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Abstract 41	

Carbapenem-resistant Enterobacteriaceae (CRE) represent one of the most urgent threats to human 42	

health posed by antibiotic resistant bacteria. Enterobacter hormaechei and other members of the 43	

Enterobacter cloacae complex are the most commonly encountered Enterobacter spp. within 44	

clinical settings, responsible for numerous outbreaks and ultimately poorer patient outcomes. Here 45	

we applied three complementary whole genome sequencing (WGS) technologies to characterise a 46	

hospital cluster of blaIMP-4 carbapenemase-producing E. hormaechei.   47	

In response to a suspected CRE outbreak in 2015 within an Intensive Care Unit (ICU)/Burns Unit in 48	

a Brisbane tertiary referral hospital we used Illumina sequencing to determine that all outbreak 49	

isolates were sequence type (ST)90 and near-identical at the core genome level. Comparison to 50	

publicly available data unequivocally linked all 10 isolates to a 2013 isolate from the same ward, 51	

confirming the hospital environment as the most likely original source of infection in the 2015 52	

cases. No clonal relationship was found to IMP-4-producing isolates identified from other local 53	

hospitals. However, using Pacific Biosciences long-read sequencing we were able to resolve the 54	

complete context of the blaIMP-4 gene, which was found to be on a large IncHI2 plasmid carried by 55	

all IMP-4-producing isolates. Continued surveillance of the hospital environment was carried out 56	

using Oxford Nanopore long-read sequencing, which was able to rapidly resolve the true 57	

relationship of subsequent isolates to the initial outbreak. Shotgun metagenomic sequencing of 58	

environmental samples also found evidence of ST90 E. hormaechei and the IncHI2 plasmid within 59	

the hospital plumbing. 60	

Overall, our strategic application of three WGS technologies provided an in-depth analysis of the 61	

outbreak, including the transmission dynamics of a carbapenemase-producing E. hormaechei 62	

cluster, identification of possible hospital reservoirs and the full context of blaIMP-4 on a multidrug 63	

resistant IncHI2 plasmid that appears to be widely distributed in Australia.   64	
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Introduction: 65	

Carbapenem antibiotics have become the mainstay of therapy for serious infections caused by 66	

multidrug resistant (MDR) Gram-negative bacteria, especially for strains expressing extended-67	

spectrum β-lactamase (ESBL) or AmpC-type enzymes1. Increased use has driven resistance to 68	

carbapenems and the emergence of carbapenemase-producing Enterobacteriaceae (CPE) and 69	

carbapenem-resistant Enterobacteriaceae (CRE), which include common enteric species such as 70	

Escherichia coli, Klebsiella pneumoniae and Enterobacter spp.2. 71	

 72	

Before 2005, an estimated 99.9% of Enterobacteriaceae were susceptible to carbapenems3. 73	

However, the isolation of CRE has since increased dramatically and these organisms are now 74	

reported in all WHO health regions4. The mortality rates for CRE infections are reported to be as 75	

high as 48%5, and resistance to last-line antibiotics used in lieu of carbapenems, such as colistin, 76	

has also emerged6.  77	

 78	

Resistance to carbapenems in Enterobacteriaceae occurs via a range of mechanisms. Of greatest 79	

concern is the acquisition of genes encoding carbapenemases7. This most frequently occurs via 80	

transfer of mobile genetic elements (MGE), such as plasmids, occasionally carrying multiple β-81	

lactamases co-located with other resistance determinants, rendering these strains MDR or 82	

extensively drug-resistant (XDR)8. Australia has experienced low rates of CRE 9, although sporadic 83	

introduction of K. pneumoniae carbapenemase (KPC)10 and New Delhi metallo-β-lactamase (NDM) 84	

11 has been reported, including significant nosocomial outbreaks12. The most frequently encountered 85	

carbapenemase in Australia is blaIMP-4, particularly in Enterobacter spp.13.  IMP-producing 86	

Enterobacter spp. have caused occasional outbreaks within intensive care or burns units in 87	

Australian hospitals14-16.  88	

 89	
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Here, we describe the use of whole genome sequencing (WGS) to investigate an outbreak of IMP-90	

4-producing Enterobacter hormaechei within an Intensive Care Unit (ICU) and Burns facility.  91	

 92	

Clinical case report 93	

Two patients in mid 2015 were transferred from regional Queensland hospitals to the ICU with burn 94	

injuries sustained from the same accident (Figure 1). E. cloacae complex was cultured from the 95	

endotracheal tube (ETT) of patients 1 and 2 on day 6 and 8 of admission, respectively. Both E. 96	

cloacae complex isolates were confirmed as MDR by phenotypic testing used in the diagnostic 97	

setting (Table 1). Real-time PCR amplification of blaIMP-4 confirmed their status as carbapenemase-98	

producers. Both of these patients were previously well, with no prior hospital admission or contact 99	

with healthcare facilities. Neither had been resident or hospitalized overseas for more than 20 years.   100	

 101	

Patient 1 underwent debridement and split skin grafting for 29% total body surface area burns on 102	

day 2 of ICU admission and subsequently had 3 procedures in the burns operating rooms (Figure 1). 103	

An additional MDR-E. cloacae complex isolate was isolated from urine on day 21, eight days after 104	

discharge from the ICU. After no further colonisation of MDR-E. cloacae complex, Patient 1 was 105	

discharged from the hospital on day 38.  106	

 107	

Patient 2 underwent multiple grafting and debridement procedures and was discharged from the 108	

ICU on day 17 (Figure 1). MDR-E. cloacae complex colonisation from the ETT and from urine was 109	

noted on day 8 and day 15, respectively. By day 19, the patient developed clinical signs of sepsis, 110	

with a phenotypically identical isolate identified in blood cultures and from a central venous line 111	

(CVL) tip culture. She received piperacillin/tazobactam 4.5 grams 8-hourly for 2 days, improved 112	

following line removal and did not receive further antibiotics for this episode. A subsequent E. 113	

cloacae complex was isolated from urine collected from a urinary catheter 17 days later 114	

demonstrated a different antibiogram with susceptibility to third generation cephalosporins, 115	
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meropenem and gentamicin. She received 3 days of oral norfloxacin 400mg twice daily with 116	

microbiological resolution.  117	

 118	

Patient 3, a 39-year old woman, was admitted with 66% total body surface area burns to the same 119	

ICU 5 weeks after Patient 1 and 2 were admitted and 20 days after they had been discharged from 120	

the ICU (Figure 1). MDR-E. cloacae complex was cultured from the ETT of Patient 3 on day 12 of 121	

ICU admission. She had frequent brief admissions to several hospitals since 2010 (never to ICU), 122	

and no MDR Gram-negative bacilli were identified in clinical or screening samples during previous 123	

admissions. MDR-E. cloacae complex with Pseudomonas aeruginosa were isolated from 8 skin 124	

swabs and an additional ETT aspirate. On days 19 and day 21, MDR-E. cloacae complex was 125	

isolated from blood cultures in the context of skin graft breakdown and signs of systemic 126	

inflammatory response syndrome (SIRS) with increasing inotrope requirements (Figure 1). 127	

Streptococcus mitis was cultured from blood on day 19. On day 36, her condition worsened with 128	

signs of SIRS. Transesophageal echocardiography demonstrated aortic and mitral valve lesions 129	

consistent with endocarditis. Pancytopenia developed, with a bone marrow aspirate and trephine 130	

suggestive of peripheral consumption. Multiple suspected cerebral, pulmonary, splenic and renal 131	

septic emboli were identified on imaging. She was palliated on day 47 of admission due to 132	

extensive cerebral emboli (Figure 1).  133	

 134	

Materials & Methods 135	

Study setting 136	

Primary isolates were obtained from patients admitted to the Royal Brisbane & Women’s Hospital 137	

(RBWH), a tertiary referral hospital with 929 beds in South-East Queensland, Australia. Additional 138	

IMP-producing isolates, cultured from patients admitted to other hospitals in the metropolitan 139	

Brisbane area (referred to as Hospital A and B), were obtained from Pathology Queensland - 140	

Central Microbiology for comparison (Table S4).   141	
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 142	

Antimicrobial susceptibility testing and carbapenemase detection 143	

All bacterial isolates were identified by matrix-assisted laser desorption/ionization mass 144	

spectrometry (MALDI-TOF) (Vitek MS; bioMérieux, France).  Antimicrobial susceptibility testing 145	

was carried out using Vitek 2 automated AST-N426 card (bioMérieux) with Etest to determine 146	

MICs for meropenem, imipenem and ertapenem. Carbapenemase activity was assessed by the use 147	

of the Carba-NP test (RAPIDEC; bioMérieux) and the presence of the blaIMP-4-like carbapenemase 148	

gene confirmed using an in-house multiplex real-time PCR (also targeting NDM, KPC, VIM and 149	

OXA-48-like carbapenemases)17.  150	

 151	

Bacterial DNA extraction 152	

Single colonies were selected from primary bacterial cultures and grown in 10 mL Luria Bertani 153	

(LB) broth at 37°C overnight (shaking 250 rpm). DNA was extracted using the UltraClean® 154	

Microbial DNA Isolation Kit (MO BIO Laboratories) as per manufacturer instructions.  155	

 156	

Genome sequencing, Quality Control and de novo Assembly 157	

All isolates in this study were sequenced using Illumina (see supplementary appendix). Reads 158	

passing quality control (QC) were assembled using Spades v3.6.018 under default parameters 159	

(without careful flag). Contigs with coverage less than 10x were removed from final assemblies. 160	

Final assembly metrics were checked using QUAST v2.319 (Table S3). A single isolate (MS14449) 161	

was sequenced using Nanopore MinION sequencing (see supplementary appendix). 162	

 163	

Taxonomic identification 164	

Illumina raw reads were analysed using Kraken v0.10.5-beta to determine species and possible 165	

contamination. With the exception of MS7925, which was found to be E. coli, initial analysis 166	

determined the isolates to be E. cloacae. Subsequent analysis of the E. cloacae de novo assemblies 167	
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using MASH v2.020 and FastANI v1.121 against representative E. cloacae complex complete 168	

genomes (see supplementary material) determined all isolates to be E. hormaechei.  169	

 170	

Phylogenetic analysis 171	

SHRiMP v2.2.322 as implemented in Nesoni v0.13023 under default settings was used to determine 172	

core single nucleotide polymorphisms (SNPs) between the ten 2015 RBWH E. hormaechei genomes 173	

to the reference Ecl1 and create a minimal-spanning tree. Further details of the Ecl1 assembly and 174	

SNP-calling process are provided in the supplementary appendix. Maximum likelihood trees of Ecl1 175	

and the 6 E. cloacae from Hospitals A and B were built using RAxML v8.1.1524 based on the Nesoni 176	

core SNPs. RAxML was run with the GTRGAMMA nucleotide substitution rate and an initial seed 177	

length of 456 (bootstrap 1000 with Lewis ascertainment correction). Core genome size was estimated 178	

using Parsnp v1.225. 179	

 180	

Multi-locus Sequence Typing (MLST), Plasmid Typing and Antimicrobial Resistance (AMR) 181	

Gene Profiling 182	

MLST of isolate raw reads was performed using srst2 v0.1.526 with typing schemes available on 183	

PubMLST (http://pubmlst.org/). Plasmid replicon typing was done based on Compain et al.27. 184	

Antibiotic resistance genes were detected using the ResFinder database28 and the ARG-ANNOT 185	

database29 with BLASTn and srst226 respectively. Manual confirmation was carried out using 186	

BLASTn and read mapping using Burrows-Wheeler Aligner (BWA v0.7.5a-r405)30. Further details 187	

of whole genome comparisons and phage analysis are given in the supplementary appendix. 188	

 189	

Pacific Biosciences (PacBio) Single Molecule Real-Time (SMRT) Sequencing 190	

A representative E. hormaechei isolate from patient 1 (MS7884) was grown on LB agar at 37°C 191	

overnight. IMP positive colonies (determined by colony PCR) were grown overnight in 15 mL LB 192	

broth with 2 μg/mL meropenem to avoid plasmid loss. Genomic DNA was extracted using 193	
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UltraClean® Microbial DNA Isolation Kit (MO BIO) as per manufacturer’s instructions. 18.7 μg of 194	

DNA was prepared for sequencing using an 8-12 kb insert library and sequenced on a PacBio RSII 195	

sequencer using 1 SMRT cell. Further details of the assembly, annotation methods and plasmid 196	

stability in MS7884 are given in the supplementary appendix.  197	

 198	

Metagenomic sequencing and analysis of environmental samples 199	

Swab and water samples from the ICU and Burns Ward were collected July 2018. DNA was 200	

extracted directly from samples using the Qiagen DNeasy Powersoil extraction kit including 201	

Biospec Products 0.1 mm diameter glass beads (as per manufacturers instructions). Water samples 202	

were concentrated using a Whatman Nuclepore 0.2 μm polycarbonate 25 mm diameter filter prior 203	

to DNA extraction. Sample DNA was sequenced at the Australian Centre for Ecogenomics on an 204	

Illumina NextSeq 500 (see supplementary appendix).  205	

All samples were screened for species using Kraken v1.031. Samples were also screen for resistance 206	

genes using srst2 v0.2.026 against the ARG-ANNOT database. MinHash sketches of the ST90 E. 207	

hormaechei chromosome MS7884 (GenBank: CP022532.1) and the associated IncHI2 plasmid 208	

pMS7884A (GenBank: CP022533.1) were generated using MASH v1.1.120 at default settings. 209	

Illumina reads for each sample were screened against our reference sketches using the screen 210	

function in MASH. Samples that shared >=90% of hashes were mapped to the reference sequences. 211	

Mapped reads were then parsed using a custom script and de novo assembled using Spades v3.11.1 212	

for MLST analysis using Abricate v0.8 (https://github.com/tseemann/abricate) and nucleotide 213	

comparison using ACT32 and BRIG33. 214	

 215	

Accession numbers 216	

Genome data has been deposited under Bioproject PRJNA383436. Illumina raw 217	

reads (SRX2999336-SRX2999345, SRX5578807-SRX5578812, SRX5578814), Nanopore raw 218	

reads (SRX5578813), PacBio raw reads (SRX2999346-SRX2999347) and metagenomic reads 219	
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(SRX5590605-SRX5590610) have been deposited in the Sequence Read Archive (SRA). The 220	

MS7884 chromosome (CP022532), pMS7884A plasmid (CP022533), and pMS7884B plasmid 221	

(CP022534) have been deposited in GenBank. 222	

 223	

Results 224	

All three patients carry carbapenemase-producing E. cloacae complex  225	

With the exception of MS7889 (isolated from the urine of Patient 2 on day 36), all E. cloacae 226	

complex isolates collected from the outbreak were resistant to ceftriaxone, ceftazidime, ticarcillin-227	

clavulanate, piperacillin-tazobactam, meropenem, gentamicin and trimethoprim-sulphamethoxazole 228	

by Vitek 2 testing (Table 1) and demonstrated carbapenemase production by Carba-NP. The MICs 229	

for meropenem were considerably lower when tested by Etest34, often falling below the clinically 230	

susceptible breakpoint defined by EUCAST, but above the epidemiological cut-off (ECOFF)35. 231	

MS7889 was fully susceptible to carbapenems (meropenem MIC=0.032 by Etest) and was negative 232	

for IMP-4-like genes by PCR (Table 1).  233	

 234	

Whole genome sequencing identifies a link to a previous IMP-producing isolate 235	

WGS of 10 isolates from patients 1, 2 and 3 was initiated after an additional microbiological 236	

confirmation of a blaIMP-4 E. cloacae complex isolate from a third patient from the RBWH ICU 237	

(Figure 1). In silico analysis determined all to be sequence type (ST)90 E. hormaechei (part of the 238	

E. cloacae complex), with the majority exhibiting the same resistance gene profile, including a 239	

100% identical blaIMP-4 gene (Table 1). The exception was the carbapenem susceptible isolate 240	

MS7889, which was confirmed by WGS to have lost the blaIMP-4 gene as well as several additional 241	

resistance genes conserved in the other E. hormaechei isolates (Table 1). All ten isolates contained 242	

an IncHI2 plasmid. Sequence analysis suggested that AmpC derepression was unlikely to contribute 243	

to carbapenemase activity in these strains (further details are given in the supplementary appendix). 244	

 245	
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Comparison of the E. hormaechei genomes to publicly available draft assemblies identified a close 246	

match to E. hormaechei Ecl1 (GenBank: JRFQ01000000; formerly E. cloacae), an ST90 strain 247	

isolated from a burns patient at the RBWH ICU almost two years prior to the 2015 outbreak13,36. 248	

Antibiotic resistance profiling of the Ecl1 genome revealed an identical resistance profile compared 249	

to the majority of the 2015 isolates (Table 1).  250	

 251	

The 2015 outbreak isolates were near identical at the core genome level to an isolate from 252	

2013 253	

To investigate the relationship between the isolates at single-nucleotide resolution, reads from the 254	

2015 RBWH isolates were mapped to E. hormaechei draft assembly for Ecl1. All 2015 RBWH 255	

isolates differed by fewer than five core SNPs (4,934,357 bp core genome), consistent with a direct 256	

ancestral relationship (Figure 2). Two isolates from Patient 1 and two isolates from Patient 3 were 257	

indistinguishable at the core genome level (Figure 2), although all of the isolates from Patient 3 had 258	

lost a prophage region (refer supplementary appendix). Ecl1 (isolated in 2013) was very closely 259	

related to these isolates, differing by only one core SNP. All four isolates from Patient 2 contained a 260	

discriminatory single-nucleotide deletion, thereby ruling out Patient 2 to Patient 3 transmission 261	

(Figure 2).  262	

 263	

Integration of WGS with infection control response 264	

WGS analysis unequivocally linked all 10 isolates to the 2013 isolate Ecl1 from the same ward, 265	

confirming that the clone had not been an incursion from the accident affecting Patient 1 and 2 and 266	

that the hospital environment was suspected as the most likely original source of infection in the 267	

2015 cases. In response, 28 environmental samples from the ICU, burns wards and operating 268	

theatres were collected 65 days after patient 1 and 2 were admitted and inoculated onto MacConkey 269	

agar with 8 mg/mL gentamicin (laboratory standard screening medium for MDR Gram-negative 270	

bacilli). No carbapenemase-producing Enterobacter spp. were detected. Additionally, no 271	
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carbapenemase-producing Enterobacter spp. were detected in patients admitted to the ICU or burns 272	

unit for a 6-month period following the outbreak. 273	

 274	

Sequencing of additional CPE isolates identify a circulating IMP-4-carrying plasmid in 275	

Queensland 276	

To determine the broader context of IMP-producing Enterobacteriaceae in surrounding hospitals, 277	

seven additional blaIMP-4 producing Enterobacteriaceae (E. cloacae complex n=6, E. coli n=1) were 278	

sequenced. These represented a selection of blaIMP-4 producing Enterobacteriaceae identified from 279	

Brisbane public hospitals via Pathology Queensland Central Microbiology for 2015. Both MLST 280	

and SNP analysis found no relationship to the 2015 RBWH E. hormaechei, with approximately 281	

50,000 SNP differences between the ST90 representative strain Ecl1 and its nearest non-ST90 282	

phylogenetic neighbour (Figure 3, also see supplementary appendix). Despite not being clonally 283	

related, all additional Enterobacteriaceae isolates possessed very similar antibiotic resistance gene 284	

profiles (Table S4), suggesting the possibility of lateral gene transfer via mobile genetic elements 285	

(e.g. integrons and/or plasmids).  WGS analysis revealed that all 18 CPE isolates in this study, 286	

including the E. coli isolate, harbored an IncHI2 plasmid (plasmid ST1) and an identical blaIMP-4 287	

gene, strongly suggesting plasmid-mediated circulation of blaIMP-4 between Enterobacteriaceae in 288	

Brisbane hospitals.  289	

 290	

blaIMP-4 resides in the class 1 integron In809 on an IncHI2 plasmid 291	

Due to the presence of multiple repetitive elements surrounding blaIMP-4, including insertion 292	

sequences (IS) and two suspected integrons with similar gene content, we were unable to accurately 293	

resolve the context of blaIMP-4 using Illumina sequencing alone. One representative isolate 294	

(MS7884) was sequenced twice using PacBio SMRT sequencing, which was able to resolve a 295	

complete closed chromosome of 4,810,853 bp and two plasmids: pMS7884A, a 330,060 bp IncHI2 296	

plasmid carrying blaIMP-4 within a ~55 kb MDR region (Figure 4A), and pMS7884B, a smaller 297	
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untypeable plasmid of 126,208 bp. The pMS7884A MDR region harbours two different class 1 298	

integrons (In37 and In809) as well as a composite transposon conferring resistance to tetracycline 299	

and chloramphenicol (Figure 4A). BLASTn and read-mapping analysis revealed the presence of 300	

identical plasmids in all but one of the 18 isolates sequenced by Illumina in this study: isolate 301	

MS7889 is predicted to have lost a ~34 kb region from its MDR plasmid, including blaIMP-4, due to 302	

homologous recombination between two almost identical aminoglycoside resistance genes (Figure 303	

4B). Notably in 15% of cases, sub-culture of MS7884 in the absence of meropenem selection 304	

resulted in loss of blaIMP-4 or the entire plasmid. Further details of the complete MS7884 genome 305	

and plasmid analysis are presented in the supplementary appendix. 306	

 307	

Continued WGS surveillance reveals persistence of outbreak and transfer of blaIMP-4 plasmid 308	

Ongoing surveillance has been in place for blaIMP-4 positive E. hormaechei isolates within the 309	

hospital since 2015. In 2016, during an unrelated outbreak, a blaIMP-4 positive E. hormaechei was 310	

isolated (MS14389) and following Illumina sequencing found to be only 2 SNPs different from the 311	

2015 isolates, demonstrating continued persistence in the hospital environment (Figure S6).  312	

In 2017, another blaIMP-4 positive E. hormaechei (MS14449) was isolated from the Hematology 313	

ward. Oxford Nanopore MinION sequencing has advanced in recent years to provide long-read 314	

sequencing and real-time analysis of bacterial isolates. However, no method has been established 315	

for its use in rapidly contextualising new isolates during ongoing outbreaks. Using the de novo 316	

Nanopore assembly and contextualising it against publicly available E. cloacae complex strains 317	

plus the outbreak isolates using whole genome alignment we were able to determine that this E. 318	

hormaechei was clonally unrelated to the 2015 outbreak isolates, but did carry an identical IncHI2 319	

plasmid (Figure S7-S9). A blaIMP-4 positive K. pneumoniae isolate (MS14448) taken from the same 320	

patient was also sequenced (using only Illumina short-read sequencing) and found to carry a near 321	

identical IncHI2 plasmid, albeit missing a small section of the MDR region (Figure S10).   322	

 323	
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Shotgun metagenomic sequencing reveals E. hormaechei ST90 and IncHI2 plasmid in hospital 324	

environment 325	

Despite continued routine surveillance of the hospital environment using traditional culture methods 326	

an environmental source for the ST90 E. hormaechei was not found. In July 2018, 50 swab and 327	

water samples from the ICU and Burns ward environments were collected in response to an 328	

unrelated outbreak and subjected to both shotgun metagenomic sequencing and traditional culturing 329	

(Supplementary Dataset S2). From this round of surveillance, Klebsiella oxytoca, E. cloacae 330	

complex and Leclercia adecarboxylata were detected via traditional culturing methods from four 331	

samples (Table S7), however Illumina sequencing of these isolates determined that they were 332	

unrelated to the outbreak. Despite being clonally unrelated, three samples were found to carry a 333	

blaIMP-4-like gene (based on Real-Time PCR), which upon further inspection of the sequencing data 334	

corresponded to an IncHI2 plasmid with high similarity to pMS7884A (Supplementary Figure S11).  335	

While traditional culturing was unable to detect the ST90 E. hormaechei, metagenomic sequencing 336	

identified two samples with high confidence matches to the ST90 E. hormaechei reference MS7884 337	

and the IncHI2 plasmid pMS7884A. Nucleotide comparison of the metagenomic assembled 338	

genomes (MAGs) for these samples (R5514 and R5537, both taken from floor drains) to our E. 339	

hormachei reference genome revealed a high level of nucleotide identity across the entirety of the 340	

chromosome and plasmid (Supplementary Figures 12 and 13). MLST analysis of both MAGs was 341	

also able to detect several similar, albeit incomplete, alleles for ST90 (Table S8). Additionally, 342	

screening for resistance genes identified the blaIMP-4 gene in both samples, further supporting the 343	

presence of an ST90 E. hormaechei and an IncHI2 plasmid similar to pMS7884A in these samples. 344	

Analysis of three other environmental samples (R5505, R5506 and R5522) recovered fewer than 345	

5% of total reads that mapped to the reference E. hormaechei MS7884 genome, compared to 25% 346	

and 20% for our positive samples R5514 and R5537 respectively (Table S8, Supplementary dataset 347	

2). This low number of reads was insufficient to confidently identify the ST90 E. hormaechei or 348	

IncHI2 plasmid of interest in these samples (Table S8 and Supplementary Figures 12 and 13).  349	
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Discussion 350	

While there has been a dramatic improvement in the cost and availability of whole genome 351	

sequencing (WGS), it is not clear how these advances can best be incorporated into routine clinical 352	

microbiology. Several studies have demonstrated the ability of WGS to provide optimal 353	

discrimination between strains to help inform a response to outbreaks or nosocomial acquisition37-354	

40. Here, we demonstrate that and integrated WGS approach can help rapidly characterize an 355	

outbreak in a critical care setting, particularly regarding transmission pathways. We highlight how 356	

WGS can be used to link contemporary outbreak isolates to historical isolates to inform infection 357	

control and incorporate long-read sequencing technologies to resolve complete genomes (including 358	

plasmids) and to rapidly resolve suspected outbreak cases. Finally, we demonstrate the potential of 359	

using complete genome sequences to interrogate environmental shotgun metagenomic sequencing 360	

data to identify outbreak sources.  361	

 362	

The finding that the outbreak strains were virtually indistinguishable from an IMP-4-producing E. 363	

hormaechei isolated two years previously from the same unit was unexpected and highlighted the 364	

need to consider environmental sources and potential person-to-person transmission, as has been 365	

previously described in Australian ICU and burns units14. Despite ongoing surveillance, traditional 366	

culture-based detection methods were unable to find the ST90 E. hormaechei in the environment. 367	

Direct DNA extraction and metagenomic sequencing has in recent years revolutionised infectious 368	

disease surveillance, allowing detection of all microorganisms in a sample without the biases and 369	

limitations of traditional pathogen detection41. Using metagenomic sequencing and a high quality 370	

complete reference genome we were able to detect two samples with high confidence hits to an 371	

ST90 E. hormaechei and an IncHI2 plasmid, confirming its presence in the environment. We were 372	

also able to observe the overall community profile within each environmental sample, making 373	

metagenomic sequencing a powerful infection control and surveillance tool for tracking (i) the types 374	

of bacteria present in the environment, (ii) the types of resistance genes circulating, and (iii) the 375	
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effectiveness of environmental cleaning. Metagenomic sequencing does, however, have certain 376	

limitations when considering its implementation in routine infection control, including the necessity 377	

for a reasonable amount of starting DNA, and the chance of amplification inhibition during library 378	

preparation (causing low yield or failed sequencing). Metagenomic sequencing can also be quite 379	

costly42, as the sequencing output needs to be sufficiently high to provide an accurate population 380	

structure and detect low-abundance organisms. In our study, while metagenomic sequencing of the 381	

environmental samples yielded positive results, it is still unclear how these reservoirs are causing 382	

reinfection in patients. It is possible that healthcare workers are somehow involved, with previous 383	

studies confirming carriage of a range of clinically important bacteria43-45.  384	

 385	

Using SMRT sequencing technology, we determined the full context of blaIMP-4 and its location 386	

within a large, complex and highly repetitive MDR region harbouring two integrons: In37 and 387	

In809. In37 is a widespread class 1 integron that has been found in many bacterial species46,47. 388	

In809, which carries blaIMP-4, has previously been described from K. pneumoniae (GenBank: 389	

KF250428.1, HQ419285.1, AJ609296.3), E. cloacae (GenBank: JX101693.1) and Acinetobacter 390	

baumannii (GenBank: AF445082.1, DQ532122.1) in various plasmid backgrounds including 391	

IncA/C248, IncL/M and IncF49. Most recently, a carbapenemase-producing Salmonella sp. isolated 392	

from a domestic cat in Australia was shown to contain blaIMP-4 within an IncHI2 MDR plasmid 393	

(pIMP4-SEM1)50. Remarkably, we found that pIMP4-SEM1 was near identical to pMS7884A 394	

(Figure S5). This finding highlights the role of domestic animals (or the food they eat) as a reservoir 395	

for antibiotic resistance genes. 396	

 397	

Analysis of several CPE in this study suggested that a common plasmid or integron carrying 398	

multiple antibiotic resistance genes is likely the major driver of antibiotic resistance dissemination 399	

across a broad range of Enterobacteriaceae. In addition to the presence of blaIMP-4, four resistance 400	

genes (blaTEM-1b, blaIMP-4, qnrB, and aac(6’)-Ib) carried by these isolates were previously detected 401	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2019. ; https://doi.org/10.1101/172536doi: bioRxiv preprint 

https://doi.org/10.1101/172536
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

17	

by PCR in the majority of 29 IMP-4-producing E. cloacae complex isolates surveyed from 402	

Queensland hospitals between June 2009 to March 201413. Only one of these isolates was ST90, 403	

suggesting lateral transfer of these genes to different Enterobacter clones in Queensland before 404	

2013. During ongoing surveillance at RBWH we identified an E. hormaechei isolate that also 405	

carried the blaIMP-4 plasmid, but was not closely related to the outbreak isolates, suggesting on-406	

going lateral transfer within the hospital environment.  In this instance the Oxford Nanopore 407	

MinION sequencing platform was instrumental in ruling out this isolate from the ongoing outbreak 408	

of blaIMP-4 ST90 E. hormaechei. Our work highlights the potential for integrating this highly 409	

portable and rapid technology as part of the “genomic toolkit” for infection control alongside more 410	

established platforms. The capacity to recognise inter-species MDR plasmid transfer is also greatly 411	

enhanced by the availability of complete reference genomes, as demonstrated by the blaIMP-4 412	

positive K. pneumoniae isolate identified in this study.   413	

 414	

There were significant discrepancies between meropenem MICs according to the testing modality 415	

used, with the Etest consistently testing as “susceptible/intermediate” (MIC ≤4 mg/L; range 0.5-4 416	

mg/L) and Vitek2 as “resistant” (usually with MICs ≥16 mg/L). According to 417	

pharmacokinetic/pharmacodynamic (PK/PD) principles, provided the MIC to a carbapenem falls 418	

within a susceptible range, the agent may still be effective despite the presence of a 419	

carbapenemase51. Robust clinical data to help guide therapy are lacking and many clinicians rely on 420	

combination therapy to optimize efficacy against carbapenemase-producers, largely based on 421	

observational studies suggesting benefit52,53. The presence of carbapenemase genes may be missed 422	

if clinical breakpoints for carbapenem MICs are used35, however it can be rapidly ascertained by 423	

WGS, without a priori assumptions of which genes are likely to be present.  A wealth of additional 424	

information that may influence clinical decisions can be obtained, such as the presence of other β-425	

lactamases, factors that may regulate resistance gene expression (e.g. IS elements), mutations in 426	

outer-membrane proteins, or other known resistance genes.  427	
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Conclusions 428	

We used an integrated WGS approach to help elucidate genetic relationships between blaIMP-4 429	

carbapenemase-producing E. hormaechei identified from our ICU and Burns facility.  Real-time 430	

application of this technology revealed an unexpected clonal relationship with a strain isolated from 431	

the same unit two years previously. Continued routine WGS surveillance has enabled detailed 432	

monitoring of the outbreak, with rapid nanopore sequencing crucial for ruling out a suspected case 433	

in a previously unaffected ward. Comparisons with other Enterobacteriaceae containing blaIMP-4 434	

isolated from surrounding hospitals revealed its carriage on a broad host range IncHI2 plasmid, 435	

assumed to be circulating via lateral gene transfer across different E. cloacae complex clones and 436	

also E. coli. SMRT sequencing enabled the genetic context of all resistance genes within this 437	

plasmid to be resolved and revealed the mechanism of loss of resistance genes in one E. hormaechei 438	

strain that reverted to a fully carbapenem-susceptible phenotype.  The availability of a complete E. 439	

hormaechei reference chromosome and blaIMP-4 plasmid were also instrumental in locating a 440	

suspected source of the outbreak in the hospital plumbing with shotgun metagenome sequencing. 441	

As WGS technologies become increasingly available, they are likely to prove essential tools for the 442	

clinical microbiology laboratory to respond to emergent infection control threats, and can be used in 443	

real-time to provide clinically meaningful information.  444	

 445	
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Table 1: Antibiotic Resistance Profile as determined by Etest, Vitek2 and ResFinder 620	
Patient 1 2 3 

Strain (MS) 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 

Source ETT  urine  ETT  urine  blood  urine  ETT  blood  
Leg 

swab blood  

ST 90 90 90 90 90 90 90 90 90 90 

Plasmid IncHI2 IncHI2 IncHI2 IncHI2 IncHI2 IncHI2 IncHI2 IncHI2 IncHI2 IncHI2 

MIC(mg/L) by E-test 
Ertapenem 1 2 4 2 0.5 0.032 2 0.5 0.5 2 

Imipenem 2 1 4 8 1 0.5 2 1 1 4 

Meropenem 0.5 1 4 2 0.5 0.032 2 1 0.5 0.5 

β-
la

ct
am

s 
an

d 
 

C
ep

ha
lo

sp
or

in
s  

Vitek2
1 

Tim ≥128 ≥128 ≥128 ≥128 ≥128 32 ≥128 ≥128 ≥128 ≥128 

Mer ≥16 ≥16 ≥16 ≥16 ≥16 ≤0.25 ≥16 ≥16 ≥16 ≥16 

Taz 16 16 16 16 16 8 16 16 16 16 

Fox ≥64 ≥64 ≥64 ≥64 ≥64 ≥64 ≥64 ≥64 ≥64 ≥64 

Caz ≥64 ≥64 ≥64 ≥64 ≥64 ≤1 ≥64 ≥64 ≥64 ≥64 

Cro 16 16 16 16 16 ≤1 16 16 16 8 

Fep 2 2 4 2 2 ≤1 2 2 2 4 

Res 

ampC + + + + + + + + + + 

blaOXA-1 + + + + + - + + + + 

blaIMP-4 + + + + + - + + + + 

blaTEM-1B + + + + + + + + + + 

Am
in

og
ly

co
si

de
s Vitek2 

Ami ≤2 ≤2 ≤2 ≤2 ≤2 8 ≤2 ≤2 ≤2 ≤2 

Gent ≥16 ≥16 ≥16 ≥16 ≥16 ≤1 ≥16 ≥16 ≥16 ≥16 

Tob 8 8 8 8 8 ≥16 8 8 8 8 

Res 

strB + + + + + + + + + + 

strA + + + + + + + + + + 

aac(6')Ib-cr + + + + + + + + + + 

aac(3)-IId + + + + +  - + + + + 

Quinolones 
Vitek2 Cip ≤0.25 0.5 ≤0.25 ≤0.25 0.5 ≤0.25 0.5 0.5 1 ≤0.25 

Nor 2 2 2 2 2 0.5 2 2 2 1 
Res qnrB2 + + + + + -  + + + + 

Sulphonamide/ 
Trimethoprim 

Vitek2 Tmp/smx ≥320 ≥320 ≥320 ≥320 ≥320 ≥320 ≥320 ≥320 ≥320 ≥320 

Res sulI + + + + + + + + + + 

dfrA18 + + + + + + + + + + 
Rifampicin Res arr3 + + + + + - + + + + 
Macrolide Res mph(A) + + + + + - + + + + 

Phenicols Res catA2 + + + + + + + + + + 

catB3 + + + + + + + + + + 
Tetracycline Res tet(D) + + + + + + + + + + 

 621	
1Res = ResFinder Antimicrobial Resistance gene database; Vitek = Vitek2 automated susceptibility 622	

MIC (mg/L): Tim=ticarcillin-clavulanate, Taz=piperacillin-tazobactam, Fox=cefoxitin, 623	

Caz=ceftazidime, Cro=ceftriaxone, Fep=cefepime, Mer=meropenem, Ami=amikacin, 624	

Gent=gentamicin, Tob=tobramycin, Cip=ciprofloxacin, Nor=norfloxacin, Tmp/smx=trimethoprim-625	

sulphamethoxazole  626	
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Figure Legends: 627	

Figure 1: RBWH clinical case study outline: Three burns patients were admitted to the RBWH 628	

ICU ward in mid 2015. Patient 1 (Female, 43-years-old) and Patient 2 (Female, 58-years-old) were 629	

admitted on the same day. Subsequent to admission, both patients developed carbapenem-resistant 630	

E. hormaechei infections, with two samples taken from patient 1 (source = ETT [purple] and urine 631	

[grey]), and 4 samples taken from patient 2 (source = ETT [purple], urine [grey], and blood [red]). 632	

Patient 3 (Female, 39-years-old) was admitted 37 days after the patient 1 and 2 had been admitted 633	

and after they had been discharged from the ICU. Patient 3 also developed infection due to a 634	

carbapenem-resistant E. cloacae infection, and had 4 samples taken from ETT (purple), blood (red) 635	

and wound sites (orange). After intensive antibiotic and antifungal treatment, the patient was 636	

palliated on day 47 of ICU admission. Sequencing and genomics analysis of all 10 isolates was 637	

undertaken following confirmation of all three patients being infected with blaIMP-4-producing E. 638	

hormaechei (period shown in purple shading).  Environmental swabbing was undertaken 65 days 639	

after the initial admission of patient 1 and 2, and 29 days after the admission of patient 3 (orange 640	

square). 641	

 642	

Figure 2: CPE isolate timeline and relationship matrix: A. 10 isolates were collected from 3 643	

patients at various time-points in mid 2015. Coloured blocks indicate the source of the isolated 644	

strain: purple: respiratory, grey: urine, red: blood, and orange: wound. B. Relationship matrix (left) 645	

shows specific core single nucleotide variant (SNV) differences identified between strains. Strains 646	

within the same circle have identical core SNV profiles. Lines connecting circles represent 647	

accumulating SNV differences between strains (not-to-scale), where each line represents one SNV 648	

(including nucleotide deletion). Specific nucleotide differences between isolates are given in the 649	

table in panel B. Locations and consequences of nucleotide change are shown in Supplementary 650	

Dataset S1. All 11 isolates differed by 5 SNVs overall.  651	

 652	
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Figure 3: Core SNP Maximum likelihood (ML) tree of Hospital A and B E. hormaechei 653	

isolates in relation to RBWH isolates: Trimmed reads from 6 E. hormaechei isolates (Hospital A 654	

and B) were aligned to the reference E. hormaechei Ecl1 (isolated in 2013 at the RBWH) to 655	

determine core single nucleotide polymorphisms (SNPs) between all isolates. Ecl1 in this figure 656	

represents all 2015 RBWH isolates (n=10) as they were found to be near identical at the core 657	

genome level. 63,861 core SNPs were identified and used to generate a ML tree with RAxML 658	

(1000 bootstrap replicates), which determined no relationship between the RBWH isolates (pink) 659	

and the Hospital B (blue)/Hospital A (orange) isolates. Four closely related strains were identified 660	

from Hospitals A and B (red box). Alignment of trimmed reads from MS8077, MS8079 and 661	

MS7926 to MS7924 identified 117 core SNPs, however, a number of these SNPs were removed as 662	

they were identified as residing within transposon or phage regions. The remaining 58 core SNPs 663	

were used to generate a ML tree (1000 bootstrap replicates), showing that Hospital B strains differ 664	

by less than 20 SNPs.  665	

 666	

Figure 4: Large IncHI2 plasmid with ~55 kb multidrug resistance region containing IMP-4 667	

carbapenemase: A. A 330,060 bp IncHI2 plasmid carrying multiple resistance operons, including a 668	

large ~55 kb multidrug resistance (MDR) region, was fully recovered and assembled using Pacific 669	

Biosciences (PacBio) SMRT sequencing of strain MS7884 (patient 1, isolate 1). The multidrug 670	

resistance region was found to contain two class 1 integrons (In809, In37) along with several other 671	

antibiotic resistance genes, as indicated. Comparison of this MDR region to publicly available 672	

genomes found a close match to pEl1573, isolated in 2012 from an E. cloacae isolate in Sydney, 673	

Australia. B. A predicted model of homologous recombination between two nearly identical 674	

aacA4/aac(6’)-Ib-cr genes (red asterisks) within the ~55 kb MDR region in MS7889 (patient 2, 675	

isolate 4, IMP-, carbapenem-susceptible) leading to the loss of a ~34 kb region containing blaIMP-4 676	

as well as several other antibiotic resistance genes.  677	

  678	
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Figure 1 679	
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Figure 2 682	
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Figure 3 685	
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Figure 4 688	

 689	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2019. ; https://doi.org/10.1101/172536doi: bioRxiv preprint 

https://doi.org/10.1101/172536
http://creativecommons.org/licenses/by-nc-nd/4.0/

