     -0.3 ...
CCL5   -0.2     0.7 …

...

P_1                               

P_5     0.87    
  P_10   0.80      
P_21   0.76    

...

P 2
P 3

Neighbor patients

Correlation

Mutation (+) Mutation (-)

Neighbor patients a b

Background c d

Count mutations
to gi

Mutation Matrix

            P_1 P_2 ...
DDR1   +    + ...
PAX8     -    + ...
CCL5    +     - …

...

+: mutation  - : non-mutation

Fisher's exact test

p < 0.01?

gi is mutated in P_1?

yes

yes

Mutation to gi is functional 
for P_1

                              
TP53 
CDH1

    MAP3K1      
...

P_1                               

P_5     0.87    
  P_10   0.80      
P_21   0.76    

...

Mutated genes in neighbor patients

Functional 
enrichment

P 2
P 3

P_1
P 2

P 3

If one term is enriched, 
this term will be assigned 

only to P_1

Above process can be repeated for all the 
patients

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: Pipeline to predict functional mutations and terms (see main text for detailed description).

gene gi, his/her neighboring patients are selected by choosing n patients (including P1) with the most similar

expression profiles with P1, where n ranged from 5 to 30 (a). Then, the patient number with mutation to

gene gi is counted in all the neighbors of P1 (b). Based on randomly simulation, in which the neighbor of

patients are randomly selected, the enrichment of mutations to gi among neighbor patients is evaluated by

Fisher’s exactly test. A p-value is assigned to studied patient to describe its mutation enrichment to gi (c),

which also indicates its functional importance. If the p-value is significant enough (e.g. 0.01), mutation to

gene gi in patient P1 will be treated as functional mutation of only patient P1. The same process can be

repeated for other mutated genes and patients one by one (f).

With our method, we also check the functional annotation for each studied patient by enrichment analysis

to all the mutated genes in neighboring patients. The functional annotation is described by Gene ontology

(GO) or KEGG terms. In this step, all the mutated genes from patient P1 and his/her neighboring patients

(d) are checked for enriched functional terms by comparing to the background occurrences with Fisher’s exact

test (e). If a term is significantly enriched (e.g. p < 0.01), it will be assigned to patient P1 as functional
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annotation. This term indicates the functional consequences of gene mutations in patient P1. For the other

patients, the same process can be repeated to find their associated functional terms (f).

3.3 Application to breast cancer

As an application, we applied our method to 516 beast cancer patients from the TCGA project. The

functional mutations were chosen at a cutoff of p < 0.01. In Figure 1 (1), we show 19 genes with the most

mutation recurrences in breast cancer. For all the genes, only part of their mutations are predicted to be

functional. Among them, PIK3CA and TP53 were especially recurrently mutated based on our prediction.

PIK3CA gene was observed to be mutated in 175 breast cancer patients and 123 of them were confirmed to

be functional (about 70.3%), which made PIK3CA to be the gene with the most confirmed mutations, even

though it was not the one with the most somatic mutations in breast cancer. Another gene was TP53 with

functional mutations in 107 patients, about 56.9% of observed somatic mutations. For other genes, relatively

fewer functional mutations were observed compared to PIK3CA and TP53. However, many of them have

been widely reported for their critical roles in breast cancer, such as MAP3K1 [25], CDH1 [26], GATA3 [27],

which indicated their important roles but in fewer patients. Overall, we observed 408 of 516 breast cancer

patients to carry at least one of these 10 predicted driver mutations, covering about 79% of all the patients.

Table 1: Top 10 of functional mutations in breast cancer
Mutated gene No. somatic mutation No. functional mutation Percentage

PIK3CA 175 123 70.3%
TP53 188 107 56.9%

MAP3K1 40 30 75.0%
CDH1 35 29 82.6%

GATA3 56 19 33.9%
RUNX1 19 13 68.4%
CTCF 15 10 66.7%

CACNA1B 14 9 64.2%
DNAH17 14 8 57.1%
MAP2K4 21 8 38.1%

Next, we tested whether our predicted mutations were more likely to be functional. We checked genes

with recurrent somatic mutations while less often predicted to be functional. One example was the TTN gene

with somatic mutation in 90 patients, which ranked as the gene with the third most recurrent mutations.

However, we only predicted three of them to be functional. TTN protein is a component of vertebrate

striated muscle [28]. By searching literature, we did not find any reports to support TTN to take critical

role in cancer. By checking its protein sequence, we found that it is very long with a length of 27,000 to

33,000 amino acids [29], indicating a recurrence bias of its mutations. This guess was also confirmed by

the analysis with MutSig, which considered the protein size and background mutation rates into evaluation
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[10]. Similar results are observed with with other genes, such as MUC6 with mutations in 57 patients while

predicted to be functional in only two patients. Even though our pipeline did not consider the protein size,

it successfully identified fake recurrent mutations resulting from large protein sizes. These results provide

evidences to support the specificity of our method to recover functional mutations.

NonSense Mutation 16%

Frame Shift Del 16%

Missense Mutation 62%

Frame Shift Ins 6%

(a)

NonSense Mutation 7%

Frame Shift Del 19%

Missense Mutation 72%

Frame Shift Ins 1%

(b)

Figure 3: Mutation type differences between functional (a) and non-functional TP53 muations (b)

3.4 Comparison with Mutsig in driver mutation recovery

Before our work, many tools tools have been developed to predict the drive mutation to cancer. One popular

strategy is evaluated observed mutation frequency with background mutation ratio, estimated by . In this

work we did not use

3.5 Mutation types

Based on mutation types, all the somatic mutation can be divided into missense mutation, nonsense mutation,

silent mutation, frame shift Insertion and frame shift Deletion. Taking TP53 as an example, we checked

the mutation type distribution between two groups of TP53 mutations: (1) functional TP53 mutation as

identified by our method and (2) non-functional TP53 mutations. As shown in Figure 3, most of mutations

were missense mutations (∼65 %). Statistical test did not support any significance difference between two

groups of patients. However, nonsense mutation and Frame shift Insert types had great ratio differences

between two groups. 16% of functional TP53 mutations were observed to be nonsense mutations while only

7% of non-functional TP53 mutations. The significance based on Fisher’s exact test was at p < 0.03. A

similar result was observed with Frame shift Insertion, which was 6% of functional mutations and 1% of

non-functional mutations (p < 0.12). The enrichment of those types of mutations can be explained by the

fact that nonsense mutations and Frame shift Insertions are more more likely to disrupt protein function
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than missense mutation. We also checked other recurrently mutated genes and similar results were observed.

These results suggest that predicted functional mutations are more likely to influence the protein function.

3.6 Cancer-specific gene mutations

Besides of breast cancer, we also applied our method to Ovarian serous cystadenocarcinoma (OV) and

Glioblastoma multiforme (GBM) with data from the TCGA project. Figure 4 shows genes with the most

recurrent functional mutations of three cancer types. By checking the published literature, we found that

most of the predicted genes have been implicated to to have an important roles in oncogenesis [6]. However,

we observed quite different mutation preferences among three cancer types. As shown in Figure 4, only

TP53 gene is shared by all three cancer types and NF1 gene is shared by OV and GBM. Other genes are

preferentially mutated in one cancer type, which can be called cancer-specific mutations. These cancer-

specific mutations had higher mutation recurrences and were supposed to take more essential roles in the

oncogenesis of a specific cancer type.

Cancer-specific mutations are not necessary to indicate non-function in other cancers. One example is

BRCA1 gene. BRCA1 was predicted to be mutated in 17 out of 441 patients for OV, ranking as the third most

recurrently mutated gene. Based on our definition, BRCA1 is supposed to be OV-specific. However, we also

observed functional mutations to BRCA1 in breast cancer. The roles of BRCA1 in the oncogenesis of breast

cancer have been widely reported [30] and researches even suggest that patients with BRCA1 mutations

have a possibility of 50%-80% to develop breast cancer before the age of 70 [31]. However, mutations to

BRCA1 is not supposed to be the most important causal reasons due to the relatively low recurrence, which

was at 6 out of 516 patients. BRCA1 is proposed to be involve in many cancer associated biological process,

including DNA repair, histone ubiquitination and checkpoint control [32, 33]. One possible explanation for

its cancer-specific mutation is that the functional defect of BRCA1 is more likely to be compensated in breast

cancer.

3.7 Enriched functional terms

As described in Section 2, we can perform functional annotations for each of studied patients by functional

enrichment analysis to mutated genes of the neighboring patients. At a cutoff of p < 0.01, we observed some

terms to be associated with large proportion of breast cancer patients (see Figure 5). One example was

the term “cell adhesion”, which was associated with 99.4% of patients. Similarly, other extracellular matrix

(ECM) related terms such as “extracellular structure organization” and “cell-matrix adhesion”, were also

observed to be associated with 34.1% and 22.1% of patients respectively. These observation are in line with
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Breast cancer

OV

GBM

PIK3CA  
MAP3K1  
CDH1 
GATA3  
RUNX1 
CTCF 
CACNA1B 
DNAH17 
MAP2K4

BRCA1
MT-DN5
MLL
SYNE2
IL21R
HYDIN
SYNE2
BRCA2

EGFR
ATRX
IDH1
F5
TAF1L
ABCA13
TAF1L

TP53

NF1
-

-

Figure 4: Predicted genes with recurrent functional mutation for three cancers. OV: Ovarian serous cys-
tadenocarcinoma; GBM: Glioblastoma multiforme

reports about ECM for its critical roles in cancer [34, 35]. This result also suggests ECM to be one potential

target to develop anticancer medicine. Above, we reported recurrently mutated genes, such as PIK3CA and

MAP3K1. Functional annotation supported their roles by enriched GO terms like “phosphoinositide 3-kinase

(PI3K) cascade” (30.6% of the patients) and “MAPKKK cascade” (34.5% of the patients). Considering the

fact that PIK3CA and MAP3K1 were ranked as the most recurrently mutated genes, PI3K signalling pathway

and MAPKKK cascade pathway were supposed to be the most essential pathways during the oncogenesis

of breast cancer. Besides these pathways, we also observed enriched terms such as “JNK cascade” and “cell

cycle phase”, which were reported to be related to oncogenesis of cancers [1].

Based on textbook knowledge and published literature, we could assign some genes to some well-studied

pathways or biological processes. For example, TP53 is involved in the p53 mediated DNA damage response

[36]; MAP3K1 in the MAPKKK cascade pathway [37]. These terms could be used to evaluate functional

differences between patients predicted with or without functional mutations. Taking TP53 mutation of

breast cancer as an example, we checked the number of patients with p53 associated term “DNA damage

response, signal transduction by p53 class mediator”. Just as showed in Figure 6(a), we observed 6 out

of 107 patients with predicted functional TP53 mutation to be annotated with this term while 12 out of

81 non-functional TP53 mutation carriers were annotated with this term. Fisher’s exact test indicated a

significant ratio difference at p < 0.03. We further checked other TP53 associated terms and observed similar

results (results not shown). Besides of breast cancer, we also performed the same evaluation with OV and

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/172015doi: bioRxiv preprint 

https://doi.org/10.1101/172015
http://creativecommons.org/licenses/by/4.0/


P
at

ie
nt

 N
um

be
r

0
10

0
20

0
30

0
40

0
50

0
ce

ll 
ad

he
si

on

pr
ot

ei
n 

am
in

o 
ac

id
 p

ho
sp

ho
ry

la
tio

n

ph
os

ph
or

yl
at

io
n

sm
al

l G
TP

as
e 

m
ed

ia
te

d 
si

gn
al

 tr
an

sd
uc

tio
n

re
gu

la
tio

n 
of

 J
N

K 
ca

sc
ad

e

re
gu

la
tio

n 
of

 s
is

te
r c

hr
om

at
id

 c
oh

es
io

n

ne
ga

tiv
e 

re
gu

la
tio

n 
of

 M
AP

KK
K 

ca
sc

ad
e

ex
tra

ce
llu

la
r s

tru
ct

ur
e 

or
ga

ni
za

tio
n

re
gu

la
tio

n 
of

 M
AP

KK
K 

ca
sc

ad
e

re
gu

la
tio

n 
of

 c
hr

om
os

om
e 

se
gr

eg
at

io
n

re
gu

la
tio

n 
of

 R
ho

 p
ro

te
in

 s
ig

na
l t

ra
ns

du
ct

io
n

pr
ot

ei
n 

ki
na

se
 c

as
ca

de

ch
ro

m
at

in
 m

od
ifi

ca
tio

n

ph
os

ph
oi

no
si

tid
e 

3−
ki

na
se

 c
as

ca
de

re
gu

la
tio

n 
of

 R
as

 p
ro

te
in

 s
ig

na
l t

ra
ns

du
ct

io
n

m
us

cl
e 

sy
st

em
 p

ro
ce

ss

M
 p

ha
se

 o
f m

ei
ot

ic
 c

el
l c

yc
le

in
tra

ce
llu

la
r s

ig
na

lin
g 

ca
sc

ad
e

ce
ll−

m
at

rix
 a

dh
es

io
n

ph
os

ph
oi

no
si

tid
e 

ph
os

ph
or

yl
at

io
n

ce
ll 

cy
cl

e 
ph

as
e

pr
ot

ei
n 

ki
na

se
 B

 s
ig

na
lin

g 
ca

sc
ad

e

ch
ro

m
at

in
 re

m
od

el
in

g
ce

ll 
cy

cl
e

M
AP

KK
K 

ca
sc

ad
e

Figure 5: GO terms enriched with breast cancer patients

GBM. Similar results were observed with TP53 mutations in OV. In GBM, we did not observe significant

differences, which might be due to the limited number of patients with TP53 mutations, which was only

65 patient. In a way, these results suggest that patients with functional TP53 mutations are less likely

to carry other mutations to the members of TP53 associated pathways. In breast cancer, we also checked

MAP3K1 mutation with the similar methods for “MAPKKK cascade” term (see Figure 6(b)). Similar

to TP53, we observed that the patients with functional MAP3K1 mutations were less likely to carry the

mutations to other components of MAPKKK cascade pathways (p < 0.01). In GBM, we checked another

well-known gene EGFR for that it involved in “epidermal growth factor receptor signalling pathway” (see

Figure 6(c)). Similarly, other genes from EGFR signalling pathways were less likely to be mutated in patients

with functional EGFR mutations (p < 0.08). In summary, all above examples were in line with the popular

assumption for gene mutations: mutual exclusivity [13]. However, one contrary example was also observed

with predicted PIK3CA mutations in breast cancer (see Figure 6(d)). By checking PIK3CA associated term

“phosphoinositide 3-kinase cascade”, more members of PI3K cascade pathway were observed with predicted

functional PIK3CA mutation carriers (p < 0.02),which was in line with previous report about cooperation
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Figure 6: Functional enrichment differences between patients with or without predicted functional mutations.

of PIK3CA with other oncogenes [38, 39]. This result indicates that mutual exclusivity is not applicable to

PIK3CA mutations.

4 Discussion

In this work, we propose a computational method for discovery of functional mutation for each studied

cancer patient. One basic question is what are functional mutations to cancer. Indeed, different tools have

quite different definitions. In the context of this work, functional mutations are mutations that directly or

indirectly lead to altered expression of genes on a large scale and that they are the main causal reasons for

observed expression patterns of patients. Thus, patients with the same functional mutations are supposed to

have similar expression profiles. Following this definition, we transfer identification of functional mutations
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of one patients to enrichment analysis to mutations in its neighboring patients. This strategy can be called

as “guilt by association”, like what we have done in our previous work [40]. By checking the published

literature, we can find evidences to support this definition. For example, Langerod A et.al [41, 42] observed

characteristic gene expression patterns with patients carrying TP53 mutations. Similar results are available

for other cancer genes, such as BRAF in melanoma [24], BRCA1 [43] and PIK3CA in breast cancer [44]. In

this work, we also observed preferential distribution of patients with the same mutated genes to sub-clusters

by hierarchical clustering (see Figure 1).

The functional mutations are recovered by identifying enriched gene mutations in patients with similar

expression profiles. Complexity of mutation profiles make it impossible to cluster all the patients with the

same gene mutation into one cluster. Most of the pattern classification methods, such as k-means, support

vector machine (SVM), do not consider the sub-structure of samples, which cannot ensure each patient

to have the optimal neighbors. With our method, we used a simple methods to find neighbors for every

patient one by one, which make it good at recovery of patterns of inner cliques. The utilization of statistical

significance also makes this method more robust.

With our prediction, some somatic mutations are not predicted to be functional. It is natural to raise

the questions what those non-functional mutations are. One explanation is that non-functional mutations

fail to affect the protein function. As an evaluation, we checked protein structure stability between mutated

genes with or without predicted function. The folding free energy changes was calculated for each mutation

by PoPMuSic2.1 [45]. The energy differences were further evaluated for four examples: TP53, PIK3CA,

MAP3K1 and EGFR. However, we only observed significant difference in case of TP53 at p < 0.03, which

suggested functional mutations to TP53 were more likely to affect its protein structure. For others, no

significant differences were observed, which may result from the low accuracy of computational prediction

and complexity of mutation to protein function.

For non-functional mutations, another explanation is due to the existence of other stronger functional

mutations, which veil the effects of other mutation. It is possible that mutations to one gene may provide cells

with proliferation advantage but not enough for cancer, e.g. benign tumours. In this case, other functional

mutations are necessary for further oncogenesis and expression patterns of cancer patients will mainly reflect

the consequences of latter mutations. Taking TP53 as an example, we observed that 107 breast cancer

patients with functional TP53 mutations also carried 17 PIK3CA somatic mutations while 79 patients with

non-functional TP53 mutations carried 27 PIK3CA somatic mutations. The significance of ratio differences

was at p < 0.018. This observation suggests that patients with functional TP53 mutation are less likely to

carry PIK3CA mutations. If only considering the predicted functional PIK3CA mutations, no patient with

functional TP53 mutations carried functional mutations to PIK3CA while 16 patients with non-functional
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TP53 mutations also carried functional mutations to PIK3CA. By checking other functional mutations, all

79 patients with non-functional TP53 mutations had at least one functional mutation to other genes. In

summary, these results suggest non-functional TP53 mutations may result from existence of other functional

mutations.

Certainly, our method also faces the problem of sensitivity if not enough neighboring patients are available.

Our method requires a minimum number of neighboring patients for enrichment analysis which is not always

available. This is especially true for those mutations with low recurrence. With the progress of cancer

genome sequencing projects, the number of patients with mutation information will increase, which will

provide a better basis for functional mutation discovery.

Mutual exclusivity is one popular strategy used to recover driver mutations [13]. Based on the functional

annotation with GO and KEGG terms, we checked this assumption with some well-known cancer genes.

We observed success with mutual exclusivity in the patients with TP53, MAP3K1 and EGFR mutations.

However, we also noticed one counter case with PIK3CA, which was involved in the PI3K signalling pathway

[46]. Mutations to members of PI3K are more enriched in patients with PIK3CA mutations. This result

suggests mutual exclusivity to be a good assumption in driver mutation discovery but also faces the possibility

of failure.
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